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100, as the water, running in tort'ents from their sides, carried down 
much gravel. It was evidently a landformation not very apt 10 lodge 
a fl'eshwat~r fauna of any importance. It is difficult to ascertain 
whether elements of lhis fauua still slll'vive in the present fauna. 
'l'his might possibly be the case with Aplocheilus celebensis M. WIm. 
and Anabas scandens DAI.D., which form a special element in the present 
fauna. One of these, Aplocheilus helongs to the family Poecilidae, 
several gellera of which are known from the early tertiary; and 
Anabas scandens has a very wide range of distriblltion, from the 
continent of Asia to the eastern part of the indo australian arehipelago. 

The recent fishfauna on1y eame to full development when Timor was 
raised to its pl'esent level in post pleistoceen times. This very young 
land developed a system of rivers, which could only he populated 
by sneh fishes, as are Ilot hindered by salt water in Iheir distribution. 
Timor, when rising, was surl'otmded by sea. The ichth)'ological 
malerial tends to prove that tbis was originally a shallow sea, possibly 
surrounding other greater or smaller islands in the neighbourhood, 
as, for several elements of tbe freshwaterfaulla of Timor, a deep sea 
with a high salinity would form an unsurmountable barrier. Sneb 
a sea could only have been formed aftel' tbe immigration in the 
freshwater was accomplished for fbe greater part. 

We are of opinion that this is in accordance witb the views 
of MOLENGRAAF.I', who thinks tbat the formation of the deep seas 
along the nortl1 and south coast of Timor took place in conneetion 
with fhe final upheaval of the island, and that this has been the 
lat est event. 

Physics. - "()n the Deduction of tlle Equation 0/ State/rom BOLTZ­

MANN'S Entropy Principle." By Dr. W. H. KEESO~1. Supplement 

No. 24a to the Communications from tbe Physical Laboratory 
at Leiden. (Commllnicated by Prof. H. KAMKRLINGH ONNES). 

(Communicated in lhe meeting of April 26, 1912). 

§ 1. Intl'oductio1l. Since the two great advances made by VAN 
DER WAAlS -in deducing his equation and in developing tbe theory 
of corresponding states therefrom, tbe theoretical invcstigation of the 
equation of stdote for a single componeut substance bas been developed 
in varions directions, particnlarly by VAN DER WAALS himself; these 
developments have cleal'ed up and enriched our knowledge of various 
circumstances which influenee tbe equation of state, and which' had 
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been left out of account in the first deduction of the equation. For 
example, we may refel' in particular to the recent researches of 
VAN DER WAALS on the inf1uence of apparent association. On the 
othel' hand, there has been collected mnch valuable expel'imental 
matel'ial, whi('h has al ready , on various occasions, been compared 
with the results obtained fl'om theoretical assumptions. In the mean­
time, while tbese reseal'ches are being continned, it seems desirabie 
and opportune to Ilndel'take a systematic investigation of the eqnation 
of state over a region in which not only reliable experimental data 
('an be obtained, and are in fact al ready accessible in part, but 
which also permits of a rigorous. theoretical investigation. 

KAMKRJ,INGH ONNES I) has started to systematically collect, arrange 
and incol'porate into his empirical equation the experimental results 
al ready accessihle m·er the whole region which has been all'eady 
investigated for the eqllation of state. Amongst other effects of this 
empirical equation is that it makes it easy to compare different 
sllbstances from the point of view of the principle of similarity, 
and in this respect it has all'eady led to a mImber of valuable 
conclusions. Fot' a general review of these conclusions we may refer 
1.0 au artiele on the equation of state which is to appeal' in the 
Eney klopädie der Mathematischen Wissenschaften and is now passing 
through the press; we shall re fel' fo th is paper as Suppl. N°. 23. 

In investigating the most suitable expression fol' the equation of 
state preferenee was finally given (cf. Comm. N°, 71 § 3) to a series 
of increasing powers of v-I (omitting the odd powers above 2 
and closing the series with v- 8 ). With a small deviation from the 
notations of Comms. N°. 71 and 74 we may write the eql1ation in 
the form 

(1) 

(cf. Suppl. N°. 23) . 
. The farm of this eql1ation shows that, from an experimental point 

of view, the method most immediately indicated for proceeding to 
obtain corl'espondence bet ween theory and experiment is to successively 
determining, both theol'etically and experimentally, the variOHs 
virial-coefficients A, B, C ete., over a temperatm'e region as extensive 
as possible fol' substances for whi<!h one would expect it necessal'y to 
make the least complicated assumptions regarding molecular structure 

l) H, KAMERLINGH ONNES, Comm. No. 71 (June 1901), No. 74, Al'ch. Néed. (2) 
6 (lOOI), p. 874. 
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and moleClllal' action. This is espceially tbe case with the fh'st 
roeffil'ients ..:1, 13 and C, as their vallIcs eall be experimentally 
obtained with pI'eUy high aecuracy quite independently of an)' 
special assnmptions which may be made l'egat'ding suhsequent terms; 
while, from the theoretical point of view, the means are at hand 
fol' deducing these virial-roefficie.lts from various special assnmptions 
regarding the stI'Ucture and action of the molecules 1). 

With regfu'd to tbe first virial-coefficient A we may remark that 
one may write 

A=RT (2) 
CR is the gas constant, T the temperatllre on the KELVIN seale) for 
llon-associative substances over the whole tempcratnre regioJl hitherto 
investigated. With regard to the question as to whether sueh sub­
stances would exhibit ano/her law of dependence u(lon temperature 
in another l'egion (e.g. at the lowest possible temperatures) we may 
refer the reader to Suppl. N°, 23. 

Both the present and thc following pi\per aill1 at making a 
beginning with the dedllction of the second virial-coefficient, 13, 
from cel'tain special assumptions, haying in view its completion in 
subsequent papers hy a comparison with reslJlts obtained from 
experiment. 

In his Elementar.'l pJ'inciple.., in Statistical Afec!uLnics GmBs deve­
loped methods which in principle enable us to deal with any mole­
cular-kinetic problem concerning the equation of state, as long as we 
limit oUl'selves by the assurnption that the mutual actiol1s of the 
molecules confol'm to the HAMILToNian equations. ORNSTEIN ') adapted 
this method to the deduction of tbe equation of state and applied it. 
In Suppl. N°. 23 the rnethod indicated by BOLTZlIIANN in his Gastheo­
rie II ~ 61 and based imrnediately Ilpon the BOLTZMANN entropy 
principle is developed in general terms. This rnethod, too, seems 
suitahle tOl' tbe sollltion of all pl'oblems eonccrning the equation of 
state of systems in which the mutual actions of the molecules con­
form to thc HAMILToNian equations. It has been shown by LORENTZ 3) 

1) In this conneclion it must be remembererl that, as noticed in § 1 of Comm. 
No. 74, the virial-coefficients in the polynomial (1) differ from those of the corres­
ponding infinite series in which all the posilive powers of V-i are present. The 
more aUention must be paid to this point, the higher the coefficients concerned; 
il will be quite appreciable with C on a'ccount of the absence of the v-3 term in 
(1), while D in (1) can no longer be regarded as approximating to the coefficienl 
of v-4 in the infinite series (cf. Comm. Nl, 74 § 1l. 

2) L. S. ÛRNSTEIN. Diss. Leiden 1908. 

3) H. A. LORENTZ. Physik. Z. S. 11 (1910), p. 1257, 
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that it leads to the same l'eslllts as the GIBBS nwthod of the canonical 
ensemble. Althongh the two methods ean therefore be regarded in 
l)l'inciple as equivalent, the BOLTZMANN method seems to possess certain 
advantages over the othel', e.g. its terminology can be more directly 
applied to the physical conceptioll, 1) 

As Suppl. N°. 23 is not yet published we may here gi\'e a short 
general account of th is method, which forms the basis of the sub­
sequent developments. 

~ 2. General formulation of the method of obtaining the equation 
of state o} a single component substllnce from the BOLTZMANN entropy 
lJ1'/:nciple. In the genet'al f'ornmlation of the method we shall follow 
Bm.TzMANN, Gastheorie 11. ~ 36, and determine the momentary state 
(PI.ANCK'S micro-state 2)) of a system of molecules whose motions, 
undel' the influence of their mlltual lorces, can be regardeà as 
determined by HAMll,TON'S equations 3) in terms of a finite number 
of generalised coordinates anct the corresponding momenta for each 
molecule. We shall define a micro-comple.rion 4) as a state in which, 
fol' instance, the cool'dillates q 1 ••• qs and the momenta PI ... p.ç of 
the fit'st molecule lie between the limits qli and qü + dqli, q2i and 
q2i + dq2i ... qsi and q.i + dqsi,pli and [JIj + tIPIj, ]J2i and P;;.i + dP2u ". psi 
and psi + dpsi, those of the second molecule bet ween qIj and 
gIJ + dqlj etc. 

In this, the micl'o-diffet'entials Ó) dqli etc. must so be cbosen tbat 
the specilied distt'iblltioll of molecules according to generalised coordi­
uates and momenta is sufficient to fix the enet'gy of eacb molecule 
in the micro-complexion as lying bet ween definite limits whicb, in the 
pl'Oblem undel' consideration, may be regarded as coincident, and 
also to enable one to ascertn,in if possible special conditions (e.g, 
mutual impenetmbility, in the case of molecules supposed rigid) bave 
been fulfilled. We assume that dqll = ... = dqli = dg!} = ... dqls, 
dg' l = ... , elp 1 1 = ... !lPl; = tlplj = dpl S etr. or, at least, thai the 

I) And also in this that by this melhod the most probable dislribution of molecules 
according to defiuilc coordinates Ol' momenta is al the same time determined, and 
also an expression is found for the BOLTZMANN H·function for the particular case 
under consideratioll. 

2) M, PLANCK. Acht Vorlesungen p. 47 sqq 
11) In the application to collisiolls between molecules which are regarded as rigid 

bodies we shall, if necessary, regard the collision as a continuous motion subject to 
very great accelerations. 

4) Derived fl'om HoLTZMANN'S "Komplexiou". Comp. L, BOLTZMANN. Wien Sitz.­
Ber. 76 (1877), p. 373; Wiss. Abh. 2, p. 164, 

0) M. PLANCK. Acht Vorlesungen, p. 59. 
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different elements of the 2s-dimensional space involving the coordinates 
pand tbe momenta q (tbe micro-elements) are of tbe same size. 

We consider now, in generaJ, sfates of the system of molecules 
whieh are defined by certain conditions - formulated in detail for 
eaeh special problem - in such a war that the number of mole­
cules or of gl'OUpS of molecules is determinate for whieh e.g. eertain 
coordinates, mutual distances or orientations of tbe molecules, their 
momenta or their relative velocities lie between limits previously 
assigned. The form'Jlation of these special conditions and the choice of 
limit.<I must so be made th at the supposed numbers of molecules etc., are 
sufficient to determine, in so far as the particular problem under 
discussion is coneerned, the state of the system as secn by a macro­
observer at tbe particular moment for whieh those numbers are given. 
In tbis we are in no case eoncerned with the individuality of the 
molecules (we assume throughout that we are ciealing with a single 
component substanee). The Iimits to which we referred must, moreover, 
be 80 chosen that fhe macro-state thus determined can be realised 
from a "ery lal'ge number of different micro-complexions.Theassemblage 
of tbese micro-complexions we sllall eaU ag1'oup macro-comple:cion1

). 

As a foundation for fUl'ther deveJopmelit we shaH now assume 
tbat all micro-complexions repl'esent cases of equal prohability '). From 
tb is it follows immediately that the probability, W, of the occurrence 
of any group macro-complexion is propOItional to, or, if we care to 
neglect an arbitrary factor, is equal to the number of miero-com­
plexions contained in the gl'OUp macro-complexiul1 '). 

In many cases it wiII faeilitate the caleulation of fitis number to 
tirst obtain the number of micro-complexions contained in an individual 
~For COD!\tructing a clear moleculal' kinetic interpretatioD of a definite macro· 
state, in particulal' regarding the number of the different micro-states by which it 
can be realised, we regard here as in the GIBBS l~ethod at any particlIlar moment 
an assemblage (ensemble) of systems, independent of each othel' identical as regards 
number, structure and actions of their component particjes and as regards their 
exterior coordinates, each of these systems forming a definite micro·complexion 
realising that macro-state. Cf. BOLTZMANN, Wiss. Abh. 1, p. 259 j 3, p. 122; 
MAXWELL, Scient. pap. ~, p. 713. [Note added in the translation.] 

') In the present paper we shall not justify this assumption, which, in so far 
as it atJects the choice of micro-elemenls, is founded upon LIOUVILLE'S theorem, 
but for it we may refer to the writings of BOLTZMANN, PLANOK (e.g, Acht Vor­
lesungen, p. :16), and oibers. (Compare aIso Art. IV 32 by P. and T. ESRENFEST 

in the Math. Encykl., particularly no te 170). 
:I) In order to conform to tbe common definition of probability as a fraction 

between 0 and 1 in value we should have to divide by tbe assumed value of the 
constant total number of micro-complexions possible, which wonld have to inclu~e 
aU possible values of energy and volume which occur in 0\11' considerations. This 
constant is of no importance in any of our considerationst so we shan omit it. 
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macro-comple;áon. The definition of the lattel' complexion follows 
from that of tbe group macro-complexion by taking account of the 
individuality of tbe molecules, The number. of micro-complexions in 
the individual macro-complexion bas to be separate)y determined for 
eacb special problem, and tbis, multiplied by tbe number of individoal 
macro-complexions contained in" tbe group macro-complexion gives 
the number of micro-complexiolls contained in the group macr(}-Com­
plexion, Tbe nllmbel' of individual macro-compJexions contaiMd in 
the group macro-complexion, whicb is readily obtained fl'4)ID llte 
theorJ' of permutations, we sha11 eaU tbe permutability indez ol the" 
m~ro.complexion 1), 

From tbe value thus obtained for tbe probability of a group macro­
complexion one can ascertain which group macro-comp1exion is tOO 
most probable in a self-conta.ined system of molecules of given energy 
and volume. Aceording, to BOT.TZMANN the distribution of molecllles 
according to tbe coordinates etc. getermining it, obtained for this 
macro-complexion, eorresponds macroscopic.ally 10 a state of equilitsiuRl 
of the system of molecules. 

BoLTZMANN'S entropy principle cao now be formulated in such a 
way thai the entropies of different macróscopically determined staies 
are, if we muit an arbitrary additive constant, pro(:lOrtional to the 
logarithms of tbe pl'obabilities of tbe different group macro-complexions 
corresponding to those macl·o-slates. In this it is understood tllJl.t these 
macr(}-Complexiolls are delermined with the same limits (equal 
elements of corresponding spaces) for tbe coordinates etc. 

In the simple case, in whicb tb(> same number of micro-complexions 
is present in each of the individual macro-complexions, as in the 
deduction of the equat.ion of state tor molecules whose dimensions 
and mutual altractions' are neglected 2), tbe entropy is tben simply 
proportional to the pel'mutability index of the macro-complexion. 

In general we may write 
S = kp loge W. (3) 

in which S represeuts the entropy, and kp = RMllv where RM is 
the molecular gas constant and N is the AVOGADRO numoor (i. e. 
the number of molecules in the gram molecule). Wethen obtain for 
the entropy in the state of equilibrium of a gas whose moleetlles are 
regarded as having no dimensions and as exerling no mlltually aHractive 
forces, a function of volume and temperature whicb agt'ees with the 
thermodynamic expression for the entropy. 

1) Ditfering slightly erom L. BOLTZMANN, loc. cit. p. 243 no te 4. 
I) Comp. M. PLANCK, Wärmestrahlung, p. 140 sqq.; Acht Vorlesungen, Vierte 

Votlesung. 
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If, hy introdueing speciaJ assmnptions regarding the molecules and 
their mutual forces, one calculates, in the man nel' here indicated, 
the entropy S in the equilibrium condition for given energy U and 
volume V, one ohtains directly a fllndamental equation of state from 
which both the specific heats and the thermal equation of state can 
he deduced. 

§ 3. Dedu.ction of tlte virial-coej)icient B for r~qid, .<rmootlt sp/teres 
of centra I syrnmet1'y mul sulJject to VAN DER WAALS' forces of 
attraction. 

Although this problem has already been repeatedly treated, tit'st 
hy VAN DER \V HLS himself in the deduction of his eCJuation of state, 
and since then, in particlllar, by PLANCK I) by a method which is 
essentially the same as that here developed, we may yet utilise 
this simple case as an intl'oduction 10 our treatmeut of the succeeding 
more complex cases. The description of these ean then he shortened 
hy referring to corresponding definitions and operations in fhe present 
problem. 

Determination of the macro-complex ion : 
Two states which a macro-obsel'ver call distinguish as different 

may be regarded as having their differences arise from the presence 
in definite elements of volume of different numbers of molecules in 
the two cases, and also from different distributions of speed in those 
volume-elements. To determine ti macro-complexioJt we therefore 
take the three-dimensional ~paees which are availahle for eaeh 
molecule with respect to its coordinates ,1:, ,11, zand the velocities g, '/,; 
of its centre, and divide them up into equal elements (d.cc\dyidz i =-~) 

dOl> dv: ... dl'! .. , and (d;'ldJhd;j ===) dwl' dw • ... dWI . 

In this we make <lVI' ., so great that each contains on the whole 
a great number of molecnles, and yet sufticiently smal! 1'01' the density 
variations within those elements of volume to escape the notice of 
tbe macro-obser\'er; the elements dw l ••• are also chosen so gre..'lt 
that to each corresponrls a large number of moleeules in dv l , •• and 
yet so small that #,\ , dlJl , dÇI . " are small in comparison with the 
mean speed. 

The group macro-complexion is now determined by the conditions that 
11-11 llnspecilied molecules "are present" in dv\ dW I 

(4) 
nkl" " " " 

Determination of the micro-complexion: 
As far as veloeities 2) are concernerl, the micl'o-complexion can he 

1) M. PLANCK, Berlin Sitz.-Ber. 32 (1908), p. 633. 
2) As the vclocities differ from the momenta only by a constant factor, we may 
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detel'mincd from the same elements of the proper space as the macro­
complexion. With regtu-d 10 the distr'ibution of tbe molecules thronghout 
th~ spare we must dislinguish betwcen val'iolls elements of volume, 
whieh are sUl'posed sm all in eomparison witl. the dimensions of a 
molecule, fbI', in ascertaining if a certain micro-complexion occurs in 
thc marro-complcxion detennined by (4), it is of importance 10 know 
if the eenlre of a,ny partieular molecule lies within or without 
the distance sphere of any other molecule. Henee we divide 
the volume-elemeuts of the macro-complexioll into smaller volume­
elements, thllS 

dV 1 into x equal \'olume-elements dwll ." dWI .. 
dv..,,, "dwu ' .. dW2' 
etc. 

A Illicro-complexion is lIOW determined by speci(rillg for each mole­
cule in which of the elements dw and lIw it is present at the par­
ticular moment undel' contiideration (understandiug that a molecule 
is present in tbe micl'O-volume-elcmcnt dw, when its cenlre of mass 
is thm'e), . 

TV is now the number of micro-complexions thus determined present 
in tlle macro-complexioJl given by (-iJ; in this we must r~member that 
all micro-complexions are exeluded in whieb the distance separating 
the centres of any two molecules is smaller than the diam~ter of a 
molecule. 

For the permutability index of the macro-complexion we obtain 

nl 

n, / nu! nkl! 
As we shall have to deal onIy with slIch macro-complexions as 

correspond to stat es of equilibrium Ol' 10 stat es differing but littte 
thel'efrom, it follows from the conditions laid, down l'egal'ding the 
magnitude of dv alld dw, that fUl' each element dVidwj of the 6-

. dimensional spare in which, fol' any specified state, molecules may 
he present, the Bombel' U;j will he large. We shall, in the mean­
time, be obliged to compare mael'o-('omplexions whose total volumes v 
are not the same 1), for instanee in the development of the thermal 
equation of state. This ean be do ne if, in the determination of the 
macro-complexion, we also take account of volume-elements lying 

in this case use equal elements in the velocity diagram for determining micro­
complexions of equal probability. 

1) When, as in the present instancc, we cOllsider slates in. which the subslanee 
is not split up int<l different phases, we shall indicatc tbe volume etc. by sm all 
letters v, u , 8, ",bieh, when referred 101 gram of thc substance. caII then he 
regal'ded as spec:fie quanlities, 
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outside tht' volume r. A similar remark holds regar'ding the energy 
u. The conditions rep,'esented hy (4) must then be so understood that 
the number of molecules in eaeh of these olltlying elements of the 
.. r . ral space is zero, and for eaeh of these elements thc 
tigme t must he pui ia: tIie ....... tgr of the permutability index. 

We have still to calculate the numberormic~ÎODBCOIlt&ined 
in the individual maero-compJexion; Ihis is determined hy specifying t&ai 

n ll specitied molecltles are present in dv1dw1 
(5) 

" " " " 
These micl'O·complexiolls differ only in the different dispositions of the 
n l = n ll + ... Uil moleeules in the volume·element dV

I 
etc, Tbe diffe-, 

reut yolume-elements are here to be regarded as independent of each 
otber. We then obtain the total numher of miero·complexions by ('~l­
culating the numher of different ways in which thc 11! molecules 
eau be plaeed in the volume dL'!, the same then fOl' dv, etc" and 
by then luultiplying these numbers togerher. 

Let us first put the th'st of the UI molecules in dl'!. For this there 
are x places a\"ailable. For the seeond molecule there are then left 

I 
4: I . 
_.?ra' f 
3 ' 

x 1 - --- \ places available. Of these thel'e is a comparatively smal! 
dv! 

number for whieh the distauce betweeu the cenll'es of molecules 
is such that the distance sphel'cs of the two molecules partially 
overlap, In placing the Ihird and succeeding molecules we shall omit 
these cases, for bringing them into the ealclIlation would introdllee 
terme of the second order of small quantities compared with the 
principal terms of lV, and would have no effect upou the value of 
tbe virial·('oeffit'ient B. Tbe influen('e of these terms would have to 

be mOl'e clO8ely investigated ouly in the det.ermination of C and 
sueeeeding coefficients. The number of places available tor the thil'd. 

, ~.?ra'~ 
< 3 ~ 

molecule eau tlten be written :Ie j 1-2, -- \. Pl'oceeding III tb is , dV
I 

fashion we obtain 

on, =iï' ·1-, ~""I 
c=l dV 1 

dHferent dispositions of the n 1 molecules in dv" Doing the same for 
dvs etc., we obtain the number of micl'o.complexions in the individual 
maero-complexion, 
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Aftel' Illultiplying hy thc permntahility index, a httJe I'eduction 
in whi('h use is made of STIRLING'S formula, give~ with sufficicnt 
apprmimatioll 

4 
-ntr 
3 TI 2 

10[1" fV = - ::E ::E TI II loge 11 11 -- -- JE _1_. (6) 
di) dl!' dV I ti" :2 

In thi~, terll18 ha\'e been omitted which l'emain constant when n 
is constant alltl the di \'isioll into elements remains the same. ::E and ::E 

d" dJL' 

indi('ate 8ummations takelI o\'er all the elements dl' and dw. Use bas 
also been made of the faet that the elements dv are all of the same size. 

The expl'ession which Olie ohtains for BOLTZMANN'S H-function by 
I'e\'ersing the sign of (f)), agl'ees to the degree of approximation 
hCl'e given, with the expl'ession gi\'en by ORNSTEIN I) for this case. 

State of equilihrium: 
This is determined hy the condition that fOl' constant v and 11, 

W is a maximum. The {'()ndition 1.' = eom:t. is fnltilled by varying 
onl) the values of Tt

ll
, el{'. \'I'hieh oe('ur in (6), and kceping 

n Il + ... nu = 11 constant. \Vith I'egard to the condition ti = const. 
the assumption thai the molecules behave as if they were rigid 
smootlt sphel'es, of centml symllletry (so thai their density is constant 
Ol' only a fllnetion of t he distance from the centre, and theref01'e 
theÎl' mass een tres aml t heil' geomeft'ieal centres coincide) enable~ us 
to disregm'd angular spceds about axes through their mass centres. 
To enable us to find all cxprcssion fOl' tlle potential energy we 
shall assume tha.t the IlHlcro-volllllle-elcments are great in comparison 
with the srhere of actioll of a llloleeuie. With l'eferenee to the 
potenlial enel'gy we shall, in eonformity with tlte assumptions under­
IJing the VAN HER \VAALS attl'l1etive fOl"ees, t'tll'thm' assume that, in 
states of equilibrium and in statcs closely approximating tbereto, 
cach sphere of act ion ('tUI be regarded a.s being uniformly filled 
with tlw Ilumber of llIoleeules whieh that sphel'e would contain if 
the molecules were unifurllllJ spread over the whole macl'o-volume 
element. In making this assllmplioll cover even thc molecules which 
lie near the bOllndal'ies of tIto volume-element we neglect the influence 
of capillary forces. Ca.lliug the potential energy of 11 molecules 

al\" 
uniform)} spread over the volume v, - -, witl! al\" constant, we may 

l' 

write the whole potential energy contained in tbc element dV I as 
a 11 s 

- ~.:.-. The condition fol' the enel'gv th en hecornes 
n'dv\ . 

1) L. S. ÛRNSTEIN. Diss. 1908, p. 60. 
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aw ft l ' 
U = ::E ::E n ll "Wl - ~ --- = ronst., (7) 

dv dw dil n' dt\ 
1 

in wbich UI!'I = -m (SI' + 11 1' + ;1 ') represents t.be kinetic energy of 
2 

translation of a molecule wbose velocity lies in dw i • 

The condition for a maximum, in l'onjunetion with \7) and 
n = const. 1) gives 

4 
- :'1'0' ( 3· 2aw 1l1) 

- lOQ 11 - n --,' - - I" lI.ft -- -, ---- -L lîlfl C = 0 • e II 1 d wl 'd I -lil! , 
''t 11 VI 

(8) 

III which I~ and c are constantti. A few reduetions lead to 

and 
_ 11 (" m )1/2 - lt UW1 

nu - - - e del dwl' 
t" 2:T 

the weil known conditions for equilibrium: maeroseopically uniform 
distributiQI1 tbroughout the space, and MAXWELI/S distl'ibution of 
velocities with the same constant h fol' earl! macro-vol u me-element, 
Tbiseonstant h CaD be found by ~btaining an expression for the 
energy u 

3 n aw 
u=----. 

2 I, v 
(10) 

From (6) and (9) we obtain for tbe state of equilibrium 
31ft 4 

loge W = ft loge V - 2 ft loge k+k Uw - 2-; ~ 3:to', 

in which Uw represents the total kinetic enel'gy, and eerlain constants 
are omitted. In conjunction with (3) this gives 

3 1 kp ft 4 
8 = kp n loge v -"2 kp n kge 1.+ kp }, Uw - 2 -;- n s!7rO

I 
•• (11) 

On eliminating h between this equation and (10) one obtains a 
fundament al equation of gtate expJ'essing u as a function of s and 
v, or s as a function of u and v, which PLANC'i calls the canonica.l 
equation of state. On keepillg v constant and differentiating (10) and 

(11) with respect to It, since T = (~l one easily obtains 

. (12) 

1) It will be seen thal in the case of the most probable dislribution 1h.e tota} 
momentum aml the total moment of momentuln vanish lor eaeh macro-volume­
element. Ir one wishcd to evaluale tbe elltropy for slates in wbich these magni­
tudes were not zero one sboukl have to introduce bere suitable conditions to allow 
ror them. 
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'from which with (11) itfollows that 
8 n 3 n a\V I n 4 

.=u - -= --loge V + - -loge h-- + -- n-.1t'o3. 
kl' TL h' 2 h t' 2 hv 3 

Using (12) and the relation kp = RIn, in which R is the gas con­
stant for the quantity undel' consideration" this equation is trans­
formed into 

3 aw RT 
ti' = -RT loge V - -Rl' loge T -- + - bw·, (13) 

2 V V 

1 4 
in which bw has been written for 2 n. 3 mY and a linear functioll 

of T has been omitted. 
3 

From this equation one obtains the value - R for lhe specitlc 
2 

heat at constant volume, while the thermal equation of state becomes 

RT( bw ) aw 
p=- 1+- --. 

t' v v' 

Hence (cf. § 1) 

§ 4. The virin.l-coefficient B for rigid ellipsoids of revolution subject 
to VAN DER WAALS attractive forces. 

Determination of the macro-complexion. 
We shaH first assume that in collision between two ellipsoids the 

speed of rotation around the axis of revolution can also vary. To 
make sure that HAMII,TON'S equations are sllfticient to determine the 
mutual action of two sueh ellipsoids (cf. al80 p. 2-13 note 3) we 
shall make it essential that the surfaces of the colliding bodies which 
we are considering CM never 'exerl other than nOl'mal forces upon 
eaeh other at their point of contact. We shaH, ho wever, assume that 
it is found 011 closer investigation that the surfaces of the ellipsoids 
are not perfect surf,meR of revolution but show, it may be, a uni­
versal wave-formation; but in the meantime we shaH assume that 
deviations from the true shape of an ellipsoid of revolution are so 
small tbat they may be altogether neglected except in so far as they 
give rise to a moment around the "axi!! of revolution" during calli­
sion. Henee in formulating the condition that the energy has a given 
value, we shall also have to allow for the speed of rotation around the 
axis of revolution. To express that condition, then, it is desirabie to 
determine ' the maero-complexion as was done in § 3 and a1so 
witb' respectto the speeds of rotation around the three axes of 

17 
Proeeedings Royal Acad. Amsterdam. Vol. X V. 
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inertia, pn gr, "r, in whicb pr represents the speed ofrotation al'ound 
the axis of revolution. 

The gl"OUp macro-complexion is now determined hy speeifying that 

UIII nnspecitied molecules are pl"esent in dV1 dW1 dWri 

n'll" """" dv, " " etc.. (15) 
in whieÎl dw .. : represents an element of the spare illvolving the 
coordinates p., q" and 1"r; these elements are also assnmeu to he eqlla\. 

Fig.!. 

Determination of the mIcro­
complexion : 

For Ihis it is necessal'y to spe­
cify tbe position of tbe ellipsoid. 
To do this choose a fixed system 
ofaxes X yz, and through tbe 
origin draw a lioe 0 A paraBel 
10 the axis of revolution ; we shall 
determine the position of thë ellip­
soid by the angles AZX = fr, 
A OZ = f) and tbe angle X 
helween the plane A OZ and a 

fixed meridiàn plane of the ellipsoid (Fig. 1). 
Angulat· momenta: We may represent the kinetic energy of rota­

HOD, L,I' by the formula 
Lr=~Arp..'+iBr(qr2+rrt), • .•.• (16) 

in_ wbieh Ar = the moment of inertia aOOnt the a.xis of revolntion, and 

Br -=" " " " "an equa.torial axis. 
Weshall choose the eqnatorial axis to which q .. refers, OB, in 

the pbne A OZ, ue perpendicular to OA and OB in sueb a 
direction tllnt a rotation from Atowards B seen from e is in the 
same direction as a l"Otation from X towa.rds Y seen fmm Z. 

Ir is geen thaI. 
pr = ;p cos f) + X 
'1 .. = ;p8in f) 

rr = - (j 
(17) 

in which the dot8 represent differentia.tion wit,b respect to tbe time. 
Ir we call the angular momenta with reference to cp, f), X. -;p, 8, i 

respect i vely, we then obtain 
-;p = Ar COS f) • pr + Br sin f) • q., 
8=-Brf'., 
'i = Ar P", 

in which P" qr, and rr have the values given in (17). 

• (18) 

lnstead of determining tbe micro-complexlon by drp dO dl. tC;··átJ àX 
Wé shall introduce a s1ight modification. From (18) we tlnd . 



- 15 -

253 

dJ> iö ii = Ar Br' 8in 0 dpr dqr dr.., 

if we stipulate that the sign of equa1ity in this and similar expres­
eions mcans th at in thc integral the expression on the left may be' 
replaeed by that on the right witlt the propel' modification of the 
limits of integration. 

liet us further write do for an element of the snrface of the sphere 
of unit radins, by points on wbich we can indicate the direction of 
the uis of revoilltion of the ellipsoitl; we then obtain 

do 
drp dO = -:--0' 

s~n 

Hence 
d'p dO dX i;; dÖ di' = Ar Br' do dX dpr dqr drr. 

We sbaH therefore obtain micro-elements of equa) probability (cf. 
p. 246 note 2) if we measure equal do/s, equa1 dw's, equal do's, 
equa! dx's and equal dwr's, and c,ombine them. ' 

If each molecule is assigned to a particular micro-element, then 
thee miero-complexion is completely determined. 

The nllmber of individual macro-complexions in tbe group macro­
complexion is 

'Tl! 

RUl! Ru, ! •.. 

(compare wbat was 8aid concerning the corresponding expression in § 3). 
Thc numbel' of micro-complexions in tbe individual macro-complex ion 

is determined as follows: 
The various volume·elements dv are again independent of eacb 

other (cf. § 3). Let us consider tbc U l molecules in dv l • To each 
molecule we ascribe its proper speed of translation g, 1],; and speed 
of rotation pr, qn 7'f detel'mined by (15). 'Ve then "place" the first 
molecule in one of the v eJements dx, tben in one of thè x ele­
ments dûl and lastly in Olie of the " elements do. This can be dOlle 
in ""., different ways. 

Fig. 2. 

We now dispose of tbe second 
molecule. For' this we have still v 
elements dX at our disposal, bu t 
fol' tbe ofher coordinates there 
are fewer places available than 
was the case with the first mole­
cule. Outwal'ds along tbe nOl'mal 
to each point of the first ellipsoid 
mark aft' a distaDce a (equal to 
balf the major axis) (Fig. 2), then 
eacb dw outside the surface thus 

17* 
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obtained is a possible position for the centre orthe st>,cond ellipsoid, 
and in any of tllOse positions all orientations of tbe axis of J'e\'o­
lution of tllis ellipsoid are possible. Calling Vil the volume enclosed 
by the out!!I' distance sUIface thu" obtained, tben the t\Oove volume-

elements gi ve rise to XflV \ 1 -~ t possibilities. t dV 1 

Along the norm al to each point of the ellipsoid mark off a distance 
IJ (equal fo half tbe minor axis), we tbus obtain a slIrface within which 
no centre of another molecule can lie. We shall eall !liis the inner 
di.o;tance Rwface, and designate by Vi the volume whieh it encloses. 
In the shell enclosed between these Iwo distanee snrfaces the centJ-e 
of the second ellipsoid can be placed, but tben all t' ol'ientations do 
are not possible, but only a portion of them, which can be deter­
mined in the following fashion (Fig. 3). Let A be the first ellipsoid 
whicb we shall regard as immovable. Let P be a point of the shell 
determined by the coordinates relative 10 A: x in tbe dil'ection ofthe 

Fig. S. 

llxis of revolution, y in the direction perpendicular to it. Now place 
tbc serond ellipsoid with its centre at. P, and, keeping its centre 
fixed, all()w it to roll on the surface of A; during this rolling the 
point of contact R descrioos a trace on the surface of A .. We can 
wl'ile for the solid angle of the cone which is described during the 
rolling by the semi-axis of revolution, PQ, 2,,'1 if tbe eUipsoid is 
pl'olate, 2.1r (1-(1) if oblate, in which 'I is a function of ][ and 'y; 
there are then f' (1-f!) orientations do possible for the ellipsoid 

B with its centre fixed at P. Altogether we &haH have Xf'V J1- :Vit 
cases, where 

~ = Vi + J'Idco. . '. _. . . . . (19) 

the integration being taken througbout the shell. 
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f1 may beregarded as the maas obtained taking the volume con­
tained < within the inner distance sUl'face as having unit density, 
and adding t.o it the sum of the volume-elements containeu within 
the shell bet ween the two surfaces, each multiplied by its own 
density (I, 

'l'he placing of the third molecule can he done in XflV t 1-2 d: I t 
ways if one takes no account of the compliration introduced by the 
approach" of three molecules (cf. § 3). Finally we get < 

n! <="1- 1 
W = (Xflv)" n n 

n ll / •• du <= I 

Omitting constants this gives 
n l ' {J 

loge W= - :2 :2 :2 nlll loge nlll -< ~ - -, 
d; dw dlOr dIJ 2 d,'t 

Subsequent treatment of this problem differs fl'om that given in 
; 3 only in so far as the enel'gy condition, under the same assump­
tion as was thel'e made regarding the potential energy, must now 
he written 

:2 :2 :E n111 a m (;1' +,lt' +;1') + ! ArP,' + t Br(qr' +rr')l­
dt' dw dWr 

(20) 

Tbe result then follows that the spe<'ilic heat at constant volume 
fOl' these rigid (hut not smooth) ellipsoids is 3 R, whlle as regards 
lile thermal equation of state equn.tion (14) gives the value of B if 
we substitute 

. . . (21) 

As· far tben as concerns tbe term with tbe virial-coefficient B, 
we find the same equation of sta.te as tor rigid spheres I), only witb 
tbe eUipsoids, hw is not such a. simple function of tbe volume of 
tbe molecules as with rigid spheres, 
'We shall now introduce the assumption that the ellipsoids are 
peifeètly: 8mootlt, RO tbat the velocities of rotation around the axis 
of revolution undergo no change on collision. We shall also assume 
tfiatthe a.ttractive forces cause no modification in these angular 
speeds.' ID. tha.t case it is not necessary to allow for the value of 

1) This may be regarded as a particular case of the generál proposition indieated 
byBOLmANN (Gàstheorie 11' § 61), for molecules which bebave as solid bodies 
of shape other Jhan 'spherical. 

" 
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p.. in the eqllation for thè constant energy; hence we' shaH sIso 
take no account of pr in the determination of the macro.complexion. 

The group macro-complexion is then speci6ed thus: 

nll1 unspecified molecules are present in d.,\ dto l (dqr drr)l 
n 1l,,, "".,,, " "etc.. (22) 

in whieh (dqr d"r)l represents one of the different elements (supposed 
equaI) of tbc srace involving the coordinates qr and 1'\" The equation 
for given energy then beeomes 

a ft 11 

~ 11111 a m (;1' + 111' + ~I ') + 1 Bo' (qI'1' + "1'1 ')l- ~ :'d 1 = Collst. 
de n "I 

As far as tlle thermal equstion of state is concerned the result is 
the same as that obtained for rough ellipsoids, but tbe specific beat 

5 
at constant volume is differellt, viz. 2' R, for smootb ellipsoids. 

Pbysics. - On t/te deduction from BOLT1.MANN'S entropy principle 
of t!te second virial-coefficient JOl' material partieles (in the 
limit 1'igid spltel'es ol central symmetry) wlticlt exert cenl1'al 
fon'es upon eaclt ot!ter and 10l'r(qid sphel'es ol eentral s,lfln­
metl'y containing an eleetl'ic doublet at t!teir centre. By Dr. W. H. 
KEESOM. Supplement N'. 24b to the Commnnications from tbe 
Physical Laboratory at Leiden. (Communicated by Prof. H. 
KAMERUNGH ONNES). 

(Communicated in tbe meeting of April 26, 1912). 

§ 5 1
) The deduction of t!te second virial-coefficient, B,fV,. ma/erial 

points Jin the limit r~qid spheres of èe1ltl'ûl synunetl'y) which exel't 
central forces upon eac/t otller. 

In this section we shall ded uee tbe eqllation of state, as far 
as lhe second virial-coefficient, B, is coneerned (cf, ~ 1;, for a 
system of molecules wbieb act upon eacb other as if tbey were 
material partieles (in tbe position of the centres, whicb are .al80 tbe 
een tres of gravity of thase molecules) and witb forces wbich are 
given invariable functions of the distance, All mutual actions otber 
than that jost described will be excluded. Tbe case in whieb tbe 
spberes can be rf',garded as rigid spheres of centra! symmetry <. 3) 
exerting central attractive or rt'pnlsive forces upon eacb- other whielt 
are a function of tbe distances between their centres, will . be treat~ 
~ a limiting case, 

I) To facilitate reference to Suppl. N', 2'" seetions, equations ~d diaS1'4DlS 
in the present paper are numbered as contÏDuations of those inSQppt. NO. t... . 


