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In our concluding paper something will be said about the iempe-
rature influence, which will manifest itself by continual diminution
of br— b, at first slowly, then more rapidly. as the absolute zero is
approached. Descending from high to low temperatures one can
therefore pass through all the types. If the-critical region of a substance
lies in the region of low temperatures, the critical quantities, and
also the isotherms in the neighbourhood of the critical point, will
present, as far as the course of O is concerned, the little variable
type with slightlbk—b0 (v in the neighbourhood of 0.5). But these
same substances will of course show the same variability of § as
the “ordinary” substances at high temperatures. Reversely the ordinary
substances, considered at low temperatures, will assume the Argon-,
Hydrogen- or Helium-type, with respecl to the slight variability of
b at these temperatures. Etc. Ete.

In this concluding paper I shall also communicate the b-values
for Argon I have calculated; besides I shall venture to give some
theoretical considerations concerning the diminution of the factor 4
in b, = 4m with fall of the temperatore.

Fontanivent sur Clarens, February 1914.

Mathematics. — “The envelope of the osculating ellipses, which are
described by the representntive pownt of a wvibrating mechanism
having  two degrees of freedom of nearly equal frequencies.”
By H.J.E. Beri. (Communicated by Professor D. J. Korrewze).

(Communicated in the meeting of February 28, 1914).

§ 1. In my paper on the small oscillations of mechanisms with
two degrees of freedom '), Lissajous curves with their envelopes were
discussed, which envelopes form the boundaries of the domain of
motion. In a summarizing treatment of a more general problem %
my further inquiries as to these envelopes have also been included.
These inquiries were extended over a system of Lissajous curves,
more general than the system which is of importance for the dynamical
problem. However the envelopes were considered exclusively from
a dynamical point of view, so that purely geometrical properties
together with the shape of the curves outside the domain of motion
remained unknown. Moreover what came to light about the shape
of the envelope remained for the greater part restricted to simple
cases, e.g. in the case, formerly indicated by S—=2, to the symmet-
rical case, as quoted, indicated by p +¢=0, [=0. |

_1)_These Proceedings pp. 619—635 and 735—750 (1910,
%) Phil. Mag., sixth series Number 152 (1913).
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In what follows for S=2, the case of the equality of frequencies,
the envelope will be treated anew and from a more geometrical

" point of view.

We shall therefore have to occupy ourselves with the envelope (L)
of the system of ellipses !
z =8 cos ¢ , Y= V1§ cos (t—o).
in which § and ¢ are two variable quantities in the most general

case connected by the relation :

- 1 - -
l/é(l—g)cosf/’:—;;l:‘:l/PS' + q§+r+zl’.

By elimination of ¢ we find for the equation of the ellipses
4) (1—5 e —2VE(1—F)cos g - wy + &y* = §(1—8) sin? op.

Let us now determine the reciprocal polar curves of these ellipses
with respect to the circle:
(©) @+ yt =1,
in the circuamference of which circle the vertices are situated of the
rectangles, which are circumscribed .to the ellipses (4), and have
their sides parallel with the axes. The envelope (L) of this new
system of ellipses will be the reciprocal poleu curve of the envelope
(L) wanted. (Cf. note p. 943).

The new system of ellipses appears to be given by :
4" S + 2 VG —8)eosp . ay + (1—E)y* = 1.

By elimination of ¢ between this equation and the given relation
between § and ¢ we find:

' 1
4(}352 + g +rto t’) o'yt = {1 — &’ + ly — (18 yf.

This equation contains § to a no higher order than two. The
equation of the envelope of (4) may consequently be written down
at once. After some reduction this equatioh of (L") becomes :

— (4 H 1)y —ay —4dp(1 +liy—y*) +4p(de+B)aty'=
=dg'a"y" — 4g(1 +-lay—y*)(y* —2°).

As (L) is now apparently of the fourth order, the envelope (L)
wanted is of the fourth class.

As (I') in general as we shall see, has no double points or cusps,
it has been determined by this, that (L) s of the twelfih order.

(L), like (L"), has the origin as centre.

If we multiply the equation found for (L) by p, (the casesp =10
and p==o we shall consider sepfuately in § 9) it appears that it
may be written thus:

61
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5] fgu 1-2play—(2p-t- )y *-+-2p) = slar —2(2p-+1)a*y* -y,
where .
s=g —p (dr + ).

§ 2. It is evident from the equation just found that out of the

origin 4 bitangents may be drawn to (L'), given by
at —2(2p -+ D) a*y* + y* = 0.

The 8 points of contact are lying on the conic
(X) ge* + 2play — (2p + @y* + 2p = 0.

The bitangents are real or imaginary, according to p being positive
or negative. They form two pairs of perpendicular lines, lying sym-
metrically with regard to the axes and with regard to the straight
lines that bisect the angles of the axes.

If (K) has its axes along the axes of coordinates or along the
bisectrices, then (L) and consequently (L) as well will have those
lines as lines of symmetry. The first occurs for /=0, the second
for p + ¢ =0. These two suppositions consequently give rise to the
same simphfication in the shape of (L). In the formerly amply dis-
cussed case that /=0 as well as p 4 ¢ =0, (K) becomes a circle
with |2 as radius.

—

§ 3. Nodes of (L). Let us write the equation of (L) found in
§ 1 in the shape ‘
U? == MN,
in which
e’ + 2play — (3p + q)y* + 2p
V's
and M and N are expressions of the second order, obtained by
separation of the expression z*—2(2p -+ 1)2"y" + y*, then we see,
that (L’) is touched in 4 points by each conic of the system,
2M 4+ 22U 4 N=0,
in which A represents a parameter.
The separation of the expression mentioned, may be executed in
the following ways :
#*—22p + D)a*y* + y* = (a* + 2V/p wy—y*)(a*—2Vp ay—y*)
=(@* + 2Vp + Lay + y)a*—2Vp+1lay+y?)
=lo'—(Vop + 1—2Vplp + 1)y} {o* —

—(V2p + 1+ 2Vpip + Dy
The first way of separation leads to the following system of inscribed -
conics

U=
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(ﬁ+2Vl+U%+2W+h/l—Uw(ﬂ+

2p + ¢ 4p

42—k + 1)y = ——2

e +)y( s
The values of 2, other than O or o, for which this equation
represents a degeneration, viz. a degeneration into two parallel straight

lines, are determined by the equation :
@+l p@ Lo 4o 218 y=0
S 8

Each of the straight lines of a degeneration touches (L’) in two
points, is therefore a bitangent of (L’). If we write the equation of
such a straight line in the shape

av 4 by == 1,
then we see easily that we have
a® b =1,
i.e. the 4 pairs of parallel bitangents touch (C).

We may observe that the system of conics to which we have
arrived is the system of ellipses (4’) itself, which is apparent, if we
replace the parameter § by 2, in sqch a way that :

q*—4pr—pl? 17\¢
4p8? 4- 4 4 = A——1).
p5? + 495 4 4r + y ( l)

Let us proceed now to the second way of separation. The equation
of the second system of inscribed conics and the equation determining
the degenerations may be written down. So we come again to 4
pairs of parallel bitangents of (L’); they appear to touch the hyperbola :

p

w'l___yﬂ I
p+q
In the same way the third method of separating leads to 4 pairs
of parallel bitangents of (L’), which touch the hyperbola
1

:’l}y:-—é—l.

Hence: :
Of the 28 bltangents which the envelope (L’), possesses 4 pass
through O; the remaining ones are pairs of parallel lines ; 8 of them

tounch the circle a4 y'=1, 8 the hyperbola 2*--¢ = — ——,

1
and 8 the hyperbola zy = — 5 N

We now transfer what we have found 'to (L):
61*
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Of the 28 wnodes of the envelope (L), & are lying at infinity,
8 on the circumference of the circle 2* + y* =1, 8 on the lyperbola

JU ek and 8 on the hyperbola zy — — 2L.

'y

The 4 pairs of parallel asymptotes of (L), which correspond with
the bitangents of (L’) passing through O, touch the conic (X”), which
is the reciprocal polar curve of (X).

The nodes of (L) lying on (C), if they are real, are for the dynam-
ical problem wunder discussion the vertices of the quadrangular
figures, which as appeared before, may serve as envelopes; the
branches intersecting in those points meet perpendicularly, as was

proved for a more general case?®).

§ 4. Asymptotes of (L). Besides the 4 pairs of parallel asymp-
totes, (L) has moreover generally speaking 4 asymptotes passing
through O, which are perpendicular to the asymptotes of (L”).

Of (L’) two asymptotical directions may coincide.

In this case the corresponding asymptotes do not pass through O,
but they are removed from O al equal distances. In that case on
the straight lines passing through O (L) has two cusps in which
the straight line is a tangent. The said straight line is to be consid-
ered to belong to (L) consequently (L) is degenerate.

Various shapes of (L).

§ 5. The equation of (L) reads (§ 1): .
fga” + 2play — (2p + @y + 2p) =sle* — 2@p + Dy’ + ¢,
where
s=¢q* — p(4r 4 I*).

Its shape will in the first place be dependent on the nature of
the bitangents drawn from O, viz. whether they are imaginary
(p < 0), or real (p > 0) and touch the curve in real points or are
isolated.

Further on the nature of the conic (X) which may be an ellipsis,
an hyperbola or a degeneration. '

Finally on the reality of the asymptotes.

We can prove now, that (L") has as many real asympiotical direc-
tions as it has pairs of real points of intersection with (C).

Let (cos e, sin a) be the point of (C) lying on (L’), then we have:

1) Phil. Mag. 1 e, p. 297,
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{g cos® & -I- 2pl cos a sin a—(2p -+ @) stn® a 4- 2 =
= sfeos* a—2 (@p + 1) cos® @ sin® ¢ + sin' a. ’
If we write this in the form:
fg sin® a—2pl cos ¢ sin a—(2p + ¢) cos® o} =
= s {sin* a—2 (2p + 1) cos® @ sin* @ + cos* o}
then it is evident, that
- y=-—axcolga
in an asymptotical direction of (L’).
If (L") touches (C), two asymptotical directions coincide, they are

perpendicular to the line that connects O with the points of contact.
i

§ 6. (K) is an ellipsis.

1°. p >0, consequently the bitangents from O are real. They
cut (K) in real points, mn which points they touch (L’).

The bitangents divide the plane into 8 angles, in which :

) H=2'—2(2p + 1)a* " + "
is alternately positive and negative. (L) lies for positive values of

s=g'—p (4r + I¥)
in the angles, where H, is positive.

Let us call the branches of (L’), which are lying in the one pair
of opposite angles, a, those which are situated in the other pair, b.

Let us begin by giving positive values to s and let us first consider
a exclusively.

For s = o degeneration in two bitangents. Ifor large values of s,
@ consists of one branch with two asymptotes and four points of
inflexion. For decreasing values of s the angle between the asymp-
totes becomes smaller, the apices are removed from each other and
the points of intlexion move towards infinity. For a definite value of s
the asymptotes are parallel. If there is a further decreasein s, a will
consist of two closed branches in which for another special value
of s points of osculation occur in the sides turned towards O. Then
two points of inflexion appear in each branch and the branches
contract, till we have for s = 0 degeneration in the ellipsis (X)?).

Y) The case § = g*—p (4r + [?) = 0 must be inquived into separately. For s =0
is the condition that in the second part of the relation between ¢ and ¢ (p. 939)
the root may be drawn. In this case (4’) represenls two pencils of ellipses.
Consequently the required envelope (L) has now degenerated into 8 straight lineg,
which ate the polar lines of the base points of those pencils, and in (X’), which
1s the polar curve of {(X).
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If we allow s to change {rom oo into 0, & passes through an
equal change of shape. If we consider @ and 0, however, together,
then the general and special values of s, for which two asympto-
tical directions coincide, and those for” which points of osculation
occur, will not be the same for a and b.

If we take into consideration what has been ohserved in § 5 with
respect to the asymptotical directions of (L’) and its points of inter-
section with (C), it is evident that we have to distinguish the fol-
lowing cases, which are represented in fig. 1 (with the exception
of the 3rd):

1. a and b Dboth cut (C); they have each two intersecting
asymptotes.

2. a touches (C), b cuts (C), a has two intersecting, b two paral-
lel asymptotes.

3. a lies outside (C), b cuts (C); a has two intersecting asymp-
totes, 0 consists of elosed branches.

4, a lies outside (C), b touches (C); a has two parallel asymp- -
totes, b consists of closed branches.

5. a and b lie both outside (C); both consist of closed branches.

In this we have not yet paid attention to the presence or absence
of the points of inflexion in the closed branches; the number of
cases would be increased by this.

It is evident that a value of s exists, below which points of inflexion
occur both in the closed branches ¢ and 6. In that case all the 28
bitangents of (L') are real.

We have now allotted to s all positive values, for negative values
of ¢ (I/) lies in the other four angles. If we revolve the system of
axes 45°, we shall get the same cases again.

"The value of p determines the situation of the bitangents drawn
from (. For increasing values of p they move towards the axes,
for, decreasing values of p towards the lines that bisect the axes--
angles We shall have to consider the limit-cases separately.

§ 7. 2% p <0, consequently the bitangents from Oarelimagina,ry.
For a very great value of s (which we have always to take posi-
tive here) (L’) consists of a small closed branch, given by
, \ ip? \
#—2(2p + N a'y* 4y =L,
$

i

symmetrical with regard to the axes and the bisectrices. It possesses
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8 points of inflexion or none, according to p being <~———; or
1
>3

We shall suppose p >—1. This is sufficient, for it is easy to
prove that (L") for a value of p<(—1 by revolving the system of
axes 45° passes into a curve answering to a value of p > —1.

If s decreases, the closed branch will increase while the symmeiry
is lost. For a certain value of s it touches (C') in two points. Then
it cuts (C) in four points, in consequence of which according to the
observations made in § 5, wnfinite branches oceur. For a smaller
value of s the closed branch which we shall call a, again iouches
(C) internally in two points. Then a cuts (C) in 8 points while new
infinite branches appear. If s decreases further, then a touches (C)
externally in two points; two asymptotes of & become parallel.
‘Further a cats (C) moreover m 4 points while two asymptotes of
b have become imaginary. After this eaternal touching occurs again,
after which a has quite passed outside (C). At the same time & has
become a closed branch. All the time « has remained inside (X), &
outside (X), for (L’) cannot cut (X) now as H, cannot become
zero. It is evident, that, if (L’) has assumed the form of a ring, a
must have lost its points of inflexion if it possessed them. They will
have disappeared with four at a time. After the falling rogether of
two asymptotical directions, points of inflexion will occur in & so
that the closed branch 6 may possess 8 points of inflexion. On farther
decrease of s these points of inflexion will disappear by four at a
time, while the branches ¢ and b approach each other, in order to
coincide with (X) for s=0.

In Fig. 2 (L’) is represented for a certain value of p<{O (via.
< —1) for some values of s.

From the equation of (L’) appears at once that for p=—1, (L}
has degenerated into two conics; at the same time (L) has degener-
ated into two conics.

In the figures (K) and (C) have not been drawn as intersecting;
it is easily shown that they cannot intersect each other if (X)) is
an ellipsis. :

§ 8. (K) is an hyperbola.

1% p >0, so the bitangents from O are real.

From the equation of (K) we deduce easily that the angle of the
asywptotes is always greater than 90°. Hence (K) will cut at least

-10 -
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2 of the bitangents from O. Of the 4 bitangents 0, 1 or 2 are
consequently isolated. )
Fig. 3 refers to the case that two of the bitangents are isolated.
For a few positive and negative values of s, (L’) has been drawn.
Fig. 4 refers to the case that 1 bitangent is isolated.
Fig. 5 to the case that none of the bitangents is isolated; (L’)
therefore touches the 4 bitangents drawn from O in real points.
2°. p <0, so the bitangents from O are imaginary. -
Fig. 6 ‘gives a representation of this (p is supposed > —
(In the figures (K) and (C) are represented as intersecting; this
is indeed always the case if (X} is an hyperbola).

(K) 1s a degeneration. -

As p==0 is supposed. we have only to consider the case of
degeneration in two parallel lines that touch (C). Generally speaking
we can say that substantially everything is as when (X) is an
hyperbola. If the bitangents are real they will generally touch (L")
in real points.

§ 9. Special cases p=0 and p=co These cases had to be

considered separately (§ 1).
For p=0 and ¢==0 the frst equation whlch we have found

in §1 for (L’) passes into: -
+ 48— + 47 2y + 4 (L A ey — ¥ (P — ) =0,
If we write:
4o P2 ~
4 ’

then the equation becomes:

: fto* + loy — (¢ + 1y + 1} (y* — 2*) = g2,

(L’) has now a node in O. For the rest various cases may occur
also here, which we are not’ going to consider separately.

If p=0 and besides ¢ =0, then we have to consider the problem
separately (cf. note p. 143). It is evident then that (L) consists of two
rectangles ).

For p=o and ¢==o, the first equation of (L) found in § 1
represents two lyperbolae, intersecting in the points (0, £ 1); p =
involves, according to the relation between § and ¢ (§ 1), §=0.
There is therefore no question of an envelope (L). For p =
and at the same time ¢ =— o the envelope must be found again.
It ‘appears that (L) cousists of 2 rectangles ?).

1) Phil. Mag. p. 315.
2) Phil. Mag. p. 315.

-11 -
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Various shapes of the envelope (L).

§ 10. The number "of various shapes which (L’) and consequently
also (L) may assume is, as we have deduced in what precedes,
very great. In order to facilitate the survey of those various forms,
we “shall begin with the case that p -} ¢=0and at the same time
1=0. The equation of (L') runs:

Qe +y'—2) =s (o' —2L—29)a’y* +y*}  (s=¢"+4g7)-

The equations of the 4th order ik 2 as mentioned in § 3 are now
of a quadratic form. The situation of the double points of (L) may
therefore be determined by means of quadratic equations; of the
double points 8 are lying on the axes, 8 on the bisectrices. The
cases ¢ —= 0 and ¢ = oc have been considered separately (§ 9).

For an arbitrary value of ¢ we have besides the values s =0
and s — o, for which (L’) degenerates, two more special values of
s, viz. a value for which the asymptotical directions coincide in
pairs and one for which the points of inflexion coincide in pairs.

The asymptotical directions are determined by:

(g>—s) (#* —y*)* 4 4g(qg—s) 2*y* = 0.
They are real if ¢>—s and g (g—s) have different signs.
They coincide in pairs:
for s = ¢* (r =0) with the directions of the axes,

1
for s=g¢q (r:;—(i—-q)) with the directions of the bisectrices.
” §

/1
For s = ¢* the asymptotes are removed at a distancel/ F—
—q
. . 1 —2¢
from O, for s=gq at a distance —.
2 l1—q

For s=¢* (L’) touches (C) in 4 points, lying on the axes, for
s =¢ in 4 points on the bisectrices (§ 5).

If the points of inflexion coincide in pairs those points ave
situated either on the axes or on the bisectrices.

If they are lying on the axes at a distance o from O, then the

equation -should run:
@+ =) = (=) ().

From this we deduce:

q’ ( L, (1—*q)>, . 2¢—1
§= il =0 ) =
(1—2q) (I—29q) g—1

The points of inflexion coincide in pairs on the bisectrices for:

-12 -
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. 1
¢ ( ‘Z(Q—l)<1—14)> L 2y ‘ i
“g—2r '\ (@—2) ’ 1—g
From what was observed in § 7 follows that we have to consider
for ¢ negative values only, and positive ones smaller than unity.

The asymptotes, parallel to the axes, arve real for all these
values of ¢.

The .asymptotes, parallel to the bisectrices, are real for negative
values of ¢, imaginary for positive ones, smaller than unity.

The points where the points of inflexion coincide on the bisec-
trices, are always real.

The points where the points of inflexion coincide on the axes are -
real for all negative values of ¢, and further for positive values

1 1
of ¢, smaller than 3 For values of ¢ between 5 and 1 they are
imaginary. Further we observe that the value of s, for which these

. . 1 1
" points occur, is between oo and ¢, if ¢ lies between y and 3 s lies

1
between q and ¢, if ¢ lies between 0 and T

After the deductions made in § 6 and § 7 and this § it will be
superfluious to give an explanation of fig. 7, where (L) is repre-
sented for a negative value of ¢ and some various values of s, and

fig. 8, where (L') is rep;‘esented for a positive value of ¢ (<i—)

§ 11. From the shape of (L’) that of (L) as reciprocal polar
curve may be at once deduced.
Let in the first place ¢ be negative. There are 4 pairs of parallel

1
asymptotes, touching at the circle w“-{—y’:é—. They are parallel

with the bitangents of (L’), passing through O. Let us now consider
various values of s.

s>q*. @<0). Fig. 9. Besides the 8 asymptotes just mentioned
there are 4 more, which pass through O. The entire curve (L) lies
outside (C) and can therefore not be of any consequence as an
envelope. For on (C) the velocity of the moving point is 0; outside
(C) the vis viva would be negative. In fact ¢* is the greatest value
that s can have in the dynamical problem.

s=¢* (r=0). Fig. 10. The cusps have coincided in pairs in

-13 -
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the axes, with which the four asymptotes passing through O have
now coincided in paivs. (L) touches in 4 points at (C)

The only forms of motion which the dynamical problem allows
of are an X-vibration, and a Y-vibration.

<s <9 < (= > )z> >0). Fig. 11. (L) delimits two

(1—2¢p 29)
quadrilateral domains of motion with vertices on (C)Y).
g’ ( , (- q)) :
=—Y—.(r= . On the axes 4 pairs of cusps
(1—2¢)° (1 29)* P d

have coincided. (L) deviates only a little from the shape indi-
cated in Fig. 11.

g —9)
— . Fig. 12.%) 8
0 < $ < (1- 29)2 ( 4 q > > 1 9 )g) lb ) Cllsps
occur. (The “stirrups” lying within the domains of motion contribute
indeed to the envelope).

. .
s=0 (r: —-Zg>. Fig. 13. Degeneration in 8 asymptotes.

Two domains of motion each bounded by a square.

We now get to the negative values of 5. No figures have been
drawn for them as they are of exactly the same nature as those
for the positive values of s; we have only to revolve the figures

45°. Consequently :
1
g(g—1) (1_2‘1) 1 )
> ——gq /. PFig. 12, havin
(¢— 2)’< PO (g—2)? >r> Ty te i

revolved 45°.

13

. q (g—1) (1-—19)

— (_q_2)7 r= —2 Here we have to take inlo
q9— q—

consideration that the distance of the special points to O is another
one than for ,
' =7
(1—2¢)*

1) One domain of motion is bounded by two opposite branches a as far as
they are lying inside (C), and the branches b which pass through the points of
intersection of the just mentioned branches a with (C).

%) This Fig. and Fig. 18 we also find in a treatise of F. KLEiN: “Uber den

Verlauf der ABeL'schen Integrale bei den Curven vierlen Grades”. (Math. Ann.
10. Bd, 1876).

/

2u.

-14 -
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( q(q—l)(l—*q)) i |
— —~ . Fig. 11,
@ 2 s \g—a>r> —2)" g (
having revolved 45°. - -

1
s=q. ('r =7 1—q . ) Fig. 10, baving revolved 45°. The distance

of the cusps to O has changed however. -

s <g.<’r >7}(1—g)). Fig. 9, having revolved 45° B
Let us now suppose that ¢ #s positive and < 1. -
s<g.('r>-:—:(1-——q)) . Fig. 14. (L) has no dynamical meaning for
the same reasons as in Fig. 9.
s=gq (r:: ;:(1—9)) . Fig. 15. The dynamical problem allows of
two simple vibrations only.

gy << ( (1(:?)< "<2(1—q)). Fig. 16. Two domains

1— 29)’
of motion. ')
q (1— 9)) . :
s=—2_|{¢r= . The cusps of the preceding Fig.
(1~2q)‘( =7 (1—2¢)’ P P & He

have coincided in pairs now.

. —9 . "
¢ <s <(1 gg)s( <r<g 3 ),)- Fig. 16, from which the

cusps have disappeared.

s=gq* (=0). Fig. 17. (L) has 4 points of contact with (C)
In the dynamical problem we are concerned with an asymptotical
approach to the X- or Y-vibration. This case should be considered
as the transition between two domains of motion and a single domain

of motion.
1
7(g—1) (1 -7 9) .
(g 1)’ —<:<g ( = 27 <r<0). Fig. 18. The

“stirrups” contribute to the “envelope”. ?)

1) Of the closed branch of (L) & parts lie inside (C). Each of the domains of
motion is bounded by 2 opposite parts and by the infinite branches that pass-
through their final points. .

%) The inner branch serves partly as exterior, partly as interior envelope. The
parts which, seen from the centre, are hollow, touch internally, the rest externally.

-15-



) 951

1
¢ fz(q-1)(1 ——74—9)
§=—"——.r= . The cusps of Fig.18 have
. g
incided in pairs.

1
7 ( 1 9(9—1)(1—zq)>
0s = r - . Fig. 191
1 1
s=0. (r =— q) Fig. 20. Degeneration in the circle x’—{-y“:E.

1
We have now supposed, that ¢ lies between O and T It q lies

2
g. 14 would already have disappeared for s = q.

1 1
tween Zand —, we have a little change. Then the 8 cusps of

1
For ¢ between 5 and 2 the forms of the envelope, indicated by

g 16, do not exist.
For ¢ positive and >>1 no figures have been drawn for reasons
wted already. :

§ 12. Let us now consider the shape of (L) in general, first in
se (K) is an ellipsis.

The symmetry with regard to the axes and the bisectrices does
t exist anymore now. The nodes, which for /=0 lie on the
es, lie for positive values of [ in the second and the fourth
adrant (§ 3); those which lie for p 4 ¢ =0 on the bisectrices
ve been removed for positive values of P74 into the direction of

p
3 Y-axis (§ 3). The changes in form which (L) undergoes in con-

juence of this are easily understood.

Other forms of (L) are, however, possible.

Let us first suppose p > 0. We have to start now from the 5
ses mentioned in § 6.

In case 1, (L) has mainly the shape which has been represented
Fig. 9, in which we have to take into consideration the observa-
ms jus{ mentioned.

In case 5, (L) has, with due observation of these remarks, the
neral shape 'of Fig. 11, or of Fig. 12, or it is a combination of

1) For ¢ =1 (S) consists of two circles; we have then the well known case
the conical pendulum.

!
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those two forms, i.e., the envelope of one system of osculating
ellipses has 4 cusps, the envelope of the other has none. .

Case 2 is to be considered as a combination of Fig. 9 and Fig.
10. a touches (C) in two points, & has two cusps on the line which
connects ) with the points of contact of @ with (C). The dynamieal
problem allows of a single simple vibration. \

Case 3 gives rise to a combination of Fig. 10 and Fig. 11 (or
Fig. 12). There is one system of osculating ellipses.

Case 4 to a combination of Fig. 10 and Fig. 11 (or Fig."12).
There is one system of osculating ellipses. Moreover the dynamical
problem allows of a simple vibration.

In the case p<C0 we have agamn in the first place envelopes
corresponding in the main with those represented in the Fig. 14— 20.
We should, however, bear in mind, that in general the cusps do
not disappear by 8 but by 4 at a time. There is for instance a
transitional form possible between Fig. 18 and Fig. 19 in which 4
cusps occur, and in Fig. 14 and Fig. 15 4 cusps may have fallen
out. In order to obtain the other forms of the envelope we must
make use of the observation about (L’) in §7.

If the branch of (L) lying outside (C) touches (C) in two points,
then the dynamical problem allows of one simple vibration. If (L)
cats (C) in 4 points, then we get one of the two domains of motion
of Fig. 16, etc. ’

Is (K) an hyperbola or a degeneration tlen the various shapes of
(L) may be deduced m the same way from the Fig. 3—8.

Physiology. — “On the reflectorical influence of the thoracal auto-
nomical nervous system on the rigor mortis in cold-blooded
animals.” '), By S. pg Bokr. (Communicated by Prof. C. A.
PEKETHARING.)

(Communi\cated in the meeting of January 31, 1914). ~

The rigor wortis that is caused by hardening and shortening of
the muscles begins in warm- and cold-blooded animals after the
circulation of the blood has stopped for some time, in warm-blooded
ones 5—8 hours, in cold-blooded ones 1—2 days. If with a muscle
that has been removed, we make provision for a sufficient supply
of oxygen, it mortifies without stiffening. A special chemical state

1) According to experiments made in the physiological laboratory of the Uni-
versity of Amsterdam.
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