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too, as the water, running in torrents from their sides, carried down
much gravel. It was evidently a landformation not very apt to lodge
a freshwater fauna of any importance. It is difficult to ascertain
whether elements of this fauna still survive in the present fauna.
This might possibly be the case with Aplocheilus celebensis M. Wes.
and Anabas scandens DaLp., which form a special element in the present
fauna. One of these, Aplocheilus belongs to the family Poecilidae,
several genera of which are known from the early tertiary; and
Anabas scandens has a very wide range of distribution, from the
continent of Asia to the eastern part of the indo australian archipelago.

The recent fishfauna only came to full development when Timor was
raised to its present level in post pleistoceen times. This very young
land developed a system of rivers, which could only be populated
by such fishes, as are not hindered by salt water in their distribution.
Timor, when rising, was surrounded by sea. The ichthyological
material tends to prove that this was originally a shallow sea, possibly
surrounding other greater or smaller islands in the neighbourhood,
as, for several elements of the freshwaterfauna of Timor, a deep sea
with a high salinity would form an unsurmountable barrier. Such
a sea could only have been formed after the immigration in the
freshwater was accomplished for the greater part.

We are of opinion that this is in accordance with the views
of MoLknGraArr, who thinks that the formation of the deep seas
along the nortb and south coast of Timor took place in connection
with the final upheaval of the island, and that this has been the
latest event.

Physics. — “On the Deduction of the Equation of State from BoLtz-
MANN's Entropy Principle.” By Dr. W. H. Keeson. Supplement
No. 24a to the Communications from the Physical Laboratory
at Leiden. (Communicated by Prof. H. KamkrrineH OnNEs).

(Communicated in the meeting of April 26, 1912).

§ 1. Introduction. Since the two great advances made by van
per  Waais in deducing his equation and in developing the theory
of corresponding states therefrom, the theoretical investigation of the
equation of state for a single component substance has been developed
in various directions, particularly by van per Waars himself; these
developments have cleared up and enriched our knowledge of various
circumstances which influence the equation of state, and which had
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been left out of account in the first deduction of the equation. For
example, we may refer in particular to the recent researches of
VAN DER WaaLs on the influence of apparent association. On the
other hand, there has been collected much valuable experimental
material, which has already, on various occasions, been compared
with the results obtained from theoretical assumptions. In the mean-
time, while these researches are being continued, it seems desirable
and opportune to undertake a systematic investigation of the equation
of state over a region in which not only reliable experimental data
can be obtained, and are in fact already accessible in part, but
which also permits of a rigorous theoretical investigation.

KamerpINGH OxNNEs ') has started to systematically collect, arrange
and incorporate into his empirical equation the experimental results
already accessible over the whole region which has been already
investigated for the equation of state. Amongst other effects of this
empirical equation is that it makes it easy to compare different
substances from the point of view of the principle of similarity,
and in this respect it has already led to a number of valuable
conclusions. For a general review of these conclusions we may refer
to an article on the equation of state which is to appear in the
Encyklopiddie der Mathematischen Wissenschaften and is now passing
through the press; we shall refer to this paper as Suppl. N°. 23.

In investigating the most suitable expression for the equation of
state preference was finally given (cf. Comm. N°, 71 §3) to a series
of increasing powers of »—! (omitting the odd powers above 2
and closing the series with »-8). With a small deviation from the
notations of Comms. N°. 71 and 74 we may write the equation in
the form '

B C D E F
pr=41l14+ -4+ +-+0 . . . . ()
v v v v v
(cf. Suppl. N°. 23).
" The form of this equation shows that, from an experimental point
of view, the method most immediately indicated for proceeding to
obtain correspondence between theory and experiment is to successively
determining, both theoretically and experimentally, the various
virial-coefficients A, B, C etc., over a temperature region as extensive
as possible for substances for which one would expect it necessary to
make the least complicated assumptions regarding molecular structure

1) H. Kamenunen Onnes, Comm. No. 71 (June 1901}, No. 74, Arch. Néerl. (2)
6 (1901), p. 874.
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and wolecular action. This is especially the case with the first
coeflicients 4, B and (, as their vaiues can be experimentally
obtained with pretty high accuracy quite independently of any
special assumptions which may be made regarding subsequent terms;
while, from the theoretical point of view, the means are at hand
for deducing these virial-coefficieats fromn various special assumptions
regarding the structure and action of the molecules?).

With regard to the first virial-coefficient 4 we may remark that
one may write

A=RT . . . . . . . . @

(R is the gas constant, 7" the temperature on the KEeLviN scale) for
non-associative substances over the whole temperature region hitherto
investigated. With regard to the question as to whether such sub-
stances would exhibit another law of dependence upon temperature
in another region (e.g. at the lowest possible temperatures) we may
refer the reader to Suppl. N°. 23.

Both the present and the following paper aim at making a
beginning with the dednction of the second virial-coefficient, 5,
from certain special assumptions, having in view its completion in
subsequent papers by a comparison with results obfained from
experiment.

In his EBlementary Principles in Statistical Mechanics Gisss deve-
loped methods which in principle enable us to deal with any mole-
cular-kinetic problem concerning the equation of state, as long as we
limit ourselves by the assumption that the mutual actions of the
molecules conform to the HamirroNian equations. OrNsTEIN *) adapted
this method to the deduction of the equation of state and applied it.
In Suppl. N°. 23 the method indicated by Bovtzmaxx in his Gastheo-
rie I § 61 and based immediately upon the BoLTZMANN entropy
principle is developed in general terms. This method, too, seems
suitable for the solution of all problems concerning the equation of
state of systems in which the mutual actions of the molecules con-
form to the HamirtoNian equations. It has been shown by Lorentz *)

1) In this connection it must be remembered that, as noticed in § 1 of Comm.
No. 74, the virial-coefficients in the polynomial (1) differ from those of the corres.
ponding infinite series in which all the positive powers of v—1 are present. The
more atiention must be paid to this point, the higher the coefficients concerned;
it will be quite appreciable with C on account of the absence of the v—3 term in
(1), while D in. (1) can no longer be regarded as approximating to the coefficient
of v—4 in the infinite series {cf. Comm. N, 74 § 1.

2) L. S. OrnsTEIN. Diss. Leiden 1908.
3 H. A. Lorenrz. Physik. Z. 8. 11 (1910), p. 1257.
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that it leads to the same results as the GisBs method of the canonical
ensemble. Although the two methods can therefore be regarded in
principle as equivalent, the BorrzmanN method seems to passess certain
advantages over the other, e.g. its terminology can be more directly
applied to the physical conception. ') ,

As Suppl. N°. 23 is not yet published we may here give a short
general account of this method, which forms the basis of the sub-
sequent developments.

§ 2. General formulation of the method of obtaining the equation
of state of a single component substance from the BoLTzMANN entropy
principle. In the general formulation of the method we shall follow
BovLtzmany, Gastheorie 11. § 36, and determine the momentary state
(PraNck’s micro-state®)) of a system of molecules whose motions,
under the influence of their mutual forces, can be regarded as
determined by HamintoN’s equations®) in terms of a finite number
of generalised coordinates and the corresponding momenta for each
molecule. We shall define a micro-complerion *) as a state in which,
for instance, the coordinates ¢, ...¢s and the momenta p, ... p, of
the first molecule lie between the limits qi; and qi; 4 dqi;, qu and
g2 + dgs; .. gsi and g + dgsi, priand pyi ++ dpri, pai and py; - dpa,, ... psi
and pg 4+ dps, those of the second molecule between q1; and
qu + dqu ete.

In this, the micro-differentials®) dqi; etc. must so be chosen that
the specified distribution of molecules according to generalised coordi-
nates and momenta is sufficient to fix the energy of each molecule
in the micro-complexion as lying between definite limits which, in the
problem under consideration, may be regarded as coincident, and
also to enable one to ascertain if possible special conditions (e.g.
mutual impenetrability, in the case of molecules supposed rigid) have
been fulfilled. We assume that dq,,=..=dq,i=dq,; =... dq,s,
dg,,= ..., dp,,= ...dp,i=dp,j=dp,, ete. or, at least, that the

1) And also in this that by this method the most probable distribution of molecules
according to defiite coordinates or momenta is at the same time determired, and
also an expression is found for the Bortzmany H-function for the particular case
under consideration.

2) M. PLaNck. Acht Vorlesungen p. 47 sqq

%) In the application to collisions between molecules which are regarded as rigid
bodies we shall, if necessary, regard the collision as a continuous motion subject 1o
very great accelerations.

4 Derived from Bortzmaxy’s “Komplexion’. Comp. L. BoLrzmany. Wien Sitz.-
Ber. 76 (1877), p. 873; Wiss. Abh. 2, p. 164,

%) M. Praxnck. Acht Vorlesungen, p. 59.
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different elements of the 2s-dimensional space involving the coordinates
p and the momenta ¢ (the micro-elements) are of the same size.

We consider now, in general, states of the system of molecules
which are defined by certain conditions — formulated in detail for
each special problem — in such a way that the number of mole-
cules or of groups of molecules is determinate for which e.g. certain
coordinates, mutual distances or orientations of the molecules, their
momenta or their relative velocities lie between limits previously
assigned. The formulation of these special conditions and the choice of
limits must so be made that the supposed numbers of molecules etc., are
sufficient to determine, in so far as the particular problem under
discussion is eoncerned, the state of the system as seen by a macro-
observer at the particular moment for which those numbers are given.
In this we are in no case concerned with the individuality of the
molecules (we assume throughouat that we are dealing with a single
component substance). The limits to which we referred must, moreover,
be so chosen that the macro-state thus determined can be realised
trom a very large number of different micro-complexions.The assemblage
of these micro-complexions we shall call a group macro-complexion®).

As a foundation for further development we shall now assume
that all micro-complexions represent cases of equal probability *). From
this it follows immediately that the probability, W, of the occurrence
of any group macro-complexion is proportional to, or, if we care to
neglect an arbitrary factor, is equal to the number of micro-com-
plexions contained in the group macro-complexion *).

In many cases it will facilitate the caleulation of this number to
first obtain the number of micro-complexions contained in an individual

1) For constructing a clear molecular kinetic interpretation of a definite macro-
state, in particular regarding the number of the different micro-states by which it
can be realised, we regard here as in the GisBs method at any particular moment
an assemblage (ensemble) of systems, independent of each other identical as regards
number, structure and actions of their component particles and as regards their
exterior coordinates, each of these systems forming a definite micro-complexion
realising that macro-state. Cf. Borrzmanx, Wiss. Abh. i, p. 239; 3, p. 122;
MaxweLL, Scient. pap. 2, p. 713. [Note added in the translation.]
~ % In the presenlt paper we shall not justify this assumption, which, in so far
as it affects the choice of micro-elements, is founded upon LioUvVILLE's theorem,
but for it we may refer to the writings of BoLrzmany, PLanck (e.g. Acht Vor-
lesungen, p. 56), and others. (Compare also Art. IV 32 by P. and T. EHRENFEST
in the Math. Encykl., particularly note 170).

% In order to conform to the common definition of probability as a fraction
between O and 1 in value we should bave to divide by the assumed value of the
eonstant total number of micro-complexions possible, which would have to include.
all possible values of energy and volume which occur in our considerations. This
copstant is of no importance in any of our conmsiderations, so we ghall omit it.
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macro-complexion.  The definition of the latter complexion follows
from that of the group macro-complexion by taking aceount of the
individuality of the molecules. The number of micro-complexions in
the individual macro-complexion has to be separately determined for
each special problem, and this, multiplied by the number of individual
macro-complexions contained in- the group macro-complexion gives
the number of micro-complexions contained in the group macro-com-
plexion. The number of individual macro-complexions contained in
the group macro-complexion, which is readily obtained from the
theory of permutations, we shall call the permutability index of the
macro-complexion ).

From the value thus obtained for the probability of a group macro-
complexion one can ascertain which group macro-complexion is the
most probable in a self-contained system of molecules of given energy
and volume. According to Borrzmany the distribution of molecules
according to the coerdinates etc. determining it, obtained for this
macro-complexion, corresponds macroscopically to a state of equilibrium
of the system of molecules.

BoLTzMANN's entropy principle can now be formulated in such a
way that the entropies of different macroscopically determined states
are, if we omit an arbitrary additive constant, proportional to the
logarithms of the probabilities of the different group macro-complexions
corresponding to those macro-states. In this it is understood that these
macro-complexions are determined with the same limits (equal
elements of corresponding spaces) for the coordinates etc.

In the simple case, in which the same number of micro-complexions
is present in each of the individual macro-complexions, as in the
deduction of the equation of state for molecules whose dimensions
and mutual attractions” are neglected *), the entropy is then simply
proportional to the permutability index of the macro-complexion.

In general we may write

S=kplog.W. . . . . .. (8)
in which 8 represents the entropy, and kp = RM/N' where Ry is
the molecular gas constant and N is the AvoGaDRO number (i. e
the number of molecules in the gram molecule). We then obtain for
the entropy in the state of equilibrium of a gas whose molecules are
regarded as having no dimensions and as exerting no mutually attractive
forces, a function of volume and temperature which agrees with the
thermodynamic expression for the entropy.

1) Differing slightly from L. Borrzmann, loc. cit. p. 243 note 4.

%) Comp. M. Pranck, Wirmestrahlung, p. 140 sqq.; Acht Vorlesungen, Vierte
Votlesung.
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If, by introducing special assumptions regarding the molecules and
their mutual forces, one calculates, in the manner here indicated,
the entropy S in the equilibrium condition for given energy U and
volume ¥, one obtains directly a fundamental equation of state from
which both the specific heats and the thermal equation of state can
be deduced.

§ 3. Deduction of the virwal-coefficient B for rigid, smooth spheres
of central symmetry and subject to VAN DER WaALS' forces of
attraction.

Although this problem has already been repeatedly treated, first
by vaNn pEr Waars himself in the deduction of his equation of state,
and since then, in particular, by PrLanck ') by a method which is
essentially the same as that here developed, we may yet utilise
this simple case as an introduction to our treatment of the succeeding
more complex cases. The description of these can then be shortened
by referring to corresponding definitions and operations in the present
problem.

Determination of the macro-complexion:

Two states which a macro-observer can distinguish as different
may be regarded as having their differences arise from the presence
in definite elements of volume of different numbers of molecules in
the two cases, and also from different distributions of speed in those
volume-elements. To determine a macro-complexion we therefore
take the three-dimensional spaces which are available for each
molecule with respect to its coordinates 2,y,z and the velocities §, %, &
of its centre, and divide them up into equal elements (dz,dy,dz, =)
dv,, dv, ... dvy., and (d8,dn,d8, =) dw,, dw, ... dw, .

In this we make dv, ... so great that each contains on the whole
a great number of molecules, and yet sufficiently small for the density
variations within those elements of volume to escape the notice of
the macro-observer; the elements diw, ... are also chosen so great
that to each corresponds a large number of molecules in dv,...and
yet so small that d§,,dn, ,dC, ... are small in comparison with the
mean speed.

The group maecro-complexion is now determined by the conditions that

n,, unspecified molecules ““are present” in dv, dw,

€Y

(27 35 1 ) ”» s d?/k dwl .
Determination of the micro-complexion :
As far as velocities *) are concerned, the micro-complexion can be

1) M. Praxcx, Berlin Sitz.-Ber. 82 (1908), p. 633.
2) As the velocities differ from the momenta only by a constant factor, we may
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determined from the same elements of the proper space as the macro-
complexion. With regard to the distribution of the molecules throughout
the space we must distinguish between various elements of volume,
which are supposed small in comparison with the dimensions of a
molecule, for, in ascertaining if a certain micro-complexion occurs in
the macro-complexion determined by (4), it is of importance to know
if the centre of any particular molecule lies within or without
the distance sphere of any other molecule. Hence we divide
the volume-elements of the macro-complexion into smaller volume-
elements, thus

dv, into x equal volume-elements dw,, ... dw),
dvt 2 3 13} IY) dwn PN dwc_,,,
ete.

A micro-complexion is now determined by specifying for each mole-
cule in which of the elements dw and w it is present at the par-
ticular moment under consideration (understanding that a molecule
is present in the micro-volume-element w, when its centre of mass
is there). -

W is now the number of micro-complexions thus determined present
in the macro-complexion given by (4); in this we must remember that
all micro-complexions are excluded in which the distance separating
the centres of any two molecules is smaller than the diameter of a
molecule.

For the permutability index of the macro-complexion we obtain

n!

nny! o o o !

As we shall have to deal only with such macro-complexions as
correspond to states of equilibrium or to states differing but little
therefrom, it follows from the conditions laid down regarding the
‘magnitude of Jv and dw, that for each element dvidw; of the 6-
- dimensional space in which, for any specified state, molecules may
be present, the namber n;; will be large. We shall, in the mean-
time, be obliged to compare macro-complexions whose total volumes v
are not the same ), for instance in the development of the thermal
equation of state. This can be done if, in the determination of the
macro-complexion, we also take account of volume-elements lying

in this case use equal elements in the velocity diagram for determining micro-
complexions of equal probability.

1) When, as in the present instance, we consider stales in which the substance
is not split up into different phases, we shall indicate the volume etc. by small
letters v .u,s, which, when referred to 1 gram of the substance can then be
regarded as specfic quantities.
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outside the volume ¢. A similar remark holds regarding the energy
u. The conditions represented by (4) must then be so understood that
the number of molecules in each of these outlying elements of the
G-dimensional space is zero, and for each of these elements the
figure 1 must be put in the demomimator of the permutability index.

We have still to calculate the number of micro-complexions contained
in the individual macro-complexion; this is determined by specifying that

n,, specitied molecules are present in dv,dw,
(5)

Nkl ” " ’ . ., dvidioy.
These micro-complexions differ only in the different dispositions of the
n, = n,, -+ ... n;; molecules in the volume-element dv, etc. The diffe-.
rent volume-elements are here to be regarded as independent of each
other. We then obtain the total number of micro-complexions by cal-
culating the number ot different ways in which the n, molecules
can be placed in the volume dv,, the same then for dv, etc., and
by then multiplying these numbers together.

Let us first put the first of the n, molecules in dv,. For this there
are x places available. For the second molecule there are then left
4 N
2

3 ! -
x {1 —— ~\places available. Of these there is a comparatively small

dv,
number for which the distance between the centres of molecules
is such that the distance spheres of the two molecules partially
overlap. In placing the third and succeeding molecules we shall omit
these cases, for bringing them into the calculation would introduce
terms of the second order of small quantities compared with the
principal terms of W, and would have no effect upon the value of
the virial-coefficient B. The influence of these terms would have to
be more closely investigated only in the determination of C and
sueceeding coeflicients. The number of places available for the third.

4
9 s
molecule can then be written x,l—-?. y s Proceeding in this
v,

fashion we obtain - ‘

—nao?

e=m—1 3
0T 11—
=] dvl

different dispositions of the n, molecules in dv,. Doing the same for
dv, etc., we obtain the number of micro-complexions in the individual
macro-complexion.

-10 -
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After mulliplying by the permutability index, a little reduction
i which use is made of StirniNG’s formula, gives with sufficient
approximation

4
—ng’ .
. 3 n,
logq W—=— = 2 n  log,n,, — = S (6)
do  dw Uy de &

In this, terms have been omitted which remain constant when n

is constant and the division into elements remains the same. 2 and X
dn cw

indicate summations taken over all the elements dv and dw. Use has
also been made of the fact that the elements (v are all of the same size.

The expression which one obtains for Borrzmasy’s H-function by
reversing the sign of (6), agrees to the degree of approximation
here given, with the expression given by OrnstrIN') for this case.

State of equilibrium :

This is determined by the condition that for constant ¢ and wu,
W is a maximum. The condition » = const. is fulfilled by varying
only the values of n,,, etc. which occur in (6), and keeping
n, 4+ ... ny=n constant. With regard to the condition « =— const.
the assumption that the molecules behave as if they were rigid
smooth spheres, of central symmetry (so that their density is constant
or only a function of the distance from the centre, and therefore
their mass centres and their geometrical centres coincide) enables us
to disregard angular specds about axes through their mass centres.
To enable us to find an expression for the potential energy we
shall assume that the macro-volume-elements are great in comparison
with the sphere of action of a molecule. With reference to the
potential energy we shall, in conformity with the assumptions under-
lying the van per Waars attractive forces, further assume that, in
states of equilibrium and in states closely approximating thereto,
cach sphere of action can be regarded as being uniformly filled
with the number of molecules which that sphere would contain if
the molecules were uniformly spread over the whole macro-volume
element. In making this assumption cover even the molecules which
lie near the boundaries of the volume-element we neglect the influence
of capillary forces. Calling the potential energy of n molecules
uniformly spread over the volume v, — a—l“- with a, constant, we may
write the whole potential energy contained in the element dv, as

aw'nl’ , ..

e I'he condition for the energy then becomes

1)5?6;&51151‘1 Diss. 1908, p. 60.

-11 -
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awn,?

== -3 —L =const, . . . . (7
“ dv dw T e dv 7 d”x ()

. . | I '
in which w,, = —m (§* + %,* + §,*) represents the kinetic energy of

translation of a molecule whose velocity lies in duw, .
The condition for a maximum, in conjunction with (7) and
n — const.') gives »

4
—na
3 20“- ”
—1 —_n, ——— —~ h et ) L logo e =0, . (8
0Fe My, n, drl t ("m n’dvl) 0fe € ( )

in which & and ¢ are constants. A few reductibns lead to

n
n, = —dr,
v
and ‘ (9/
hm\°k — hu,
n, = 11 —2‘-—) PR de, dw,,
r\2aa

the well known conditions for equilibrium: macroscopically uniform
distribution throughout the space, and Maxwgry’s distribution of
velocities with the same constant & for each macro-volume-element.
This constant 2 can be found by obtaining an expression for the
energy u

_3n aw 10
U —= -é-—’; —— o . . . . . . .o ( )
From (6) and (9) we obtain for the state of equilibrium
3 1n 4
loge W —=mnlog,v — —n loge h+h vy — —— n-—a6°,
2 2v .3

in which wu, represents the total kinetic energy, and certain constants

are omitted. In conjunction with (3) this gives
3 Lkyn 4.

s::]cpnlog,v——-——2—lcpnlog,k+kphuw— T n——3——:ro. . {11)

On eliminating 4 between this equation and (10) one obtains a

fundamental equation of state expressing u as a function of s and

v,or s as a function of ¥ and v, which Pranck calls the canonical

equation of state. On keeping v constant and differentiating (10) and

ou
(11) with respect to 4, since T ::(E) one easily obtains
v
1
.7‘ - -l . . . . . > . .
P (12)

1) It will be seen that in the case of the most probable distribution the total
momentum and the total moment of momentum vanish for each macro-volume-
element. If one wished to evaluate the entropy for slates in which these magni-
;udesh were not zero one should have to introduce here suitable conditions to allow
or them. :

-12 -
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‘from which with (11) it follows that
8 n 3 n A 1 »n
-_=u — — == —— - — — loge b — — — . —0O.
Y= plger ¥ g sk g g
Using (12) and the relation £, = R/n, in which R is the gas con-
stant for the quantity under consideration, this equation is trans-

formed into

3 w | RT
= —RT log, v — —RT log. T2 4 T .. (13)
v v

) ) 1 4 . .
in which b, has been written for? n.—g—mr’ and a linear function

of 7 has been omitted.

['s

3
From this equation one obtains the value 5 R for the specific

heat at constant volume, while the thermal equation of state becomes
RT b
p=—=—{1+4 —-w—) Iw

v v

T
Hence (cf. § 1)

Aw
T RT

B=1b, ... (19

§ 1. The virdal-coefficient B for rigid ellipsoids of revolution subject
to vaN DErR WAALS atiractive forces.

Determination of the macro-complexion.

We shall first assume that in collision between two ellipsoids the
speed of rotation around the axis of revolution can also vary. To
make sure that HamiLron’s equations are sufficient to determine the
mutual action of two such ellipsoids (cf. also p. 243 note 3) we
shall make it essential that the surfaces of the colliding bodies which
we are considering can never-exert other than normal forces upon
each other at their point of contact. We shall, however, assume that
it is found on closer investigation that the surfaces of the ellipsoids
are not perfect surfaces of revolution but show, it may be, a uni-
versal wave-formation; but in the meantime we shall assume that
deviations from the true shape of an ellipsoid of revolution are so
small that they may be altogether neglected except in so far as they
give rise to a moment around the “axis of revolution” during colli-
sion. Hence in formulating the condition that the energy hasa given
value, we shall also have to allow for the speed of rotation around the
axis of revolution. To express that condition, then, it is desirable to
determine  the macro-complexion as was done in § 3 and also
with respect to the speeds of rotation around the three axes of

17

Proceedings Royal Acad. Amsterdam. Vol. XV,

-13 -
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inertia, p., ¢, 1, in which p, represents the speed of rotation around
the axis of revolution.

The group macro-complexion is now determined by specifying that

n,,, unspecitied molecules are present in v, dw, dw,,
Ny T 2 Yy 9 »” db’, sy etc. . . (15)
in which dw,; represents an element of the space involving the
coordinates p,, q., and r,; these elements are also assumed 1o be equal.
Determination of the miero-
£ . complexion :

For this it is necessary to spe-
® 6 cify the position of the ellipsoid.
a To do this choose a fixed system

' of axes XYZ, and through the
origin draw a line (A parallel
[ to the axis of revolution; we shall
determine the position of the ellip-
soid by the angles AZX = ¢,
_ AOZ = 6 and the angle y
Fig. 1. between the plane A0OZ and a

fixed meridian plane of the ellipsoid (Fig. 1).

Angular momenta: We may represent the Kkinetic energy of rota-

tion, L,, by the formula
Li=4}Ap* +4B:Ag+7D . - . . . (16)
in_which A4, = the moment of inertia about the axis of revolution, and
B, = . s as » an equatorial axis.

We shall choose the equatorial axis to which ¢, refers, 0B, in
the plane AOZ, OC perpendicular to 04 and OB in such a
direction that a rotation from A towards B seen from C is in the
same direction as a rotation from X towards Y seen from Z.

It is seen that

~0
4
=

y

g=@snl B (1)
, wn=—6
in which the dots represent differentiation with respect to the time.
If we call the angular momenta with reference to¢, 8,3, @, 8, x
respectively, we then obtain )
EzA,oosﬁ.p, + B, sin 6. g,
6=—Br, B ¢ £}
-X-_Arpn *
in which p,, ¢r, and 7. have the values given in (17).
Instead of determining the micro-complexion by dop d0 dy J}JBJ)’;
we shall introduce a slight modification. From (18) we find :
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dyp d8 dy = A, B,* sin 0 dp, dg; dr., _

if we stipulate that the sign of equality in this and similar expres-
gions means that in the integral the expression on the left may be~
replaced by that on the right with the proper modification of the
limits of integration. :

Let us further write do for an element of the surface of the sphere
of unit radius, by points on which we can indicate the direction of
the axis of revolution of the ellipsoid ; we then obtain

dp d6 = sin @
Hence
dp d6 dy dip d0 dy = A, B,* do dy dp, dg; dr.

We shall therefore obtain micro-elements of equal probability (cf.
p- 246 note 2) if we measure equal dw’s, equal dw’s, equal do’s,
equal dy’s and equal dw,’s, and combine them. ~

If each molecule is assigned to a particular micro-element, then
the micro-complexion is completely determined.

The number of individual macro-complexions in the group macro-
complexion is

n!
g,
(compare what was said concerning the corresponding expression in § 3).

The number of micro-complexions in the individual macro-complexion
is determined as follows:

The various volume-elements ¢v are again independent of each
other (cf. §3). Let us consider the », molecules in dv,. To each
molecule we ascribe its proper speed of translation & %, § and speed
of rotation pi, ¢r, 7 determined by (15). We then “place” the first
molecule in one of the » elements dy, then in one of the » ele-
ments do and lastly in one of the g elements do. This can be done
in xuy different ways.

We now dispose of the second
molecule. For'this we have still v
elements dy at our disposal, but
for the other coordinates there
are fewer places available than
was the case with the first mole-
cule. Outwards along the normal
to each point of the first ellipsoid
mark off a distance a (equal to
half the major axis) (Fig. 2),then
Fig.2. ‘ each dw outside the surface thus

17*

o
Z
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obtained is a possible position for the centre of the second ellipsoid,
and in any of those positions all orientations of the axis of revo-
lation of this ellipsoid are possible. Calling v. the volume enclosed
by the outer distance swrface thus obtained, then the above volume-

elements give rise to xur [1 -gf—i possibilities.
vl

Along the normal to each point of the ellipsoid mark off a distance
b (equal to half the minor axis), we thus obtain a surface within which
no centre of another molecule can lie. We shall call this the inner
distance surface, and designate by v, the volume which it encloses.
In the shell enclosed between these two distance surfaces the centre
of the second ellipsoid can be placed, but then all p orientations do
are not possible, but only a portion of them, which can be deter-
mined in the following fashion (Fig. 3). Let A be the first ellipsoid
which we shall regard as immovable. Let I be a point of the shell
determined by the coordinates relative to A: X in the direction of the

Fig. 8.
axis of revolution, y in the direction perpendicular to it. Now place
the second ellipsoid with its centre at. P, and, keeping its centre
fixed, allow it to roll on the surface of A; during this rolling the
point of contact R describes a trace on the surface of A. We can
write for the solid angle of the cone which is described during the
rolling by the semi-axis of revolution, PQ, 2 ny if the ellipsoid is
prolate, 2x (1—g) if oblate, in which ¢ is a function of X and y;
there are then p(1—p) orientations do possible for the ellipsoid

B with its centre fixed at P. Altogether we shall have xuv 31—-;1%-“
1
cases, where
B=1rv ¥+ Jedw. . . - e .. (19

the integration being taken throughout the shell.
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B may be regarded as the mass obtained taking the volume con-
tained within the inner distance surface as having unit density,
and adding to it the sum of the volume-elements contained within
the shell between the two surfaces, each multiplied by its own
density ¢.

1—2 £

dv,
ways if one takes no account of the complication introduced by the
approach’ of three molecules (cf. § 3). Finally we get

The placing of the third molecule can be done in xuv

n/! ! "—"1‘—1
W == (xur)" n n zl——-;———
nodes o o= dv,
Omitting constants this gives
2
n' 8

loge W= — 2 2 2 n,,log.n,,, — = —
d: dw dw, dv 2 d"
Subsequent treatment of this problem differs from that given in
§ 3 only in so far as the energy condition, under the same assump-
tion as was there made regarding the potential energy, must now
be written
2 =2 m Gl 5+ At + ) Bl ) —

dww

awn®
— X =econst.. . . . . . (20)
dv 1*do,

The result then follows that the specific heat at constant volume
for these rigid (but not smooth) ellipsoids is 32, while as regards
the thermal equation of state equation (14) gives the value of B if
we substitute '

ST— e e e ... (21
. @1

As . far then as concerns the term with the virial-coefficient B,
we find the sam2 equation of state as for rigid spheres?), only with
the ellipsoids, &, is not such a simple function of the volume of
the molecules as with rigid spheres.

"~ We shall now introduce the assumption that the ellipsoids are
perfectly smooth, so that the velocities of rotation around the axis
of revolution undergo no change on collision. We shall also assume
that the attractive forces cause no modification in these angular
speeds. In that case it is not necessary to allow for the value of

1y This may be regarded as a particular case of the general proposition indieated
by Borrzmany (Gastheone Il §61), for molecules which behave as solid bodies
of shape other than spherical, , :
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p. in the equation for thé constant energy; hence we shall also
take no account of p, in the determination of the macro-complexion.
The group macro-complexion is then specified thus:

n,,, unspecified molecules are present in dv, dw, (dg, dry),

Nyyy ” ” » T L %)
in which (dgq, d»), represents one of the different elements (supposed
equal) of the space involving the coordinates ¢, and .. The equation
for given energy then becomes
g tdm@E 49 FEY B ) — 2

de NGY,
As far as the thermal equation of state is concerned the result is
the same as that obtained for rough ellipsoids, but the specific heat

k]
a\\'ﬂ!

— const,

. .5 _—
at constant volume is different, viz. g R, for smooth ellipsoids.

Physics. — On the deduction from BorLtzManw’s entropy principle
of the second virial-coefficient for material particles (in the
lmit rigid spheres of central symmetry) which evert central
Sorces upon each other and for rigid spheres of central sym-
metry containing an electric doublet at their centre. By Dr. W. H.
Kresom. Supplement N°. 24 to the Communications from the
Physical Laboratory at Leiden. (Communicated by Prof. H.
KAMERLINGH ONNES).

(Communicated in the meeling of April 26, 1912).

§ B The deduction of the second virial-coefjicient, B, for material
points (in the limit rigid spheres of centrul symmetry) which exert
central forces upon each other.

In this section we shall deduce the equation of state, as far
as the second virial-coefficient, B, is concerned (cf. § 1,, for a
system of molecules which act upon each other as if they were
material particles (in the position of the centres, which are also the
centres of gravity of those molecules) and with forces which are
given invariable functions of the distance. All mutual actions other
than that just described will be excluded. The case in which the
spheres can be regarded as rigid spheres of central symmetry (§ 3)
exerting central attractive or repulsive forces upon each other which
are a function of the distances between their centres, will be treated
as a limiting case. S

") To facilitate reference to Suppl. N'. 24a sections, equations gnd dmgrams
in the present paper are numbered as conlinualions of those in Sappl. N°. 24a.
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