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Physiology. — “Influence of the seasons on respiratory evchange
during rest und during muscular exercise”. By Dr. C. J. C.
vaN HooeEnnuyze and Dr. J. NIBUWENHUYSE.

»

(Cormmunicated by Prof. (. Eukuan in the meeting of October 26, 19:2). .

The primary object of our inguniry has been to find out, whether
muscular exercise increases the metabolism in man as much in the
cold as in the warm season. -

We have taken the consumption of oxygen as the index of the
metabolism.

Since it is still a matter of controversy, whether the seasons in-
fluence metabolism even during rest, we have thought fit to deter-
wine also the absorption of oxygen during rest in the same two
persons, who were subjected to the muscular test. Besides, the gas-
-exchange has also been examined with two other subjects only
during rest.

A. Respiratory Gas-exchange during rest.

In 1859 E. Swrs ‘) presented to the Royal Society of London a
series of ohservations upon the influence of different factors (i. a. the
seasons) on the gas-exchange in man during rest. The amount of
oxygen consumed was not determined, only that of carbon dioxide
given off. If we ave to take the latter as a quantitative index of the
metabolism, SmiTH’s experiments would prove that it is more intense
in the cold months and less so in the warm season.

Euxkman®) made similar experiments in 1897 with improved means,
and moreover measured the quantities of oxygen. As known, the latter
afford a more reliable index of the intensity of the metabolism. He
found no difference for the different seasons.

His opinion that the metabolism is the same in warm and in cold
seasons is also corroborated by his previous investigations®) made
in the East-Indies, from which it appeared that the amount of meta-
bolism of man in the tropics agrees with that of people in our parts.

1) Philosophical Transactions of the Royal Society of London 1859 p. 681,

%) C. EurMaN. Over den invloed van het jaargetiide op de menschelijke stof-
wisseling. Verslagen van de Koninklijke Akademie van Wetenschappen te A'dam,
8 Dec. 1897. g

%) C. Bukmaw. Beitrag zur Kenntniss des Stoffwechsels der Tropenbewohner.
Virchow's Archiv. Band 133. 1893, p. 105.

ldem. Ueber den Gaswechsel der Tropenbewohner, Pfliiger’s Archiv. Band 64,
1896, p. 57,
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Shortly before we had brought our experiments to a close, Livp-
HARD ') pnublished an aiticle, in which he reports the fluctuations of
respirafory exchange 1 the different seasons, which according to
him run parallel to the_inlensity of the sunlight. o

It seems {0 us howe\;er, that" his values of the oxygen intali(_a do
not differ sufficiently and are, too- inconstant to warrant such a
conclusion. e L e e "

For our determmations’ we used ZvNtz and GEppErr’s?) method.

The subject, whose nose is shut off by a spring-clip, breathes
through a mouth-piece, corresponding by means of a T-shaped tube
with two very mobile gui-valves, one of which transmits only the
air taken in, the other only the air which is exhaled. The latter
passes, without encountering any resistance worth mentioning, through
a slightly aspirating gasometer, a conslant fraction of the expired
air being continually separated for gas-analysis by means of a special
apparatus. Furthermore a supple pig’s bladder had been inserted
between the valves and the gasometer. This highly facilitated expi-
ration, as was apparent from the working-experiments to be discussed
later on.

Outside air was supplied through a short and wide indja-rubber
tube, connected with the valves. The room which faced the North,
was constantly well ventilated through the open windows.

We experimented every time under similar circumstances, i. e.
the experiments were made in the morning, always at the same
hour, and with the same inferval after breakfast.

The breakfast varied for the several subjects, but for each indivi-
dually it was the same. For a quarter of an hour before and during
the experiment, the subject reclined in an easy chair, resting quietly.
The temperature of the room was taken, the readings of the baro-
meter and the sort of weather (misly, sunny, frosty etc.) were noted
down.

Likewise the respiration, the number of liters of air exhaled, and
the time (in seconds) were recorded on a kymographion (Fig. 1).

The time the experiment took us, was also registered by a time-
keeper. Fuortheron the relative moisture in the room was measured too
as well as the temperature and the degree of moisture under the
clothes.

Qur subjects were four adulls, all of them employed every day

!y J. LinpHARD. Seasenal periodicity in respiration.

Skandinav. Archiv. f. Physiologie XXVI p. 221.

%) Maenus-Levy. Ueber die Grosze des respiratorisehen Gaswechsels u. s. w.
Pfliiger’s Archiv. f. die ges. Physiologie. Bd 55. 15894, p- 9.

9%
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at the hygienic Ilaboratory at Utrecht. Their body-weights were
widely different and did not change much with the same individual.

BB AR A A S RS R A S R REA b n S AR K Time (seconds)

Respiration

Liters of air
exhaled.

Fig. 1.

The lowest temperature, at which we worked was 3° the
highest 30°.

The experiments were made in May, June, July, September,
October, November 1911 and in January, February, and July 1912.

There was only a small difference in the summer- and the winter-
attire. No overcoat was ever put on in cold weather nor was
any article of attire taken off in the summer. As serious errors
would originate in case the subject should shiver, this was a point
of careful observation.

In Jooking over our resalts, in the first place with regard to the
amount of oxygen, we notice rather considerable fluctuations with
the same subject under apparently similar circumstances, which is
in accordance with the experience of other workers.

Benepicr '), for instance, found in experiments with the saine
subject under equal circumstances the following oxygen-consumption :
194—213—169, showing as great a difference as 26°/,.

We also found with V. on 15—7—"12, at 30°, 765,5 mm. baro-
metric pressure, relative moistare of 52°/,, the value 256,8, and on
16—7--12, at 30° and 765,5 mm. barometric pressure, relative
moisture of 50°/,, the value 292. This yields a difference of rather
more than 13°/,.

It is obvious, therefore, that if we wish to demonstrate seasonal
influence, an extended series of experiments is required, and further-
move, that only striking differences should be attended to. If we
take the average of (he results at a temperature below 13° (the
months of Nov. Dec. Jab., Feb.) and of those above 13° (the other
months) we note:

1) Benepicr. The melabolism and energy transformation of healthy mah duving
rest. (Carnegic Institution of Washington. Publicalion no, 126, 1910, p. 107.)
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below 13° ‘above 13°
with v/Z. (5 exp) 2818 c.c. permin. (18 exp.) 269.2
., N8 2524 ,, ,, 21, 256
. 6, 2908 ,, ,, ., 9 2974
. Ko4 o, 2017 ., ., 12, 1977

The average of ) \

4 subjects (23 exp.) 1032.7 :4 =258.2 and (60exp.)1020.3:4=255.1.

In considering the results obfained with each individual separately
we notice differences in one way or another, comparatively small
though they majy be.

In connection with what has been said above we Dbelieve that no
great value should be set upon these differences.

Taking the averages of all the subjects, we find fairly correspond-
ing values, viz. 258.2 in the cold and 255.1 in the warm season,
so that we may conclude, that the season has no influence upon
the metabolism in a state of repose.

It appears then, that our results agree with those of ENKMAN ')
who got his averages in like manner, finding 253.8 in the winter
and 253.3 in the summer.

Without tabulating our results at large we subjoin a somewhat
more detailed report about them :

1 V. H. Body-weight 87'/; Kilos (without clothing) Height 1.84 m.

Averages of results of all experiments (23): Amount of O,-consumption and

COq-production per minute expressed in c.c, reduced to 0' and 760 mm. barometric
pressure.

CO, 0, CO,/0,
2952 ‘ 211,1 0,830
minimum 185 min. 239,5 = 110/, below the average.
maximum 264,6 max. 322,5 =190/, above ”
The average Og-consumption in 5 experiments at 4!,—121,° C. amounted to
281,8
min. 259,9
max. 322,5
The Oy-consumption in 18 experiments at temperatures of from [141,—30° C. averaged
269,2
min. 239,5
max 294,2
At the lowest temperature ( 41,° C.) we found 274,1, at 71/° C, 322,5.
» »n highesttemperatures (30 ©C) , , 291,7 and 2942,

Il N. Body-weight 70Y, Kilos (withoul clothing) Height 1,80 m.
Averages of results of all experiments (29):

CO, 0, CO0,/0,
230 255 0,900

min. 191,7 min. 2222 =139/, below the average,

max, 267 max, 292 = 140/, above , "

1) G. Eukman. Koninkl. Akademie v. Wetenschappen 8 Dec. 1897.

-10 -
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The "average O,- consumptlon in 8 experiments at températures- of 4—13° C. -
amounted to . -
2524
min. 230,35
- max. 285,1
The O,-consumption in 21 experiments at temperatures of 14—30° C, averaged -
- 256
L min, 222,2
. max. 202
At the lowest temperatures (4 °©) we_found 260,7 and 285,1.
s » highest ,, 30 , , 256,8 292 and 277.7.

I E. Body-weight 83,3 Kilos (without clothing) Helght 1,82 m.
Averages of results of all experiments (15)

CO; . 0Oz 0,/0,

258,6 294,7 ,801
min. 219,6 min. 250,8 =151/, below the average .
max._309,7 . max, 330,1 = 12"/, above , a

The average Op-consumption in 6 experlments at temperatures of 8—13°C.
amounted to
290,8
min., 272,6
max. 330,1
The average O,-consumption in O experiments at temperatures of 14--26° C,
amounted to
297,4
"min. 279,9
max. 3284

1IV. K. Body-weight 58 Kilos (without clothing) Height 1.75 m.
Averages of results of all experiments (16)

CO, 0y C0,/0,

175,1 200,2 0,874 -
min. 152 min, 172 =149, below the average P
max. 203,9 max. 2386 = 19"/, above »

The average Qp-consumption in 4 experiments at temperatures of 3—121,°C.
amounted to ,
201,7
min. 1777
max. 228,6
The O,-consumption in 12 experiments at temperatures of 14—30° C. averaged:
197,7 B
min. 172,0
max. 238,6

Our endeavmus to detect any influence of.the seasons on the
carbon-dioxide elimination, the tidal air, and the nnmber of respi-
rations per minate proved as fruitless as they had been in ascer-
taining such influence on the oxygen-consumption.

B. Respiratory Gas-exchange during muscular exercise.
Little has been written as yet abont the influence of muscular
work on the respiratory exchange in the several seasons.

-11 -
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"E. Smira reported in his publication, of which mention has alveady
been made, that equal muscular work has a greater influence on the,
respiratory exchange in winter than in summer; his experimentation,
however, does not, in our opinion, vouch for this conclusion.

Our experiments were made in the months of March, April, May,.
June, and July 1912.

We proceeded as follows. The experimentation took place in the.
afternoon, at the same hour, shortly before dinner, in order to
give scope to the presumable influence of close- heat. We were
sitting on a bicycle without wheels, placed on a stand. A rotatory
disk had been fixed at the place of the large chain-wheel. Round -
it a steel brake-band could be tightened or slackened to render the
“work more severe or lighter (Fig. 2).

Spring-balance
Wire

ptl

Adjusting screw : \
Pedal

Rotating disk ..----
""" Brake-band

Fig. 2.

The npper part of the band was connected with a spring-balance
by means of a long wire. When the adjusting screw was tighiened
the friction increased and the band was taken along by the disk,
while the pedalling continned, which cansed the springbalance to
register a higher figure. The increase, however, was not such as to
alter the static moment materially. Both the bracket-spindle of the
bicycle and the rim of the disk were continually being oiled during
the experiment. _

The pedalling rate was regulated by a metronome, ticking 133
times per minute. ) )

Before the subjects, both skilled cyclists. started pedalling, a deter-
mination was made, while they were quietly seated on the bicycle;
which involved only a very light static muscular activity. In the
subsequent period “of the experiment the subject was pedalling for
a quarter of an hour, while breathing freely and after this for five
minutes, while breathing through the valves. Only then the estima-
tion was performed, while the subject went on pedalling; we then
could reasonably presume that a condition of equilibrium between
internal and external gas-exchange had been established.

-12 -
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The breathing throngh the valves for the space of five mmutes
previous to the estimation, served to preveni a somewhat irregnlar
respiration that ight possibly arvise in the uransition from free
breathing to respiring throngh the valves. In the interval the tempe-
rature in the gasometer atiained its new equilibrinm, i

Throughout the whole experiment an assistant had {o wateh the
springbalance, which was {o poini {o the same mark. In case of a
deviation, the band was at once slackened or tightened dnring the
pedalling, which did not cause any disturbance. -

The work done was calculated by multiplying the circumference
of the disk, i.e. the distance covered afier one rotation, by the weight
indicated on the springbalance, by the number of rotations per time-
unit and by a correcting facior *). This showed an amount of labour
of 22800 K.G M. per honr. ‘

The exertion required for the work, was not such as to exhaust
the subjects. Still, at the finish of the experiment they felt tired as
if they had been cycling a long distance.

Our results are the following:

-

sitting quietly (a):
L. V. H g pedalling (OF

Averages of all the experiments (12) made in March, Apnl, May, June, July 1912,
lowest temperature 129, highest temperature 30°:

COy per min. Oy CO, -
0,
min. 299 max. 386,8
a % 280,8 3304 0.850
1001,5 0,8671
b % 8684 min. 781,2 max. 1448 ’
The average of 8 experiments below 211},°
CO, 0y : CO,
0,
min. 299  max. 358,8
a % 213,3 3235 ’ 0,8448
863,4 0,8643
b ? 746,2 min. 781,2 max. 0885 ’
The average of 4 experiments above 211,°-
CO, O, CO,
Oq
{ min. 322.1 max. 386.8
a; 299 3445 0,8580
12771 0,8712
b} 1131 min. 1052 max. 1448 ’

Increase set in after 11—6—"12 (above 211/,°).

) The coriecling faclor is lhe quolient ol the lever on which the wite of the
sprnghalance is-fixed and .the radius of the disk.

-13 -
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sitting quietly a:
LA gpedalling b:
Averages of all the experiments (14) made in the same months;
lowest temperature 12°, highest 31°

CO, - 8 CO,
Oz
min. 220 max 314,9
a % 2125 265,4 ’ 0,8346
895,6 0,9152
b 3 819,6 min, 652,1 max. 1091 ’
The average of 8 experiments below 207/,°:
COy 0O, CO,
0
min, 229,6 max. 314,9
a § 214,6 2688 0,7984
791 0,9076
b ? n19 min, 652, max. 922,7 ’
The average of 6 experiments above 201,°:
CO, 0, CO,
O
min. 229 max. 2889
a % 209,6 260,8 ’ 0,8037
1034,9 0,923
b § 9552 min, 971,2 max. 1001 ’

Increase set in above 201,°, after 13—5-12
Also in this series of investigations the individual fluctuations were
rather considerable.
We see that for either subject the average oxygen-intake ishigher
when sitting quietly on the bicycle than when lying in a chair, viz.

V. H. (lying) average Oxygen-intake 271.1 ce.!

(Slttlng) 5 “ 3304 . »
N.  (lying) o » 255,
(sitting)  ,, . 2654 ,,

We also observe that the average value of the sitting-experiments
at more than 21',° with V. H. is a little higher than that of the
experiments below 211/,° viz.

the first value: 344.5, the second 322.5.

Again, that for .V there is no such difference between the two
periods. On the confrary with him rather the reverse takes place,
the first value being 260.8, the second 268.8. However, this difference
is too small to be taken into account.

While pedalling V. H. shows an essential increase of oxygen-
intake, when the lemperaiure rises beyond 21°, at the beginning of
June. With IV the increase is not so great, but it starts a month
earlier, when the temperature rises beyond 20° viz.

with V. N. from average 863.4 to 1277.7, nearly 48°/,
» N o » 9L, 10342, ,, 31,

-14 -
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The lowest value of the warm period in Hs experiments (1052)
is distinctly higher than the highest of the cold period (988.5).

Likewise with NV viz. the one 977.2, the other 922.7.

On the days of the higher values either subject felt, as if the
muscular work required a greater physical exertion than on other "
days, though they were both in good health and followed their daily
routine.

In noting the average increase of the absorpiion of oxygen, result-
ing from the pedalling, we find:

with V. H. helow 204° 863—323.5 =441.5
above 2110 1277—244.5 — 933.2,

a difference of 491.7 (nearly 112 °¢/)).

- With ¥V below 214° 791 --268.8 =522.2 -
above 204° 1034.9—260.8 = 7741,

a difference of 251.9 (rather more than 48°/)).

The numbers expressing the carbon-dioxide output are running
parallel to those indicating the oxygen-intake. This tallies with the
approximate accordance of the respiratory quotients of the experi-
ments made at a temperature higher than 20'/,° and 211/,°, with those
of the other experiments.

In the case of N the temperature under the clothes, on the
cessation of the pedalling was 35—35'/,° C., the relative moisture
65—90°/,, throughout the whole period above 204° In the period
below 204° the former varied from 30°— 34° the latter from
30°/,—47°/,.

With V. H. those values were:

in the period above 21:° : 34— 35'/,°

90—100/, )
TR P below 21%0 + 30— 3.:1:1/2 }
40— 75°/,

As regards the respirations per minute and the tidal air at the
end of the pedalling experiments we find:

namber
of respir. per min. Tidal air
average with V. H. below 214° 17.2 1009.6
above 211° 16.2 1444
with . below 204° 20.1 840.7
above 204° 21.7 1003.5

We see, thereforc, that the number of respirations per minute
remains fairly constant, whereas in the warm season the tidal air
is considerably augmented, viz.

-15-
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with V. H. an increase of more than 34°/,
. N. .. o e . . 19,

We have previously remarked, that the increased respiratory
exchange at a higher lemperature cannot be aftributed to this,
seeing (hat the determination had not been made, until an equilibrinm
had presumably been established befween internal and external gas-
exchange. Indeed, the O,-consumption and the CO,-elimination in-
creased more considerably than the tidal air.

Our experimental evidence seems {o show that muscular work at
a high temperalure is less economical than at a low temperature,
and also that this difference is more marked with one subject than
with another. _

The increase of gas-exchange parallel to the rise of temperature
was not gradual. but sudden at 21°—22°.

Physiology. — “The influence of the reaction upon the action of
ptyalin”. By Dr. W. B. Riveer and H. v. Trier.

(Comrmunicated by Prof. C. A. PEKCLHARING in the meeting of November 30, 1912).

One of us (v. Tr.) has for some time been studying the effect of
diet on the action of the diastatic enzyme of the saliva, to which
the name ptyalin has been applied. The vesults of other researchers
into this subject are tu some extent conflicting with each other?).
Nor do van Trier’s experiments positively demonstrate an influence
of diet. Though, taking ore with another, they seemed to point to
an influence, occasionally there appeared striking deviations without
our being able to fix upon the cause, so that we did not know
what to make of the results.

This experimentation was conducted as follows: saliva was added
to amylum solutions and after some time the reducing power of
the solutions was determined. This method involves the risk of fluc-
tuations in the reaction of the fluids, e.g. such as are brought
about by the flask-wall or by carbon dioxide from the air, sinee in
approximately neutral fluids without regulating-mixtures the reaction
may be considerably shifted by a trifling disturbance. This would
account for the striking deviations mentioned just now, recent researches
having shown that slight modifications of the reaction markedly
affect the activity of enzymes.

Now if, in proseccting cur experiments, due care being taken all

1) Cf. Hamuarsren's Lehrbuch der physiologischen Chemie.

-16 -
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the time to obviale any noxious influence of the flask-wall or of the
carbon-dioxide upon the reaction, we should detect unmistakable
influence of the diet, this might be owing to various causative fac-
tors. Iirst of all the concentration of the enzyme might have been
altered by the diet. In the second place the organism might effi-
ciently alier the concentrations of the ions, which are so material
to the action of the enzyme, especially the H- and OH-ions, as well
as the Cl-ions and others. , .

We thought proper, therefore, to cautiously watch the influence
of the H- and OH-ions in order to ascertain by subsequent experi-
ments. whether variations in the activity of the enzyme are to be
attributed to changes in the concentrations of the said ions. Moreo-
ver, an accurate knowledge of the influence or these ions may lead
to a clearver insight into the action of the enzyme.

Previous inquiries into the effect of acids and alkalis on the action
of ‘ptyalin yielded rather contradictory results '), from which it was
supposed that either acids or alkalis acted favourably.

As a rule we used in our investigations the methods employed
by Sorensen*) in his remarkable experiments on enzymic actions.
We adopted the following course:

filtered saliva, designated “‘enzyme” in the following tables, was
made to act at 37° upon 1°/, amylum solutions. After the action of
the enzyme had been arrested by heating it was estimated by the deter-
mination of the reducing power of the digestion-fluid, of the rotatory
power and by reaction with iodine. Various reactions were given
to amylum solations. To obtain them and to maintain them constant
three buffing- or regunlating-mixtures were applied, viz.

1. phosphate-mixtures,

2. cilrate-mixtures,

3. acetate-mixtures. )

The process of digesting lasted 20 minutes for all series of expe-
riments but one.

i

1. Lzperiments with phosphate miztures.
(all the glass vessels had been exposed to steam for 15 minutes.)

Into Eruesmuiser-flasks (Jena-glass), capableof holding 300 c.c. were
placed :

10 c.c. of a phosphoric acid solution 1.485 n., varying amounts
of sodium hydrate 0,5670 n., and water up to 50 c.c. To this 200

1) Cf. HammarsTEN'S Lehrbuch der physiologischen Ghemie.
?) Comptes rendus des travaux du Laboratoire de Carlsberg. 8me Vol. 1r. Li-

viaison 1909,
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c.c. of the amylum solution was added by means of a pipeite. As
a matter of course, all the tests of the same series were made with
the same freshly prepared solution, which was obtained by mixing
25 gr. of dried amylumn with one liter cf water and heating it to
the boiling point, while stirring the fluid and maintaining this tem-
perature for about a minute. After cooling the mixture was made
up to 2 liters ') and filtered through glass-wool or muslin.

The flasks holding the phosphate-mixiures and the amylum, were
first heated to 37° and then mainfamed at this temperature in the
thermostat for at least 20 mmutes previous to the addition of the
enzyme. After the enzyme had been working on for 20 minates, the
flask was dipped into a boiling waterbath and was constantly and
regularly moved, always in the same manner, till a temperaiure of
90° was reached, so that every time the action of the enzyme was
arrested in the same way.

The reducing power of the cooled fluid was deiermined after
BerTranp and was expressed in m. Gr. copper per 100 c.c. of the
fluid. ’

The determination of che reaction was performed electrometrically.
The hydrogen-electrodes were treated after HasseuBacw’s ) shaking
method, and measured by means of mercury-calomel-electrodes with
normal and '/;, n potassium chloride The reaction is expressed in
pa . the negative logarithm of the hydrogen-ions-concentration.

The following tables show the results of the mostimportant series
of experiments.

zst Series of experiments. Enzyme v. T.

LIS IS S == aae——————————— L~
)
Nr. p}s‘g%%%fd NaOH'H20 11\1?;3’ 231;::1; ,RE%;:. Rotation lodine reaction Py
cc. c.c jcc| cc. c.C. Cu minutes
1 10 13.4 2'6.6 200 2 71.10 — — 5.186
2 10 ‘ 13.7 26.3] 200 2 1182.15 — — 5.69
3 10 14 {26 200 2 1212.30 — — 5.80
4 10 15 25 200 2 | 218.95 — - 6.22
5 16 16 |24 200 2 | 214.8 — — 6.40
6 10 18 |22 200 2 | 176.50 — — 6.78

Y) Occasionally 4 liters had to be made.
%) Biochemische Zeitschrift, Bd. 80, p. 317.
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2d Series of experiments. Enzyme R diluted with 3 vol. of water.

3

Phos- Reduc- .
o . INaOH{H,O Amy- | En- ; Rotation
Nr/phoricacid !l Jum | zyme tion Iodine reaction | 2
solution | oo feel ce | oo | MO | minutes 7
c.c Cu
~ | Reduction
1 10 13 |27 200 2 not +192 blue 4,53
perceptible
2 10 13.5 [26.5] 200 2 | 180.10 | 188 |blue, shadeofviolet| 5.33
3 10 14 |26 200 2 | 234.80 | 186 |[violet, shade of blue| 5.86
4 10 14.5 125.5] 200 2 | 244.55 | 185 violet 6.05
5 10 15 (25 200 2 | 235./0 | 186.5 |violet,shade of blue| 6.24
6 10 15.5 [24.5| 200 2 | 223.60 | 188 violet-blue 6.30
7 10 17 |23 200 2 | 179.10 | 191.6 |blue, shade of violet| 6.61
8 10 20 |20 200 2 [ 105.40 | 195 blue 7.01

3d Series of experiments. Enzyme D.
—— e ____]

o0s- educ- .
Nr. pgg’%&%‘gd NaOH)H0 AITn%- z};:lrr]r;e E?Gnr. Rc.)tatlon Iodine reaction | 2py
co. cc fae| oG c.c. Ca  (min utes
1 10 13.2 [26.8] 200 2 1106.45 | 194 blue l 4.90
2 10 13.5 [26.5] 200 2 | 194.50 | 190.3 |blue, shade ofviolet| 5.52
3 . 10 14 |26 200 2 | 251.25 | 190 violet-blue 5.83
41 10 14.5 |25.5{ 200 2 |270.10 | 189.7 |violet,shade ofblue| 6.08
5 10 15 |25 200 2 1271.20 | 188 violet 6.19
6 10 15.5 |24.5| 200 2 1265.55 1 191 |violet, shade:ofblue 6.37
7 10 17 |23 200 2 220,55 | 192 violet-blue 6.61
8 10 20 |20 200 2 | 156.60 | 195 blue 7.03

From these experiments it appears, that the concentration of the

hydrogen-ions exerts a considerable influence upon the action of the
enzyme; further that an increase of ¢y, consequently a decrease of
pa accelerates its activity. until a certain optimum is reached, after
which the action slackens again. We also observe the same beha-
viour with enzymes from different sources, however with a noticeable
difference in (heir activity. From another series of experiments
we gathered that the optimal reaclion lies ai about the same point
in much more dilule phosphate solutions; we also learnt, that all
over the series the action of the enzyme was more vivid. It follows
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then, that phosphate-mixtures are inhibitive to the action; less so in
highly dilute than in the concentrated solutions.

2. Experiments with citrate-miztures. A citrate solution was made
from 275 gr. of pure citric acid (pro analysi), 105 gr. of NaOH
(MERCK’s e natrio pro analysi) and water to 1 liter. 20 c.c. of this
_citrate solution diluted with water to 250 c.c. yielded pg— 4.915.

4th Series of experiments. Enzyme R.
Citrate [NaOH|H,O | Amy-| En- Rggl;C- Rotation ) )
Nr.| solution lum |zyme, ‘= . lodine reaction | py
c.c. cc | ce | ec c.C. Cu minutes
1 1'0 14.7 {25.3 | 200 2 247.60 | 195 bluish-violet }5.99
2 10 19.57/20.43| 200 2 357.15 | 189 reddish-violet [6.49
3 10 19.94/20.06| 200 2 380.15 | 189  |red, shade of violet [6.526
4 10 20.40{19.6 | 200 2 380.65 | 188 reddish-brown [6.62
5 10 21.3 [18.7 | 200 2 396.00 | 187 reddish-brown [6.73
6 10 22.1 17.9 | 200 2 358.65 | 181 |red, shade of violet|7.09
1 10 23 |17.0 | 200 2 183.15 | 197  |blue, shade of violet|7.425
Sth Series of experiments. Enzyme R diluted with 1 vol. of water.
Citrate |NaOH|HO | Amy-| En- | Re%UC |Rotation| o
Nr.| solution lum fzyme | =l i lodine reaction " | H
lc.c. cC | ee e | ce Cu  |minutes
1 5 5.0 140 200 2 81.35 | 202.7 blue 5.80
2 5 8.20 (36.8 | 200 2 [ 139.70 | 200 blue 6.26
3 5 9.78/35.22] 200 2 | 158.10 | 197 |blue,shade of violet}6.55
4 5 10.20 34,80 200 2 | 147.85 | 199.3 iblue,shade of violet|6.74
S 5 10.65 (34.35 200 2 |128.45| 201 . blue 6.85
6 5 10.90 |34.10] 200 2 1107.95 | 202.7 blue 7.046
7 5 11.05 )33.95] 200 2 90.05 | 204 blue 1.11
8 5 11.30 {33.70| 200 2 60.90 | 204.5 blue 71.41
9| 5 11.60 [33.40 200 | 2 |rdonmol 205 blue 7.497

Here again an optimal reaction is educed, which, however, has
slightly shifted towards the neutral point. A decrease of concentra-
tion diminishes this deviation.
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3. xperiments with acetate-miztures. A solutien of sodinm acetate
(170 gr. per liter) was mixed with different quantities of 1 °/, acetic
acid. The following experiments were made: i

6th Series of experiments. Enzyme R. diluted with 3 vol. of water

Acetic Reduc-i
Acetate | acid |H,0 Amy- | En- | = - " Rotation
Nr.| solution |solut- lum |zyme; "~ lodine reaction | Py
c.C ion {ecc.| cc c.c. Ca minutes
u -
c.C. v
1 20 0 130 200 2 47.60 | turbid blue 1.297
2 20 1|29 200 2 |"137.65 | 202 |blue, shade of vinlet|6.65
3 20 2 |28 200 2 | 182.65 | 199 bluish-violet  16.55
4 20 4 |26 200 2 |221.05| 198 bluish-violet  [6.21
5 20 5.6 [24.4| 200 2 122205, 195 violet-blue 6.106
-6 20 T |23 200 2 | 221.55 | 197 “violet-blue 5.98
7 20 12 118 200 2 1200.05| 199 bluish-violet  |5.78
8 20 30 0 200 2 | 118.20 | 200 blue 5.31

Again an optimal reaction is evolved; it is equal fo that of the
phosphate solutions. On either side of it the action of the enzyme
diminishes, first slowly, then rapidly. The oplinial reaction lies in
phosphate solutions at pg = 6.05, as may be seen from~™a graphic
representation of the rveduction as function of the pg. In acetate
solutions we find pg = 6.08, whereas in citrate-experitmenis values
vary according to the concentration. In the 5th series we found an
optimal reaction p; = 654.

All values of p; communicated thus far, were estimated at 18°
They are somewhat different at 37°, the temperature at which the
experiments were made. The reactions of the fluids, that were opti-
mal, have also been determined by us. We found : ’

in the phosphate solutions py = 6.00

in the citrate solutions (10 c.e¢. of citrate 4 series) py=6.86

in the acetate solutions pp= 6.028.

The neutral point lies at 37° al py=6.796.

For purposes of comparing the action of.the various regulating-
mixtures we carried out the following experiment. (p. 803).

It is evident from this test that, the reaction being neutral, the
influence of phosphate is inhibitory; when the reaction is slightly
acid (pr= 6.5; a neutral reaction is not easily obtained with citrate)
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uth Series of experiments. Enzyme R diluted with 1 vol. of water.

Ll ______

Hy0 | Amy- | En- R&g?‘c' Reaction (determined at 18°)
Regulating mixture lum jzyme | e
cc | ce | ce Cu. - Py
a none 50 200 2 | 318.20 | electrometrical determination
not practicable on account of
the lack of electrolytes. Neutral
behaviour to litmus, so
Py +107
b {10 c.c.phosphoricacid|19.4 | 200 | 2 | 245.05 1.07
20.6 c.c. NaOH
¢ |10 c.c.phosphoricacid|23.75] 200 | 2 | 425.15 6.50
16.25 c.c. NaOH :
d 10 c.c. citrate, 20.45| 200 2 221.55 6.468
19.55 c.c. NaOH .

a comparison between citrate and phosphale shows thal inhibition
is much stronger with the former than with the latter.

From the removal of the optimal reaction towards the neutral
point, as well as from the tesls published in this paper, it is appa-
rent, that cifrale inhibits most strongly on the side of the minor
pu’s, and that this impeding action weakens lowards the neutral
point.

The optimal reactions Dbeing identical in phosphate- and acetate-
mixtures, il was likely. that either of them should slacken the action
of the piyalin in the same way. The following test illustrates the
fact thal, if the reactions are the same, both mixtures equally affect
the enzymic action.

Sth Series of experiments. Enzyme R diluted with one vol, water.
e —————————————a—e e e e e oo ]

H,0 | Amylum|Enzyme | Reduction
¢.C. c.c. cc. |mGr.Cu| PH

Regulator

a | 10 c.c. of acetate 35 200 2 489.2 | 5.886
5 c.c. of acetic acid .

b | 10c.c.of phosphoric | 26 200 2 483.5 | 5.886
acid 14 c.c. NaOH

We now passed on to inquire how this influence of lhe reaction
upon the action of ptyalin is to be accounted for. It may indeed be
imagined, that H-ions favour the enzymic action, bui how is il then
that beyond the optimal ¢y they largely impede the activity. Is it
perhaps to be attributed to an injury to the enzyme? In order to
find this out we made the following experiments:

53

Proceedings Royal Acad. Amsterdam. Vol. XV,
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a. 10 c¢. ¢. of phosphoric acid, 13 c. ¢. of sodium hydrate and
27 c¢. c. of water were mixed at room-temperature with a mixtuare
of 25 ¢. ¢. of enzyme R -4 25 c. ¢. of wafer. We examined directly
the activity of this mixture, in which.the enzyme had been diluted
four times. It was subsequenily warmed to and maintained at 37°,
while at various intervals (he action was noted, every {ime by
allowing 2 c¢. c. to act upon mixtares of phosphate and amylum of
the oplimal reaction.

Time (minutes) durin . .

i e e R S o i

1 0 177.55 194.3 6.06 i
2 8.75 179.10 - —

3 16.75 179.10 193.0 6.00

4 41.75 179.10 - -

5 88.75 179.10 193.0 6.075

6 178.75 181.60 — -

1 268.75 179.10 163.0 5.975

The pg of the enzyme-mixture was 5.502.

6. 10 ¢. ¢. of phosphoric acid, 12 c¢. e. of sodium hydrate, 28
¢. ¢. of water. Addition: 25 c¢. ¢. of enzyme R - 25 c. c. of waler,
amylum solutions as in the preceding test; pz of the enzyme-mix-
ture 4.095.

Time (minutes) during

Reduction

Rotation

N whih the eryme MATS gt Cu. | mimotes | 2
1 0 1565.00 201.0 | 5.98
2 18 147.85 201.7 6.04
3 417.5 139.70 199.0 6.02

fresh enzyme-mixture made

?gethsea rsnaem;a)[_lli.nzyme Rand
4 0 162,25 199.3 6.03
5 138 113.10 201.5 6.08
6 313 56.30 203.0 6.03
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Our resulls show that the enzyme is not yet injured at pg= 5.5,
but is gradually injured at p; =—4.095. However, in view of the
relatively short duration (20 min.) of the digeslion-experiments de-
scribed above, the injury is, even in the case of pg —=4.095
only of small account. We conclude, therefore, that the inhibitory
influence . of the H-ions in concentrations beyond the optimal is not
attributable to injury to the enzyme.

In addition we have also tried to ascertain, whether the enzymic
activity is weakened in fluids made slightly alkaline.

¢ 10 c.c. of phosphoric acid, 27 c.c. of sodium hydrate, 13 c.c.
of water. Addition: 25 c.c. of enzyme R - 15 c.c. of water, all the
amylum solutions as in the preceding test, pgz of the enzyme-
mixture, 8.718.

Ne. \which the. ensyme-mixiure| Reduction | Rotation |,
was maintained const. at 37°

1 0 142.20 —_ —
2 29.5 147.35 — 6.02
3 55.5 147.35 - —
4 103.5 147.35 — —
5 255.0 140.70 - —
6 380.5 134.55 — -

Consequently no injury in two hours’ time with a faintly alkaline
reaction, pr = 8.718.

It is obvious, therefore, that in our experimenls injury to the
enzyme cannot have had any influence worth mentioning; on this
account we could not expect the optimal reaction to shift in a
prolonged digestion-test. Researches, each lasting 100 minutes, 5 times
longer than the other experiments, confirmed our supposition.

Further experimentation will have to reveal the relation between
the electric charge of ptyalin to its action, for which the iso-electric
point has to be determined ).

Summary.

For the action of ptyalin the concentvation of the hydrogen-ions is
highly important. In fluids in which the reaction has been deters

1) Cf. MicrAELIS Bioch. Zeilschr, Bd. 85, S. 386, Bd. 36. S. 280.
53%
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mined by phosphate- and acetate-mixtures, we found at pg = 6.00
an optimal reaction to the action of the enzyme. On either side the
action decreases, first slowly, afterwards rapidly. Even at pg =4.5
and 7.5 it is stopped almost completely. At these pz’s injury to
the enzyme is out of the question during the whole time of the test.
The place of the optimal pg does not change even when the digestion-
time is five (imes the ordinary duration. The influence of citrate-
mixtures is much more inhibitory than that of phosphate- and acetate-
mix{ures. The inhibition is energetic especially on the side of the
minor py’s. This accounts for the fact thai in cilrate-mixtures the
optimal reaction has shifted towards the neufral point.

Astronomy. — “On absorption of yravitation and *he moon’s
longitude.” By Prof. Dr. W. pr Srrrer. Part I

(Communicated in the meeting of November 80, 1912).

By absorption of gravitation we mean “the hypotliésis that the
mutual gravitational atlraction of two bodies is diminished when a
third body is traversed by the line joining the first two. If this
absorption exists, it will manifest itself by diminishing the attraction
of the sun upon the moon during alunar eclipse. Therefore, in order
to test the reality of our hypothesis, we must compute the pertur-
bations in the longitude of the moon which are a consequence of
this decrease of attraction, and compare these computed perturbations
with the well known deviations of the observed longitude from that
derived 1n accordance with the rigorous law of NEewroN. NEwcowms,
in the last paper from his hand (M. N. Jan. 1909) has put before
the scientific world the great problem of these deviations or “fluctu-
ations” in the moon’s longitnde. Tney can be represenfed by a
term of long period, for which Nrwcoms finds an amplitude of
12"95 and a period of 275 years (great fluctuation), npon which
are superposed irregular deviations (minor fluctuations), which amount
to not more than == 4" in Nuewcoms’s representation. Mr. I. E. Ross,
Nuwcomn’s assistani, has afterwards represented these minor fluctnations
by two empirical terms having periods of 57 and 23 years and
amplitudes of 2".9 and 0".8 respectively (M. N. Nov. 1911). The
outstanding residuals are very small: after 1850 they seldom reach 1.
In the years before 1850 the minor llucluations are not so well
marked, probably becaunse (owing to the smaller number and greater
uncertainly of the available observalions) too many years have
been combined in each mean vesult.
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The idea of explaining these fluctvations by an-absorption of the
gravitational attraction of the sun upon the moon by the earth
during lunar eclipses, has for the first time been publicly worked
out py Mr. BorrrLiNeer'), the investigation having been proposcd as
the ‘subject of a prize essay by the philosophical faculty of the
University of Munich. I had also towards the end of 1909 com-
menced a similar investigation, which was however of a preliminary
character and, as it did not lead to positive results, was discontinued
and not published. The publication of Mr. BorruingEr’s dissertation
led me to resume the investigation.

The decrease of the attraction of the sun upon the moon can be
taken into account by adding to the forces considered in the ordinary
lunar theory a pertarbing force acting in the direction of the line
joining the sun and the moon, in the direction away from the sun.
If the sun and moon are irealed as material points, this force is

! 2oy yl8
H:;cg_—_"“ :fla—(l-—?a)x. N €1
The meaning of the letters is:
m' = mass of the sun,
n’,a’ = mean motion and mean distance of the earth.
n, @ = the same elements of the moon (osculating values),
n,, @, = the mean values of these elements,
A, ' = distance of sun from moon and earth,
a=a,/a’ m=n'/n,. .

The effect on the elements of the moon’s orbit can be computed

by the ordinary formulas. The perturbing forces are:

radial force  H cos 8 cos (§—8&'),
transversal . H cos B sin (—8",
orthogonal »w — Hsing,

where § and § are the selenocenitic longitudes of the earth aud sun,
and 3 is the selenocentric latitude of the sun, the moon’s orbital
plane being taken as fundamental plane. For the instani of central
eclipse we have §—& = 0. The transversal force therefore changes
its sign during the eclipse, and its {otal effect is very nearly zero.
The effect of the orthogonal force is entirely negligible. In the
expression of the radial force, we can put cos §—8)=1. We have
further with sufficient accuracy
B=s, §="w4180° & =u

1) K. P. Borruizger. Die Gravilationstheorie und dic Bewegung des Mondes.
Inaugural-Dissertation (Miinchen), 1912.
See also “The Observatory” November 1912, -
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where
¢ == the moon’s latitude,

w, w’ == true longitudes of moon and sun.

The radial force thus becomes H coss. It is easily verified that the
mean motion (whose perturbation must be #wice integrated to give
the perturbation in longitude) is practically the only element which
need be considered. We find

d 3es 3 "\?
l:_mesznv H o0 s — — n, m? (1— 2a) (a) esiny
di a1 _¢ Vize

where v is the moon’s mean anomaly. For the excentricity ¢ we
must use the osculating value. The mean value will be denoted by
e,, as for the other elements.

During the eclipse we can for the coordinates and elements of
the moon use their values for the epoch of central eclipse. We then
find for the addition to n as the effect of one eclipse:

cos s, (2)

+1

+T
P dn i@ 8 mt 1—2¢ fa\*a, -esinv i@ 3
n = —_— = - “m- — .
‘ i W \F) A v f wdt, - )
-7 T

where the time is counted from the middle of the eclipse, and 7
is the half duration.

Now assume the absorption of gravitation to be proportional to
the mass of the absorbing body. We have then 2 — u.y, where yis
the coefficient of absorption and g the mass of that part of the
earth that is traversed by the “ray of gravitation”. This ray of
gravitation, i.e. the infinitely thin cone
enveloping the sun and moon, which
are considered as points, by its motion
during the eclipse cuts an infinitely
thin disc out of the body of the earth.
In the plane of this disc take iwo
coordinate axes, of which the axis of
 is parallel to the line joining sun and
moon at the instant of centrality. If
then ¢ is the density and &, and =,
ave the points where the “ray” enters and leaves the earth, we have

]

oda.

4u
Further we have
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? dw
dy = —.r—.d
Y=R"a
or
1+ a)dy
dt —
dw
7‘—
dt
Consequently :
T 1
fdt ( + e )ff de dy.
‘7

The double integral must be taken over the entire surface of the
above considered section of the earth, and represents the mass of the
infinitely thin dise. Its value therefore depends on the distribution of
mass within the body of the earth. Like BorrLizeur 1 take the dis-
tribution according to WIECHERT, i. e. a central core of density d, = 8.25
surrounded by a mantle of density d, = 3:30. The vadius of the core
is B, =077 R. If we call D the radius of the above considered

m

dise, we can take D =R '1_10,—2’ where 7', is the half-duration of the

eclipse computed with the mean elemenis of the moon’s orbit, i.e.
the value which is given in Oprorzer’s Canon der Finsternisse, ex-
pressed in minutes of time. The number 112 is the maximum of
this half-duration.

We then find easily, in the case when the section is entirely in

the outer mantle
. T,V
J‘iﬁ) da dy = .Rldl (‘ﬁiz) N

and when it also traverses the inner cove (i.e. for 7, > 71.5):

dody — m R* 2.5 — 0.62
(foe=nt fos(32) o

Now put, in the first case

J, =100 (112

and in the second case

7,
=100 |2.5( =% ) —0.62 |,
Jr=100 335 ) 0|

The function J, which is thus defined, is tabulated in Dr. Borr-
LINGER's dissertation, with the argument 7. We have now
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7 (1—}*—‘a)3rR2(7~/ -
fxdt_—.:————jw—J—Jo P 7
~r 100 r—d—t _
and this value must be subtituted in the formula (3)..In doing
this, we can either express the coordinates and velocities in the
osculaling elements, or the latter in the former, by the well known
formulas . -
1 1d-ecosw dr _ angsinv
=T a(l—e®) ’ 36*7_'1':_'67
7® _cﬁ, =a'n VI —e
dt
We then find
a\? @y’ R, ¢sinv

0= —qJ, (7—,-) coss-aqu («1——+—-———eoosv), N )]

or

, dn
' @," 1Ny T —d—

a\? —— ¢
dn = qJ, (;;) €os s ‘/1~—6?_7;T' N ()
dt
_ Bagm® (1—a) :rrR“ifi
: = 100a,a
We can with sufficient accuracy *) take in the formula (5) a,*n, = a’n,
and in the formula (8)Y I—e’ ==V'1=—¢,’. The formulas can, however,
not be used for the computations, unless they are so developed as

to contain only such quantities as can be easily derived from existing
tables.

where we have pul

Yy The formula (6) is derived by Borruiveer from the wis vive integral. In this
derivation lLe introduces a couple of approximations, which are unnecessary, and
which ave the reason why the factor V' T—e? does nol appear in his formula. On
his page 12 he takes tan i for sani. If we retain siné and replace it by its value
1 dr .
v the square root drops out of the formula, and consequently the approximation

at
introduced on page 13 in the development of this same roof is also unnecessary. We

3 — d .

then find A% = — —— T Now we have V' 1—¢f =2 ald and 7 = s. BorrLin-
a*n  dt dt F
3VT—¢ dn
At i J, and his formula
¢ dip

(I) on page (18) then becomes identical to our formala (8).

%) See however the footnote on p. 815,

ger’s formala (I) on page 13 thus hecomes Ln=
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The coordinates of the moon are developed in the lunar theory
in series depending on the four arguments /, I, /7 and D, where
{ and I’ are the mean anomalies of the moon and sun, F the mean
argument of the moon’s latitude, and D the difference of the mean
longitudes of the moon and sun. For the mean opposition we have
D =0. The other three arguments are contained, under the names
of I, II and Il, in Orrorzer’s “Tafeln zur Berechnung der Mondfin-
sternisse”. We have

l ——iII Z’——g—I aF -—E(JII——3766)
S T R T 110 ’

Denoting the mean longitudes by 2 and A/, and the true longitudes

by w, w’, we have .
w=21-4 dl 4 A, w = A J- dl,
where

5
gl = 2esinl + i ¢* sin 20 — y* sin 2F

|
represents the elliptic term («/” :sin“gi), and AZ the sum of all

perturbations in longitude. The perturbations in the motion of the
earth can be neglected. Then, denoting the values for mean opposition
by the suffix 1, we have
A,—A, =180°, w,—w,' = 180° 4 dl, + Ak, — dl';
for the instant of central eclipse on the other hand we have
w—w' == 180° — y®sin 2F.
We now put
A =@w—w")— (w—w)=4d, + D2, — dl' + y*in 2F,
Then, n (1—c) and n (1—g) being the mean motions of the perigee
and the node, we have, neglecting perturbations '):
© :Z—:J: n (1 - 2ee cos I - ;2) ce? cos 2L — 2gy® vos 2F),

du' g
pWe=-—=mnm(l 4 2 cosl +..),

dt

The time elapsed between the epochs of mean opposition and
tentral eclipse is then
A
p—u
At the instant of central elipse we have thus
I =1, 4 nelrt, v =14 dl 4- Al

Nt — —

!) See however the next footnote.
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where Al=— AL — Aw, Ao being the perturbation in the longitude
of the perigee. Further we have, to the order of accuracy here-
required,' o/ = dl; — 2e¢A cos [. Therefore, neglecting the difference
between the perturbations A/ and A, at the two epochs, and puttmgﬂ
c=(1—m)¢’, we find

v =1, + 0 — y* sin 2F —Doo—(E—1A. . . . (7)

Now we have approximately /' = [' — md4, and also ¢’'—1 differs
not much from m, therefore, if Aw is neglected, we find from (7)
v—v' =, —I,'—y? sin 2F, or w—uw' = A, —A,'—y" sin 2F,

The term y?sin 2F is the reduction from true opposition to central
eclipse. Consequently the meaning of these formulasis: The difference
of the true longitudes of moon and sun at true opposition is equal
to the difference of the mean longitudes at mean opposition.

In the expression for A, which only occurs multiplied by the
small factor ¢’—1, we can neglect all perturbations except the
evection. This latter is very easily applied by replacing ¢, in d/ by

6
7 (see e.g. Tisskranp III p. 134)."We have thus

A= - esin l, — 2¢" sinl,’.

We must now develop the quantity

a\? esinv
K= ] coss ———.
r 1-+4-ecosv

where for v we must introduce the value (7). We can take with

sufficient accuracy
I\ 3
(;)\: 14-2¢ cos I

Further we can take coss =1, and we put
De = 3x cos @, e,Aw = B sin @,
It appears, in fact, on investigation that all perturbations which
need be considered, are of this form. We then find easily

"1 6
Ke=e;sin l - 'JZ + 7 (c’—l)] e,? stn 21, 4 (¢'+1) e¢' sin (4, +1,') + Zsin (,-2).

The perlurbations Ae¢ and Aw are not as such contained in the
existing lunar theories. I have therefore derived them, neglecting all
perturbations that do not exceced 0.01¢, The only remaining term
is again the evection. Those terms in the perturbing function, which
in longitude give rise to the variation, produce a large perturbation
in ¢ and o, but its argument is @ =/ = 20, and consequently the
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corresponding term in K is zero, since 2D, = 0'). The evection-term .
has the argument = 2/—2D. The resulting term in X therefore
has the same argument as the principal term. Finally I found in this way

K =¢,{0.858 sin I, — 0.031 sin 21, + 0.033 sin ({, 4 1,'}
= 0.0471 fsin I, (1~-0.072 cos 1,) 4 0.039 sin (I, + 4)} - . (8)
In" order to verify this result, I have also computed the formula
(6). The values of & and w2 expressed in the arguments /, /, D

and F were taken from BrowN’s lunar theory. From these we easily
da dw

derive , and T
We must then substitute for the arguments their values
l=1, + enbot D = 180° 4 (1 — m) nAAt
'=1l'+ mn At 2F = 2F, + 2gnlit

The . value of A¢ is given in Orrorzer’s “Syzygien-Tafeln fur den
Mond”, page 4. The value there given is the interval of time between
mean and true opposition. To get the value for the epoch of central
eclipse it is sufficiently accurate to omit the term +-0.0104 sin (29’ +2w’).
The interval thus computed must then be reduced to our unit of time
(see below). The developments, which are rather long, finally led to
the following formula, where nothing is neglected that can affect the
third decimal place:

dn
i
aﬂzn"_.c—i?u_’- coss = 0.15404 {0.8075 sin I, — 0.0300 sin 21,
(_) + 0.0800 sin (I, - ') — 0.0020 sin (21, + L,)
dt — 0.0088 sin I', — 0.0050 sin (I,—1')

+ 0.0016 sin 2F, — 0.0055 sin 2F, cos{,
+ 0.0114 cos 2F sinl . . . . . . . (9)

Eclipses occur near the node. Consequently sin 2F < ). Thus, if
we neglect all but the first three and the last term, none of the

1
neglected terms exceeds 530" Further cos 21 is always included
between the limits 1 and 0.866. Therefore if we take cos 2F, = 0.96
1
throughout, we cannot make a larger error than about m of the

last term. This latter then becomes 0.0110 sin [, and can be added
to the principal term. We thus finally get the formula

1} The influence of the variation on the osculating values of @ and #, is consi-
derable, but it is the same in all oppositions, so that a*n is a constant, The same
thing is true ol the error which is produced by our taking in g, in the computation
of Af, the mean instead of the osculaling value of 7.
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In=— g, J, fsinl, (1~0.074 cos L,) -+ 0.087 sin (}, 4 4,)}, . (10)
where ) (

g, = 0.8185 X 0.05404 X ¢ V' 1—¢,* = 0.04473¢.

The agreement with (8) is very satisfactory ).

We adopt as nnit of time the mean interval between two succes-
sive eclipses, i. e. 6 synodic months or 177.18 days. Then taking
as units ol length and of density the earth’s radius and the density
d, of the outer mantle, we find i

g, = 1262"y

Calling A the coefficient of absorption in the C.G.S. system of units,

we have y = Rd, A, and therefore
g, = 2656."10°.4.

The formula (10) has been used to compute the value of dn for
all eclipses occurring in Oprorzer’s Canon between 1703 and 1919.
The coefficient ¢, was omitted, the results are therefore expressed in
g, as unit.

Eclipses occur in groups of six. The interval of time between two
successive eclipses of a group is 6 synodic months. In some groups
there are only five or four eclipses: we can then still treat the
group as consisting of 6 eclipses, if for the missing eclipses we
agsume dn == 0 *).

Between each group and the next one or two eclipses are missed
out, the interval of time between the last echpse of one group and
the first of the next group being in those cases 11 or 17 synodic
months instead of 12 or 18.

Five groups make a Saros of 223 synodic months = 6585.2 days
=18.03 years.

The interval of 6 synodic months being the unit of time, the
perturbation in 7 is derived by simply adding up the individual
values of dn, I.e. forming the first series of sums. Then to get the
pextmbatmns in longitude we must again form the successive sums
of these values of », after having filled in so many times the final
value of 7 of each group as there are empty places corresponding
to the eclipses dropped out between that group and the next, remem-
bering however thatr for one of these missing eclipses we musi only
take °/, of this final value.

1) The difference in the multiplier oulside the brackels is produced by the neglect
of the influence of the variation in (8) (see preceding footnote).

) In the cowse of time eclipses drop out at the heginning of the groups and
new eclipses appear at the end. The limils of the groups are thus displaced
within tjie Saros. During the inlerval of two centuries treated in this paper, it is
not necessary to take account of this displacement.
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In each of the two series of sums we can slart with an arbi-
irary constant. )

When the compuiations were carried ont it appeared that always
the values of dn summed nup over a complete Saros gave a very
small total, while the perturbation in longitude showed a very marked
periodicity, with the Saros as period.

Accordingly I have divided the tolal perturbation inlo two paris:
the periodic Saros and the remaining non-peviodic part. I call An,
and Al, the increase of the mean motion and the longitude during
the pth Saros. if the initial constants for both series of sums are
taken zero. The purely periodic part of the perturbation during that
Saros is then derived by taking for the initial constant of the first
series of sums — i.e. the initial value of the perturbation in n —

1 1
a value n, determined from the condition 37F N+ HA=0 (37—6—

is the length of the Saros in our units of l.ime). The perturbation in

longitude at the end of the p*: Saros is then:
) 1
b= A, + 5 Al 87

k=1

where An, and A), are the initial constants of the two series
of sums, i.e. the values of n and 2 at the beginning of the first
Saros. Pulting now

Ma -

p D, + ‘% (p — k) An,;.z ,
=1

1
Ll = A2+ (DA A) 37F L = Ay 4 (L),

1 1
37? Dng= — A4+ 5 Awp -+,
we have: ’
0 4 2
hy==A0), + pr, + ‘5P Ay +l§’ (DAY Ii“(p——/c) (A ), (11)
which formula still contains two arbitrary contants Al, and »,. If

1
for AL and Ajp we choose the mean values of Alr and 37—(—5—Ank,

the terms under the signs = are small and of varying sign. The
term containing p* is of the nature of a secular acceleration. If we
denote the time expressed in centuries by v, then p is equivalent
to 5.55 =, or §p* to 15.4 <%

The individual values of dn will be given in the second part of

this paper. Table 1 contains the values of Au, A2, Apand A A for
each Saros.
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TABLE I -
Year {Saros| Ln Lo Ly L4 N s —116% Newc.
1703.0 41091 | — 628 |- 3.9;— 54
I — 1.5 | 41839 | 4103 | —756
1721.0 0 0 0l— 0.4
§ — 2.3 | +2180 | 4297 | —415
1739.1 — 647 | + 690 |+ 4.3 |+ 4.6
Il — 2.2 | 2209 | 4300 | —296
1757.1 — 878 | +1414 |4 8.8|+ 9.1
v —16.9 | 42197 | —246 | —3Y8
1775.1 — 911 | 41954 |+12.2|411:5
A% ~11.8 | 42415 | — 57 | —180
1793.1 -— 972 | 42084 ( +13.0({+12.9
VI — 8.3 +2565 |4+ 14| — 30
1811.2 — 040 | 41925 |412.0] 11,7
VII |~ 6.2 | 42537 | 4152 | — 58
1829.2 — 862 | +1430 |+ 8.9 4 8.7
. VI | —11.1 | 42627 | — 30 | 4 32 2| 705 |4 5.0 4.1
1847. — 54 795 5. 4,
IX —15.7 | 42874 | —202 | -}-281
1865.3 - 3|— 3 0l—1.1
X —14,8 | 43200 | —168 | -+605
1883.3 -+ 658 | —1061 | — 6.6 — 6.1
Xl | —~21.4 (43135 | ~413 | 4540
1901.3 41086 | - 2734 | —17.1|-~10.2
! Xl | —~5.3|-3269 | 4-185 | 4674
1919.4 1237 | —5066 | —31.7

We have Ajp=——382, A2=- 2595. If we neglect the term
in p*, and choose the values of A7, and », s0 as to make 2, =0
for 1721 and 1865, the perturbation in longitude given under the
heading A, results. If we add the term } p*Aw, at the same time
altering the initial constanis so that the perturbation remains zero
at the same two epochs, we get the values 2,%).

The reliability of these vesults of course depends on the reliability
of the individual valnes of dn. The values of [, in two successive
eclipses differ by 155° consequently the values of dn have opposite
signs and nearly destroy each other. Therefore, to arrive at a toler-
able accuracy in the final perturbation in longifude, it i3 necessary
to compute the individual dn to a much higher accuracy. The sum
of the neglected terms in the series (9) will generally not exceed
1/i00s O in some cases perhaps /i, of the whole. The maximum
value of dn is about 190, we may thus expect on this account an
error of one, or in extreme cagses, 2 units.

The chief source of uncertainty is the function ./,. This function
contains the hypothesis regarding the distribution of mass in the

1) In the original Dutch there was a mistake in Lhe values of A, and Ay, which
has here been corrected. The conelusions remain the same,
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body of the earth. If a distrubution differing from WircHERT'S is
adopted, the function ./, is considerably allered. What is the effect
of this on the final result can only be decided by actually carrying
out the compuiation with a different hypothesis. This has been done,
as will be relaled in the second part of this paper. Herve it must
suffice to state that, although there arc some differences, the general
chavacter of the vesults is remarkably similar to those of the first
computation. It may be mentioned that also my preliminary inves-
tigation of 1909, though based on a totally different and only
roughly approximate formula, gave results of the same character.

The bypothesis that the sun and moon can be treated as points, is
also, of course, only approximate, and 1t1s very cufficult to say in how
far it affects the rehability of theresults. It seemed however better, at
the present state of the question, to rest content with this approsimation.

The function ./, however gives rise to errors in stil another way.
It is tabulated with the half-duration 77 as argument. This is taken
from the Canon. where it 15 given in minutes of time, and can thus’
be a half, or in some cases perhaps even a whole minute in error.
The resulting error in dn may occasionally amount to 4 units. Thus,
neglecting the uncertainty introduced by the hypothesis regarding
the distribution of density, the purely numerical error in dn may
reach an amount which can be taken to correspond to a mean error
of say 4 3 units. The mean error of the perturbation in n after p
eclipses is then 4+ 3}/p. For a Saros (30 eclipses) this gives -+ 16.
Also the m. e. of the second sum (i. e. the perturbation in longitude,
it we neglect the fact (hat sometimes the interval between succes-
sive echpses differs from the mnormal value) 1s found to be
+ L V6 p (p+1) 2 p+1). For the Saros this becomes == 292.

It thus appears that all the values which have been found for
An might very well be due to accidental accumulation of the inaccu-
racies of the computations. On the other hand the circumstance that
they have the same sign throughout might lead us to consider them
as at least partly real; by which 1 mean as necessary consequences
of the adopted hypotheses. The values of 4,2 also are not so large
that their veality ean be considered as cerfain, but here also the
systematic change with the time may be an indication of their being
not entirely due to accidental errors of computation. The only thing
thal can be asserted with confidence is that the values of A,» and
Ad, arve small, and consequently that the non-periedic part of the
perturbations in longitude has a smooth-running course: no other
irregularities with short periods can exist in the longitude than those
which arve contained in the periodic part.

-
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This periodic part is very nearly the same in all Saros-periods.
It will be given in detail in the second part of this paper. To show
its general character I give here in Table 1I the mean for the last
five periods VIII—XII (1829—1919), which are the most imporiant
for the comparison with the observations. The first column contains
the time f counted in synodic months from the beginning of the

TABLE IL

t +s |Form.|t | s |Form.lt | /s Form.|t | s [Form.[ t} 7

41 |-521| - 523| 88/—573{ —546 [129— 34| — 36 |176/4-312| - 360
— 15| — 84|47 |— 560| ~572| 94|—557 —491 |135|+ 64|+ 45 {182/+311} +356
12| —143| - 16753 |~578| —608 [100|—545| ~ 426 |141/4-133) +120 [188(4-821| 337
18 | —'300 | —359 | 50 |—654| —631 | 106362 —354 |147/-1-237| 4208 }194| -+ 305| 4306
24|~ 321 | —331 )65 |—~538) —640 |112|--319| —273 |153|+-239| 247 [200|+ 240 ~+262
30| —441 | —406 | 71 |—603| —635 {118|—216| —190 | 159|262 -+-295 [206|4-272| 206
36 | —487| —474 | 77 |—582| —616 [124)~ 117) 106 [165+-316| -+-330 [212|-174) +140
83 |—571| —583 171|4-314( 4 352 218/ 76| -+ 66

> O
[l
[=3

Saros. This periodic perturbation can be represented wifh unexpected
accnyacy by the formula:

2 140—500sin | 2t _ 1626 12
g = — - i .. (12

The values computed by this formula are given in the table under
the heading “Form”. The constant term, of course, is unimportant,
and could be added to the arbitrary constant of integration AA,. It
would almost entirely disappear, if the Saros was begun at the end
of the third group, say at about ¢ =121. If the time is expressed
in years, the formula becomes

sg== ~ 140 + 500 sin [19°.967 (+—1900) -+ 137.°1} . (19)

The contse of the perturbation in longitude is remarkably similar
in the different periods, the.irregulavities, i.c. the deviations from
the sine-formula, recurring in each period at the same values of ¢
The coefficient of the sine on the other hand varies from one period
to another. For the first eight periods it oscillates between about
350 and 400, in the later periods it increases up to about’ 600 for
the Saros XII (1901--1919),
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Comparison with the observations. The excesses of the observed
longitude of the moon over the longitude as compuled by pure
gravitational theory, which have been given by Nuwcoms, must still
be corrected by the differences between the new lunar theory of
Brows and Hawnsen’s theory which has been used by Numwcoms. The
corrections necessary on this account have been collected by
Barrermany ). Out of the 43 terms given by him we need only
consider the terms of long periods (14)—(22) and (43). For the
discussion of the non-periodic part of the perturbation in longitude
we must take account of the terms (16} to (19), which have periods
between 128 and 1921 years®). I have, however, not applied these
terms, the reality of the non-periodic part being too uncertain to
warrant much labour to be bestowed on it. For the diseussion of
the periodic part, we have- to consider the terms (14), (15), (20),
(21), (22) and (43), which can be written as follows:

(14) -+ 0".48 s:n 40°.67 (¢ — 1894.3) peuod 8.84 years

(22) +0 135030 35 (¢ -1894.6) , 1187
20) -+ 0 .24 sin 20 .66 (¢ — 1890.7) , 1741
L (@3) 0 .56 519 .35 (1 —1892.2) , 1860
. (15)" 40 .13 s 10 34 (t ——1870.4) . 8L76
@1) 40 28sin 9 .69 (¢t — 1877.6) . 8714,

The therm (43) coutains the correction given by BATTERMAN in
his “Zvsatz”. It is very similar to the term which was already
applied by Ross, viz: — 0".50 sin & = -+ 0".50 sin 19°.35 (: — 1894.8).
These corrections must be added to the tabular longitudes, or sub-
tracted from the residuals.

Considering now first the non-periodic part, it is very remarkable
that the values of 4, as given in Table I are between the years
1703 and about 1894 almost identical to Numwcoms's great fluctuation,
if 160 of our units are taken equal to 1". This is at once apparent
from the last two columns of table I, of which the last contains
the great fluctuation according to Nuwoons. Therefore, if we assumed
the absorption of gravitation to be the irue explanation of the great
fluctuation, we should have

160 X 1262" .y =1"  y=1510""  1=25.107"".

However, after 1894 the similarity ceases. The agreement' before
that date depends on the assumption of the reality of the values
vl RN
1) Beobachtungs Ergebnisse der K. Sternwarte zu Berlin, N°. 13, 1910.
#) The most important of these is a correction of 0.”85 to-the’ coefficient of tlte
well known Venus-lerm of 273 years period. ca '

54
Proceedings Royal Acad. Amsterdam. Vol. XV.
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which have been found for An and Al especially the negative
value of the mean Agv. This latter is equivalent to a secular accele-
ration of which the coefficient would, with the above value of ¢,
become — 37". This, of course, is entirely inadmissible and conse-
quently it is not possible to consider the value of A,v asreal unless
we take for ¢ such a small value that the whole effect becomes
entirely negligible *). The partial agreement of 2, with the empirical
terms of long period can therefore not be considered as a proof for
the existence of an absorption of gravitation.

We now come to the comparison with the observations of the
periodic part of our computed perturbation. This comparison was
ounly carried out for the time after 1829. From 1847 to 1912 I had
the advantage of being able to make use of a new and careful
reduction of the Greenwich méridian cbservations which Prof. E.
F. van pe Sanpe BaxmuyvzeN most kindly placed at my disposal.
Prof. Baxmuvzen applied to the meridian observations the correection
for the difference of right ascension of the moon between the epochs
of true and of tabular meridian passage, for those years in which
this correction had not yet been applied at Greenwich. Then the
systematic corrections, which in his former reduction (These Pro-
ceedings, Jan. 1912), were taken constant over the whole interval
from 1847 to 1910, were derived anew. The following arc the syste-
matic corrections finally adopted by Prof. Bakmuyzen for the obser-
vations of the limb :

1847—48 49—57 58—68 69—78 79—98 1899—1911

0".00 —1"61 —0".83 —0".93 —0"62 -40".39

For the observations of the crater Mosting A the correction was
derived in two different ways, which gave — 0".22 and 4 0".34
respectively. The adopted correction is 0".00. Prof. BarRUYZEN then
formed the means of the meridian observations of the limb, of the
crater and the occultations, the latter being taken from Nuwcoms’s
paper, but corrected by --0".18, for reasons explained in his
paper of Dec. 1911. The correcled results of the meridian observations
and the means thus derived are given in Table VII in the second
part of this paper. From these means I then subtracted the theoretical
corrections given by ‘BarrerMany and quoted above. The resulting
corrected means which are thus the excesses of the longitude of
the moon over the pure gravitational value, diminished by Nuwcoms’s
great fluctuation, were plotted and a smooth curve was drawn through

1) In my former investigation I was led to a similar conclusion (see “The obser-
vatory” Nov. 1912 page 892).
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them. From this curve were read off the values given below in
Table IIl under the leading “Obs.” If these are compared with
the computed perturbation, of which the periodic part is also given
in the table under the heading A, there appears at first sight to be

TABLE I
Obs. . Obs. Obs.
Year | Obs. | Js | 4 fYear |Obs.| Js | Js |Year Obs.| % | s
500 500 500

1829 |—073] + 20| —0 3) 1865 | +3"8|-+ 60|+3'7| 1892 | —2"8|—340 |- 21

35 |-0.8/—550|+0.3| 68 (42.4/—500| 3.4] 95 |-3.1|+300|—3.7
41 |—0.5| 4 60{—0.6] 71| 0.0/ -630|+1.3] 98|—2.0/+380|—2.8
47 |+1.3,+ 10|+1.3[ 74 {—1.8/—350| 1.1} 1901 |+0.5|+ 40!+0.4
50 |4+1.1|—440|+2.0] 77 |—2.5| .230|—3.0] 04 |+1.4|—560|+2.5
53 |1.1|—550| +2.3] 80 |—I.4]+330]—2.1| 07] 2.7|—640|+4.0
56 |+2.0]-330|-+2.7| 83 |—I1.4|+ 50 —1.5| 10 |+4.4|—350|4+5.1
50 [+3.014170]+2.7| 86 |—2.2|—580|—1.0] 12| 5.1+ 70|:5.0
62 |43.8(4270(+3.3[ 89 |—3.0(—630(—1.7

a certain similarity in the course of the two curves. Mr. BorTLiNGER.
whose results on the whole agree with mine, has been led by this
similarity to consider the existence of an absorption of gravitation
as being established “mit guter Wahrscheinlichkeit”. In fact, from
about 1840 to 1868 the observed deviations can be very satisfactorily
represented by about -5%(—)294—-& smooth curve, which latter then
must either be ascribed to the non-periodic part, or remain unexplained.
After 1868, however, the agreement is lost. We have again a partial
parallelism between 1886 and 1891, and also the increase after 1908
coincides with an increase of 7, but it is impossible so {o represent
the observed, values over the whole interval 1829 to 1912 by 2
multiplied by a constant coefficient, that the remaining differences
form a smooth curve. Still I think we cannot consider the probability
of the existence of an absorption of gravilation as established unless
the residuals remaining after applying the perturbation produced by
this absorption (and which then remain unexaplained), are small and
form a smooth curve, or at least arc less irregular than the original
fluctuations. The values of Obs. — 47, however, whatever value we
adopt for %, always are considerably more irregular than the observed
values themselves. The sudden fall between 1868 and 1874 coincides
54%
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with a horizontal stretch (minimum) of ;, the quick rise from 1897
to 1906 corresponds to a decrease of 2;.- The effect of absorption
cannot have another period than 18.03 years, while in the observed
fluctnations periods of different length are certainly present.

It appears to we, therefore, that so far we bave no reason to
consider the existence of a sensible absorption of gravitation as proved,
or even as probable.

(Zo be continued)

Astronomy. — “On Absorption of Gravitation and the moon’s
longitude”. By Prof. Dr. W. pE Sirrer. Part 11

(Gommunicated in the meeting of December 28, 1912).

The conclusions derived in the firsi part of this paper are entirely
confirmed by the second computation, which was already referred to
in that part, and which was based on a different hypothesis regarding
the distribution of mass in the body of the earth. I now assumed a
core of density d', = 20 and radius R',=0.55 R, surrounded by a mantle
of density ¢, == 2.8?). In the same way as before, I put, for T, < 93.5

J) == 84.7 —.°—>
112
and for 7T, > 93.5

71 2
"= 84. d{— ) —4.271.
J, 4737 (112) E

The multiplier 100 has been replaced by 84.7 =100 d,'/d, in
order to get the same value of ¢ for both computations. The result’
of the introduction of this new distribution of mass instead of the
formerly assumed one is {o increase the amount of absorption for
long eclipses and to diminish it for short eclipses. The ratio J,'/J,
varies from 0.51 to 1.25. It is smallest for those eclipses in which
with Wizcurrr’s hypothesis the core also contributes to the absorption,
while in the new hypothesis the ray of gravilation is situated entirely
in the manile. For the purpose of computation this ratio J,'/J, was

tabulated with the argument 77,. We have then
!

dn' = -2 dn,
0

1) This lLiypothesis has been suggested by recent investigations by Mr. GuTENBERG,
which were kindly communicated to me by Dr. BorriNesr Mr. GUTENBERG finds
that the real distribution of mass is included Letween the limils given by .y = 20,
3 =28 and 3, =8, 3 =4.4, It being my intention to investigate the effect of
a change in the funclion Ji,"I purposely look the upper limit, which differs most
from WIECHERT's assumption. o
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With this value of dn' the computation was then carried out in
exactly the same way as with dn. Notwithstanding the considerable
difference between the functions J,' and J, the geueral character of
the results of the two computations is the same.

The non-periodic part of the perturbation in longiiude derived from
the new computation is given in Table IV, which is entirely similar
to Table I of Part I. We now find Ap' = — 230, A2 = -+ 2939.
Neglecting the term — ip* A, v and causing the perturbation to
vanish for 1721 and 1865 by an appropriate choice of the constant(s
of integration, we find the values given under the heading 4. If the
term containing A’ is added, we get the value 2,. The general

TABLE IV.

Year ||Saros| An' | AX | Ap' | A2 || A | 2

1703.0 + 747 | — 288
1| —15.2 | 41727 | —334 | —1212

1721 0 0 0
| —10.4 | 4-2318 | —156 | — 621

1739.1 — 400 | 4 315
Il | —21.0 | +2346 | — 550 | — 593

(157,1 —1180 | 4 272
IV | -+ 2.8 | 43300 | +334 | -+ 361

1775.1 —1322 | -+ 403
V| —12.3 | +3141 | —227 | 4 202

1793.1 —1361 | 4 476
VI | — 0.3 | 43380 | —115 | 4 441

1811.2 1388 | +- 337
VI | — 1.0 | 43466 | +103 | + 527

1829.2 1444 | — 64
VI | +14.¢ | -1 3896 | 4751 | + 957

1847.2 — 81| — T2
IX | — 1.9 | +3452 | +160 | + 513

1865.3 —~ 3|— 3

X|—9.7| 43120 | —130 | + 181 .

1883.3 + 699 | — 336
Xl | —19.6 | 42494 | —498 | — 445

1901.3 + 645 | —1655
‘ XNt |+ 9.2 12630 | <572 | — 300

1919.4 + 229 | —3566

character of the perturbation is very similar 10 that of the first com-
putation. But the correspondence with the “great fluctuation”, which
was apparent in the first computation, does not exist here.

In the periodic part the agreement belween the results of the two
computations is even more complete.

With reference to the reliability of these results it must be remarked
that the function J, has a wider range of variation depending on
7, than J,, and consequently the possible error arising from the
fact that 7, is only known to whole minutes is in the second com-
putation much larger than in the first. Accordingly we find that the
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values of Ay in the second computation are considerably larger
than the corresponding values of A in the first computation. Also
the values of A4 are larger than those of A,7. We are thus led
to the same conclusion as before, viz: the reality of the non-periodic
part of the perturbation is not assured, and the only thing that can
be asserted with certainty is thal the non-periodic part cannot have
any considerable irregularities and that no other periods are possible
than the Saros of 18.03 years.

The following tables contain the principal quantities occurring in
the computalions. Table V gives for each eclipse the valnes of 7,
l,, I/ and those of dn and dn’ computed by the formula (10). The .
first column of the table contains the time ¢ counied in synodic
months from the beginning of the Saros. The time = 223 of any
Saros is, of course., identical to the time =10 of the next Saros.
The arrangement of the eclipses in groups of six is very clearly
shown. The several groups begin at

i = 0, 41, 88, 129 and 176
and end at
t = 30. 77, 118, 165 and 212,

Table VI contains the purely periodic part of the perturbation A,
" and ;' according fo the two compulations. The similarity between
the different Saros-periods is very striking. In the mean motion this
similarity is even more apparent than in the longitade. The mean
molion is not contained in the table. bul can easily be derived from
the longitades, as il is the difference of two successive values of 2,
(or 2. We see from this table that in the first computaiion the
amplitude of the periodic part is fairly constant for the first eight
periods and begins to increase after the eighth Saros. The difference
between the extreme values of 2 oscillates between 700 and 830
in the periods I to VIII, and then gradually increases up to about
1200 for the Saros XII. In the second computation the difference
between the exireme values of ' is more constant and varies between
about 950 and 1100.

The remarkable agreement beiween the results of the two cowmpu-
tations justifies the expectation that (he general character of the per-
turbations 1n longitude produced by an absorption of gravitation will
be sensibly the same for any assumed distribation of density within
the body of the eartlr. which is «t all within (he limits of probability.
The conclusions arrived at in Part 1 are thus not restricted to the -
particular hypothesis which was there introduced. bnt lave a much
wider bearing. ,
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TABLE V.
Saros I Saros I
t Year |Ty| 4 |14] din on' ||Year [Ty 4 |[IY| 9n on'
1703.0 | 83223°2| 4 58.2|4 34.0[1721.0] 83 2204 | T4| -+ 55.5/+ 33.3
03 5 |108] 18.1178| — 49.2|— 55.1|| 21.5105 15.2]189]—— 37.0/— 37.7
12| 04.0[112173.0 [353| — 26.8/— 33.5|| 22,0112/ 170.1| 4/ — 36.1|— 45.1
18|| 04.5(102{327.9]167| & 71.01+ 64.6| 22.5/105|325.0|178| 4 84.04- 85.7
24|l 04.9| 78122.8(342| — 56.3— 37.2| 23.0[ 79| 119.9{353| — 60.6|— 39.4
30
41 || 17€6.3 | 74/ 201.6 |117] 4 20.4| - 15.5([1724.4| 65| 198.8 |128| + 12.3]+ 10.5
41|| 06.8| 84/356.6(202) - 7.2]4+ 4.2| 24.8( 82|353.7(302| + 10.0{ F 6.1
531l 07.3 {112 151.5 |106{ — 90.6|—113.2| 25.3[111]148.6{117| — 97.1]—118.5
59| 07.8 |112]306.4 281 +-153.0]4191.2 25.8l112]303.5 |202] -159.5/+ 199.3
65| 08.3|76/101.3| 05| — 55.2/— 38.6] 26.3| 82 08.4|106|— 73.0|— 45.1
7| 08.7] 72/ 256.2 [270{ 4 43.0\+ 34.8|| 26.8| 76| 253.4 |281|+ 54.5|+ 38.1
71 ]
88|l 1710.1 | 93]335.1| 45!+ 43.4|+ 22.1/1728.2! 92!332.2| 56|+ 46.214+ 24.0
04| 10.6|91]130.01220] — 84.3— 44.7|| 28.6! 85| 127.1 [230| — 70.7|— 41.0
100l 11.1(111/284.9] 34 |-182.6|-|-222.8 29.1{111282.0| 45| 4-186.5| 227.5
106]} 11.6|110/ 79.8 209 —172.5—205.3! 29.6/111) 76.9[220] —174.1|—212.4
t2|l 12.1]58234.7] 23|+ 23.8]+ 20.2 | 30.1| 59[231.9| 34| + 24.0]-- 20.4
18|l 12.5| 49| 29.6[108) — 8.8l— 7.5\ 30.6| 63| 26.81200| — 12,6/~ 10.7
124
129 || 1713.4 | 63! 313.61158] + 20.0{4 17.21731.5| 48/310.7!169| + 13.2] +11.2
135 ]| 13.9| 71/ 108.5333| — 41.3|— 34.3| 32.0[ 70| 105.6 344| — 40.6|— 34.1
141 14.4 |111|263.4 |148| +182.9|+-223.1]| 32.4[110|250.5 [158] +177.7] 1 211.5
147]] 14.9|112] 58.31322| —159.6/—109.5| 32.9[112] 55.4|333| —154.7|—193.4
153 15.4|82/213.2 127|4- 44.0|+ 26.8|| 33.4 90/210.3 [148] + 55.2|+ 29.8
50| 15.9] 00 8.11311|— 11.1— 6.0 33.9/ 90| 5.2[322|— 6.8— 3.7
165
176/1[ 1717.2 | 83| 87.0( 86| — 78.0(— 46.8][1735.3( 78| 84.0| 07| — 61.2(— 40.4
182 17.7 83|241.9[261| 4 60.4/+ 41.6| 35.8] 77/239.0 272 + 51.5|+ 34.5
188 18.2(112| 36.8( 76|—114.8/—143.5| 36.2[112] 33.9| 86/ —106.7|—133.4
194 || 18.7|112] 191.7|250| 4 34.9|4- 43.6]| 36.7]112| 188.8|261| + 24.6/+ 30.8
200 19.2| 76|346.5| 65|+ 10.51+ 7.4 37.2| 79/343.7| 76|+ 15.1]+ 9.8
206 | 19.7 67 141.4 [230] — 24.2| — 20.6| 37.7| 76| 138.6 {250| — 40.0|— 28.0
212
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TABLE V (Continued).

Saros I Saros IV
¢
Year Ty 4 Iy én in Year | Tyl 4 (Iv| dn én'

ol 1730.1] 822175 | 25| 4 56,7+ 30.0li757.1] 80| 214%| 85| + 43.2+- 27.6

6|l " 30.6 103 12,4100 — 27,8 26.4] 57.6 08| 05211 — 17.2— 12.7
12]] 40.01112]167.3[ 14| — 45.1|— 56.4| 58.1/112] 164.4] 25| — 54.1|— 67.6
18l 40.5107322.2 (180! + 95.811-104.4| 58.6'110]319.3 [200] +-111.0{4-132.1
21| 41.0|80{117.1| 4 — 64.61— 47.7| 59.0| 80| 114.3| 14| — 65.7/— 42.0
30

a1l 1742 4| 52 196.01130| + 6.8+ 5.8[l1760.4] 31]103.2|148{ 4 2.0+ 1.7
47 42.0| 719035000318 + 11.5]+ 7.5|| 60.9| 77/348.1[323{ + 12.9/+ 8.6
53| 43.4 |10 145.8 128 —102 9l—122.5] 61.4|110] 143.0 1130 —110.7]- 131.7
59| 43.8 |112]300.7]302| 1-165.3+-206.6] ©1.9]112|207.9 {313] +-170.5/4 213.1
65! 44.3) 88| 05.6(117 — 93.2/ - 51.3] 62.4 04| 02.8(128] —114.5|— 60.7
11 448 80|250.5 202 + 65.7|+ 42.0{| 62.8| 82]247.7{302| + 71.8|+- 43.8
77 )

88111746.2 [0 11329 4| 67) + 48.5/- 25.71l(764.2! 88'326.5 | 76| 4 47.0/+ 25.8
01!l 46.7] 76124 31211| — 48.4— 33.9]| 64.7] 70| 121.5251| — 35.7— 30.0
100 47.2]11]279.2 56/ +186.3/4+-227.3| 65.2]112/276.4 | 66| +191.4/+239.2
1061 476112 74.1[280 —175.3 219.1] 65.7112] 71.3]240] —172.5—215.6
12| 481 61]228.9] 45! + 2.8+ 21.1 55.1\ 64| 226.2" 56| -1 26.2]+ 22.3
18| 48.6| 78 20.8/220|— 15.9~ 12,6 66 6 80| 2111230 — 20.5— 13.1
124 '
120 || 1749.5 | 26/307.9 180{ - 4.7+ 4.0 }
135 (| 50.0 71[102.8 (355 — 42.1|— 84.9((1768.0) 70/100.0| 5 41.3— 34.7
141 il 50.5 (108l 257.6(169] +168.9]+189.2] 68.5105254.9 [179| +133.0|4+157.0
147]| 51.0(112] 52.51344] —149.7/—187.1 69.0[112 49.8 !354] —144.7—180.9
53]l 1.4 06207.4/138) +'61.3-+ 38.6] 69.5(101]204.7(168) + 63.8/+ 55.5
isoll s1.0] o1l 2.31333— 9.3— 1.2] 70.0 01]359.6(343 + 1.8+ 1.0
165
Im 11583 18 81.2/108 - 4.6 35.2/1771.3) 61| 78.5 |18 — 34.4— 20.2
192" 3.8 72/ 236.1 1283 + 37.3+ 30.2[ ')1.8‘ 67, 233.4 1293 + 20.84- 25.3
qss| sesliuz sio] o es.2—izs]| 2812 28.3]107) — 90.1—112.6
fo4ll 54812 18500272 4 14.44 8.0 72.8‘111 183.21282 4~ 4.6/ 5.6
200 55.2 s4‘34o.a 81 4 22,54 13.3([ 73.3] 88,338.1 | 96| - 29.8! - 16.4
206 | 557 82185 8261 — 56.6— 34.5] 73,7 88 1350271 — 7.2  41.4
212 J

.
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TABLE V (Continued).

Saros V Saros Vi
t.
Year |Ty| &4 |Iy| én an' Year | Ty 4 !l’, l én on’
1751 90 2150 36| - 38.70 -+ 25 21793.1] 75 208 9! £7 + 28.6|+ 20.9

6( 7.6 93' 6.81220— 0.6/ — 4.0| 93.6 8 3.9231 — 3.3— 1.8
2] 76.1 112 161.7| 35| — 62.4] — 78.0| 94.1:112| 158.8! 46' — 71.3— s0.1
18]| 76.6 |110‘316 6 10 +118.3) +140.8] 04 6 112 313.7 220 +131.24164.0
24| T1.1 l 2 111.4] 24~ T80/ — 4.9 95.1, 83 108. 6] 35‘— 71.3/— 46.4
s0ll 77.6' 50 266.3 |100| = 11.6/+ 9.9| 95.6 58 263.5 210 + 26.1/+ 22.2
| i

41| 1718.9 77| 345 3[304| + 15.3)+ 1031197 0, 76 342. 405 + 168+ 11.8
| 704 107 140.1 149 —109.8 119 7 97.4 104 131.3 159 —107.7)-105.5
59| 7.9 112 205 0 23 +175.5) +219.4 97.9111 202, 2|334| +£176.1|+214.8
65| s0. 4| 08 89.0/138 —120.4— 95.8| 98.4102 7.1 145 —14s. 8|—l31.8
1| s0.0! 84 4a.8l312) + 77.4) -+ 457 98.9 85 242.0 323 4 78.9,+ 45.8
71 ’ :
86 1762.2  85328.7| 87+ 45.0|+ 26.11800.3 80 320.9| 98 + 38.4+ 24.6
94| 82.7] 62118 6 262~ 28.5 — 24.2) 00.8 54: 115.8 273 — 22 7}— 19.3
100|| 83.2]112273.5] 76| +191.9) +239 9| 01.2112 210.7) 87 81 1102.2 4240.2
106 83.7112| 68.4|251| —169.3) —211.6]| OI. 7111 65.6 262 —162.6 —198.4
2| s4.2|70/223.3] 66|+ 30.2 + 25.4] 2.2 73| 220.5! 76'-{- 32.1)+ 26.11(
sl se7!s6l 18 30l — 22.6|— 120l 02.7 oi! 15,4251 — 2.5 110
| T
13511 1786.0 | 70| 97.1] 15 — 41.4] — 34.81804.1 60| 94.3| 26 — 40.3 — 34.3
41| 86.5 1011252.0 190;+136 7 +118.9 04.6: 96(249.2 2011—}-116 6+ 73.3,
17l 7.0 lu2! 46.9] 5'—188.7] —173.4| 05.0112 44.1| 14’ —132.6'—165.8
153 87.5 105'201.8 179]+ 62.0| + 63.2 05.5'108] 199.0|190] 4+ 58.2+ 65.2
159 8.0 01]356.8]354 4 6.1)-- 3.2| 06.0 01)353.8 '+ 0.7+ 5.1
165 ‘
176 11 1780.4 | 58| 75.6 120l — 25.4] — 21.6]|1807.4| 44] 72.8[180 — 14.7|— 12.5
1821l 89.8| 62)230.5(303 + 24 9) + 21.2| 07.9) 58 227.7‘313: + 2094+ 17.8
88l 00.3 [111] 25.4 118/ — 79.5/— 97.0]| 08.4{t10] 22.5 128 — 69.0|— 82.1
104 90.8110]180.3 |208| — 5.2/ — 6.2 08.8/110/177.4 303 — 14.6— 17.4
200(| 91.3 | o1|335.2(107( -+ 37.8| + 20.0 09.3 95]332.3 118‘-}— 48.3|-- 28.0
206 || 91.8| 01/ 130.1|os2| — 87.8|— 46.5(| 09.8[ 04| 127.2 202! 100.7|— 53.4
212 | 6 } |
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T A BLE V (Continued).

830

Saros VI Saros VII

t Year |Tyt 4 @Y} dn én' || Year | Tyl 4 |Ih| ¢énm en'
ol 18112 | 72| 208.1| &1 + 222| + 180 [1s202| 67 2033 | F1| +- 165 |+ 140
6|| 11783 109241 b 11|+ 07| 207| 71| 3582252+ 37|+ 25
12| 122 {112 155.9| 56| - 802|—1003| 302|111} 153.1| 67| — 86.1| 1050
18| 126 112 310.8 1230} +1386 | -173.2|| 30.7|112| 308.0 [241] +145.7 | + 182.2
04|l 131 | £6| 105.7] 45| — 87.9| — 50.1|| 31.2| 87) 1029 56 - 92.3| — 51.7
sell 136 | 67] 260.7(2000 - 34.3| + 29.6|| 31.6] 75| 257.8 [230] - 50.1 | + 366
41

471 1815.0 | 76| 339.5 355 + 10.1| + 13.4][1833.0| 75| 336.7| 5|+ 19.8|+ 145
53| 165 |100] 1844)169) —1016|— 843 || 335 94 1316 150 — 86| — 410
50| 16.0 |111] 28931344) 4180 1| +219.7|| 34.0,111| 2865 [355! -1833| +-223.6
65| 164 [106| 842|158 —158.7| 1682 345|100 81.4|160| —170.0|—1955
700 169 | 87 230.2 (333 +- 83.7| + 46.9| 35.0| 87| 236.2 |344| + 81.7| + 45.8
7 35.4| 35| 311[158 — 48|— 4.1
83 '

88 |l 18183 | 74| 318.0]108| + 205 |+ 22.4[18363| 67| 3152 [119] + 228+ 19.4
oel| 188 | 44| 112.0]283 - 154 - 131 36.8] 39 110.1203] 11.9|— 10.1
100 193 [112] 267.8] 97 +101.7| +-230.6] 37.3|111| 264.9|108' -+186.9 | +228.0
106 198 |110] 627272 —155.4' —184.0|| 378|110 598283 —151.3|—1800
2| 202 | 8| 217.6] 86|+ 41.8] + 27.6|| 38.3) 83| 214.7] 97+ 49.1| + 205
nell 207 | oal 1250261 — 104|— 103| 358|971 96272 — 155|— 107
129
135 1 18:2.1 | 68 913 36| — 301 |~ 332ll1840.1| 67| 885147 369|— 314
141|226 | 00| 2463 [211] + 93.1| -+ 50.4|| 40.6] 83| 243.4 1221| + 692 | + 415
471l 231 112 412 250 —126.0|—1575| 4l.1{112| 383| 36 —119.0| —148.8
153 || 236 [110] 196.1]200] + 50.6 |+ 602| 416'111] 1922 |211] + 41.2| + 503
50| 240 | 02| 3510 14|+ 15.6|+ 81| 421|902 3481|250 202|+ 105
1651 245 | 45| 145.0|180l — 02| — 78| 426) 61] 143.1 [2001 — 187 | — 159
11
176 || 18254 | 18] 69.8/149| — 1.9|— 16
192 || 250 | 54| 224.8(324) + 17.9| 4 15.2||1843.9] 51| 221.0 [335| + 149 |+ 127
188 264|110 197189 — 60.2|— 71.6| 444[107 168|149 — 445| — 485
104 || 269 |110] 174.6 1313 — 23.7| — 282 44.9109 1717 [324] — 323 | — 37.1
200 || 274 | 99| 320.5(128 + 60.4| 4 47.7|| 454 |103( 3266 [130| + 43| + T0.6
206 || 218 | 95 124.4[302] —107.0| — 6256 45.0] 97| 121.6 [513| 1186 | — 81.9
212
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T ABLE V (Continued).

Saros IX Saros X
t
Year |Tp| 4 |4 on on' Year |7,| & [ly] +4n on’

ol 18472 | 60 208’5 | 88|+ 17| + o9ises.3| 51| 1977 8ol + 16|+ 65

6| 477 |72|3554 |263| + 48| + 39| 658/ 65 3526 (274) + 53|+ 45
12| 482 |110/1503 | 77| — 92.1|—1196| 662 110] 147.4| 88| — 99.8| 1188
18! 487 |12l 305.2 [252| +152.4| 41005 667 |110| 3023 |263] +152.3| 11812
241l 492 | 90100.1 | 67 —1035]- 559 67.2] 92 9¢7.2] 77—1105|— 572
30| 49.7 | 82/255.0 [241) + T1.0| + 439| 677 88| 252.1 (252 + 90.4 | + 497
41 ' -

47l 1851.0 | 74{333.8 | 16| + 20.6| + 15.7([1860.1 | 74| 331.0| 26/ + 224 |+ 17.0
53]l 515 | 801288 [191] — 783 | — 42.3|| 69.6| 80| 125.9 [201) — 56.1 | — 35.9
50|l 520 |111]283.7 | 5| +186.0]+2269]| 70.0 (11| 280.8| 16| +188.1 | +-2205
65| 525 |10 78.6 (180] —171.2| —203.7)| 705 |111] 757|191 —172.2 | —210.1
" 710l 53.0 | 87,2335 1355 + 70.6| - 446] 71.0] 88| 230.6| 5| - 796 438
11]| 535 | 53] 284 {169 — 09| — 84| 715|653 256180 — 132|— 112
83

88 || 1854.4 | 58'312:3 [130| -+ 18.1] 4+ 15418724 | 42| 3005 |140| + 98|+ 83
o4 || 548 30 1073 304 — 7.0|— 60| 729 21| 1044[314 — 40|— 34
100]| 553 |10 262.2 [119] +181.7] --216.2] 73.4|100| 250.3 |120| +176.3 | +202.7
106| 558 110 571 |203| 147.4|—1754| 738100 542|303 —1396|—1605
112|| 563 | 89/212.0 108 + 58.0| + 31.3|| 74.3] 93| 200.1 |119| + 61.1| + 31.2
18]l 568 |99 6.9 |283— 106 | — 84| 748102 410203 — 52| — 47
129 _

135 || 18582 | 65 5.8 | 58| — 345| — 29.3/(1876.2| 62| $2.9| 68| — 31.0|— 264
141l 586 75'24&7 232 + 45.2| + 33.0| 76.7| 64| 2378|242 + 280+ 238
147\ 0.1 |111] 356 | 47 —100.7| —13381| T72|111| 327] 57 —102.2] —1247
153 | 50.6 |12 1005 |221| + 31.9| + 39.9|| 77.6|111| 187.6 231 + 20.8|+ 254
159 | 60.1 | 02|345.4 | 36| -+ 24.4| + 12.7]| 78.1| 04 342.5| 46| + 30.8 |+ 163
165 |- 60.6 | 74| 1403 |211] — 32.7| — 24.9|| 78.6| 83| 137.4 |220| — 555 | — 333
176 .

182 || 1832.0 | 48/2192 |346| - 12.9] + 110/1880.0| 45| 216.2|356| - 104+ 8.8
(881 624 |104] 14.1 (160| — 365} — 35.8| 80.5|102] 11.2[170| — 27.0 | — 246
194 | 62,9 |100]169.0 [335| — 40.6| — 467|| 81.0]108| 166.1 345 — 483 | — 54.1
200 | 63.4 1053230 |149| - 845| + 86.2| 81.4|108 321.0 |159| + 99.0] +1109
206 | 639 | 08 1187 I324| —1254] — 028 81.9( 99| 115.0 |334| —i32.1 | —104.4
212
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TABLE V (Concluded).

832

Saros XI Saros XlII

t Year |7y 4 l’lf on on' || Year|T,| &4 |Ih] én en'
o 18833 | 35 1947|100 +- 29|+ 25 S R
6 838 | 58| 349.7(284| 4~ 5.4 |-+ 4.6(1901.8| 54| 346.8 (294 4+ 59|+ 5.0
12 843 (109 144.6 | 98] —104.5 | —120.2| 02.3{107) 141.7 109|—1062 —115.8
18 848 }110| 299.5)273| 4-157.9) -187.9|] 028{110] 296.6 |284] 4-163.6 | {-194.5
24 852 | 96, 94.4| 87| —126.2|— 79.5) 03.3; 99 91.5] 98 —136.4|—107.8
30 857 | 02 249.3262| 4-103.5| - 538 03.8| 95 2’46.5 213 +-112.7| 4- 65.3
41

! 471 1887.1 | 72| 328.2| 37| + 21.7| 4+ 17.6(|1905.1| 71| 325.4 | 48! +4- 21.6 | + 17.9
53 876 | 71| 1231|212 — 352| — 20.2|| 05.6| 59| 120.3|222 — 248 |— 2.1
8] 88.1 |111} 278.0| 26| -~189.8 | 23151 06.1(111| 275.2| 3T 4191 0 |\ 4-233.0
65 88.6 (112 172.9|201| —172.8| —2160| 06.6{112 76.1 212 —169.3 | —211.6
11 89.0 | 88| 2278 15| + 69|+ 423( 07.1| 88 225.0| 26 - 73.8| 4 40.6
1 895 | 75| 22.7|190| — 17.8| — 13.0|| 076| 84] 19.9{201| — 24.1|— 14.2
83
88 || 18904 | 11| 306.7,150] + 0.8|4- 0.7 ’
94 909 1 11} 101.6325| — 1.0]— 08
100 91.4 107 256.5,139| --165.4 +18‘0.3 1909.4 {104| 253.7 (150 -4-150.7 | +-147.7
106 91.9 1109] 51.4|314| —135.1 | —1553]| 09.9|108 48.6 325l—127.2 —142.5
112 924 | 98f 2063129| 4+ 64.7| 4 47.9| 10.4]103| 2035|139 + 67.0| 4 63.6
118 028 (102] 1.1(303] 4 1.9|4 1.7|| 10.9[103 358.4 314, + 81|+ 7.1
129 \
135 | 18042 | 57| 80.1] 78] — 257)-— 21.8][19123] 50! 772! 89 — 19.4[— 165
141 947 | 54| 2350(233| -~ 19.8] 4 168( 127| 40| 232.2{264| - 10.4| 4 8.8
147 052 |111] 298| 68 — 043| —115.0|] 13.2|110] 27.1| 78/ — 84.9|—101.0
153 057 |110| 184.71242| 4+ 10.1! 4 12.0f| 137|109 182.0253) + 0.4|-+ 0.5
159 062 | 95 3396/ 57| -~ 36.8| 4+ 213| 14.2] 97| 336.9| 67) + 44.0| + 304
165 066 | 90| 1345|231| — 77.5| — 41.9]] 14.7| 94| 131.8 [242] — 92.5 | — 49.0
176
1221 1898.0 | 44| 2134] 6| + 97|+ 8.2|1916.1| 42/ 210.7| 1714+ 19|+ 6.7
188 085 | 971 83181 — 165|— 11.4]] 165]|92] 56(192/— 88|— 4.6
194 90.0 |108| 163.2 [356| — 56.7|- 635( 17.0(108} 160.5| 6|— 64.2|— T1.9
200 99.5 {110 318.1 |l70) 4-111.1 | --1322]] 175|111} 315.4|181] 4-120.5 | 4-147.0
206 || 1900.0 [100] 113.0 [345] —1* 8.4 | —114.9]| 18.6{100| 110.3 355 —140.5 | —116.6
212 005 | 15| 268.0 {159+~ 191+ 16| 185 45| 265.2{170) 4 154 -4 13.1
218
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TABLE VL
Saros I Saros I Saros [l Saros IV
t
Year| 2, Mg || Year| 2, 7' || Year| 2 l A, || Year 2 ! AN
0 1703.0’ 0 0({1721.0 0 0 '1739 1 ‘ 0 017571 0 0
035+ -9|— 12| 215 — 3|— 29| 396 — Il|—32 516| — 16— 61

121 04.0{— 31|— 79| 22.0|— 43| — 96 4001-— 50!—— 91}l 58.1]|— 49]|—135
18] 04.5:— 981 —179} 22.5|—119, —208 405\——134!—206 58,6 | —136 | —277
24 049, — 94| —215|| 23,0 —111—234| 41.0 —122 —217} 590|—112{—286
30 —147|—288 —164| —300 -—175l——£75 —154 —337
411706.3 | —244 | —422|1724 4 | —261 | —421 ||1742.4 -—272'—381 1760.4 ) —231 | —431
47| 068, —276 —479| 24.8[—302|—476| 42.9 —318’-—433 609|—271 | —48l
53| 07.3}—301(—532| 25.3|—333|-—525| 43.4|- 353'—«478 61.4| —298 | — 522
59 07.8|-—4l7 —688|| 25.8| —460 | —693|| 43.8 —491}—646 61.9 | —436| — 695
65| 08.3|—380|—663| 26.3|—418|—661| 44.3|—463[-607| 62.4|—403|—655
11| 08.7/—398|—677) 26.8|—450| —674| 448|—528|—619|| 628| —485| —675
11 —373 | —656 —438 | —649 - 528 | —589 —495 —652I
88/1710.1 1 ~ 327| —617({1728.2 | —416 | —603 |{1746.2 | —528 | —534 |{1764.2 | — 513 —610\
94| 106|—258|—57411 286!|—3571—-5541 46.7!--479—4791l 64.7|—476 —5611
100 11.1[—274|—576( 29.1]|—369|-—546| 47.2|—479( - 457 65.2[——475 —542!
106 ﬂ11.6 —107|—355 29.6 | —195|-—311| 476|—292, —208 65.7‘—282 —284h
12 12.1{~113|- 339{| 30.1|- 195, —288| 48.1|—281{—178| 66.1 —262|—241
118| 125|— 95]—303)f 30.6|—171| 245| 48.6 —245'—12’1 666~ —216 —176|
124| — 86! —274 —159 | —212 - 225 - 89 #——190 124‘
12917134 ' — 78| —250 ({1731.5| — 149 | —184(11749.5 208[— 57 ]—178 — 8!i
1?5 139, — 48, —203| 32.0{—134|—140| 500|—183; — 15 1768.0.—152 — 29’
141f 144 |— 59| —191|[ 32.4|—150| —130|} 505! —200'— 8| 685 —167 - 12
1471 149 4-103| 4 44| 329|+ 12|+ 91 510‘~ 48| 189 69.0:— 28 +162?
153 154{+115 4 80| 334|-} 19|4119| 514 — 46| +199|| 695 — 34|4155!
159’ 159 | 171 ] 143} 3397+ 82| +177|| 51.9(+ 17(+247| 70.0 |4 24 +204|
165, +216 1 -+-200 +138{ 4231 -4~ 98 {4-294 -+ 83 4254
176)[1717.2 | 299 | --304({1735.3 | 241 | 4-3331|1753.3  + 190 | 4380 ([1771.3 | 193 346
182 17.7]|-+266]+314|] 358|4235|4-347|| 53.814-206] 392 71.8|4218 367
188} 182 4-303| -365) 36.2) 281 4-395{] 54.3|-1 260 434} 723} +273 +413]
194} 18.7|--225|+273| 36.7|-220|-+310( 54.8|+216{+353| 728 +237 +346‘
200 19.2|+182|-225| 372(4-184|4255/ 55.2|-183|4290| 73.3|4206 -}-285
206 19.7}--149| -+184)| 37.7|+163| 210\ 55.7, 41784240 73.7)-}205 4240
212 + 924123 +102 | 41317 4114 |4-156 +129 154
223 — 12|41 — 10/4 3 — 3|+ 5 —}—10:—41
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T A BLE VI (Continued)

Saros V Saros VI Saros VII Saros VIﬁ

t Year| 2, | 25 | Year| A Mg |j Year| 2o | A 1 Year| 2. | 2
0/(1775.1 0 01793.1 0; 0 |1811 2 O 0 1829.2|| 0 0
6 756]— 26 — 59| 93.6 — 40 — 70 117 — 46 —-75 2971—54—91
120 76.1|— 62| —113|; 941} 84 —142 122 — 91 —I150|] 302 —104 (179
18] 76.6|—160 255) 94.6 - 139 —303 126 —216 - 325 30.7|-- 241 | - 312
24| 71.1{—140 | —256| 95.1|—123 —300)| 13.1 ——203 —327 31.2[—232 —383
30| 776|—194|—302|| 95.6 —184{- 343|| 136 —278 ——379 316, —315|—446
41 —271 | —368 —248 —382 -—351] 419 - 376 | —494
47|1778.9 | —813 | — 404 |11797.0 -—-—2831—~403 18150 —391 —441(11833.0; —409 | —520
53| 79.4| - 340 | —430|| 974|301 ]—412 15.5 -—412|—450 33.5| —422 | —532
59| 799|—476| —576|| 97.9 427|j 521 16.0!~-534!-—543 34 0| —524 | —591
65l 80.4|—437|—502|| 984|377 —427|| 164 ——4’16|—~416 345 —443 —426
TIl| 80.9| - 527|—524| 98.9|-472 —459( 169{—577 —458|] 35.0)—532,—457
11 - 540 | —500 —488 —445 —594-1——453 35.4 | —539 | —442
83 —553 | —4T1 —504 —431 -611|—-448 —551 | —431
881117822 —564 | —459 180031—517 —419 1818 3 | —625 —44411836.3 | —561 | —422
94 82.7|-—532 - 409 008'-—494 —380 188 ——613‘——416 368 |- 550 |- 392
100|| 83.2, —528 | —384 012,—494 —371|[ 193 —616’——401 31.3| —551 | —372
106 83.7/—333 —119)] Ol 7|—302 —109}} 19.8 ~——427’-——147 31.8) —365 | —124
112)| 84.21—307|— 65] 022 —272|—— 48l 20.2|—394|— 78]l 383|—330}— 56
118 84.7|—251 |4 14| 027 —209|—|— 39| 20.7|-319|4 19| 38.8{—246|F 42
129 —189 ] 4117 —136l+177 —216 4179 —121 ;201
135||1786.0 | —155 | +173 ||1804.1 | — 96‘—}-252 1822.1 —160'—{-266 1840.1 | — 53 |+288
141} 86.5{—163 (1941l 0461 — 96t—{—293 22.6 —143:-{-319 406, — 21 {4344
147 87.0{— 34|4334|| 050 4 20 4407|| 231)-- 33 4423 41.1}- 80|-F441
153 875|— 4414301} 055;- 4|-+4355| 236|— 49‘—]—369 41.6 |- 62]4-389
159)] 88.0({-+ 8|--331|| 06.0] } 46| -+369| 24.0{— 15[-+375| 421|-- 84|1388
165 + 66| -+364 + 08| +388|| 245|4 35|-300| 426|-+127]4397
171 +124 | +397 1511 4407 + 16 | +397 151 | 4390
176117894 | 4172 4-425 (1807.4 | 4-195 +4231825.4 | 110 | 4-403 -+169 | 4384
182 89.8] 195 --437;1 0794233 | 4301 25.9|--149 | 408 1843.9|4193 |+4-377
188l 90.3|4-253|4-470|} 084|292} +455) 264|206} 1428 444|232 —{-383,
191 90.8] +231|-+406] 08.8|4282|+398|| 26.9|4203|4-377) 449227 4341
200|| 91.3[ 4204 | +336|! 09.3| +257|+323| 274|176 |-+298| 454 189|261
206|| 91.8] 4215 | --286( 09.8|-234| 4276 21.8|-4209|-4-266| 459|226 252
212 4-138 | 189 +157| +176 4133 | 4-172 +144 —|—161l
223 — 34+ 11 + 16{— 17 + 8 0 — 6|— 6
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TABLE VI (Concluded). -
Saros IX Saros X Saros XI Saros XII

t Year| 2 | 2 || Year| 2 A Yeaxi R 'y || Year| 2, N
0;(1847.2 0 0[1865.3 0 0 18833i 0 0 0 0

477|— 66| — 83|| 65.8]— 18, — 18| 838 — 81| — 6519018 |— 88— Tl

12| 482 |-—127{—162} 66.2|—151|—151 843'——15'7 —125] 023| —170, —137
18| 487 —280|—361|| 667 —324 | —343 848'—337 —295(| 028;—358|—319
24| 492|-—280|—369| 67.2| —345| —354 852:—360 —287|I 033 ' —383, —306
30|| 49.7|—384|—433| 67.7|—476 |- 422| 85.7 —b509|—359|| 03.8| - 544 | —401
41 —4421 470 —551 1 —455 —592 1 —392 —632 | —456
471851.0 —-—474‘—- 490111869 1| —592 | ~ 473(}1887.1 | — 637 —410(]1905.1 | - 680 | - 486
53| 51.5|—486 —495! 69.6| —610| —474| 87.6|—661 —410|| 05.6,—707; ~ 498
59l 52.0| —b576|—542|| T0.0, —684  —511(| 88.1 720‘-——440 06.1{—759, —531
65| 52.5—480|~362| 705! 570}—319| 88.6|-—589|—238| 06.6|—6201—331
Til| 53.0|-555| -386| 71.0|- 629 |—237| 890 —631|—252| 07.1]|—650|—342
71| 535|—550| —365| T1.5|—608|—313i| 89.5| —596 —224| 07.6|—606|—313
83 —555 | —352 —600 | --298 —579 | —209 —586 | —298
88/i1854.4 | — 559 | - 341 ({18724 —593 | —286({1890.4 | — 565 | —197 — 569 | —286
94| 54.81—546|—313 72.9'—575 ~263] 90.9 —547!—181 — 549 ' —2T71
100| 55.3]| — 540 —201| 734|561 |—243| 91.4;—530 —16611909.4| —529 | —256
106/ 55.8| —352| — 53| 73.8 —371|— 20| 91.9,-—348 + 29{| 09.9{—359 | — 93
112 56.3|—31214 5f 74.3}|—321|4 42| 924|301 |4 69)| 104} —316|— 73
118 56.8| —214 |4 99l] 74.8|-210!+135| 928 |—189, +157|| 10.9|-—206 |- 11
129 — 83, 257 |~ 16 | 1-298 -+ 204322 -+ 10| +4180
13501858.21 - 35 | +343 (18762 -+ 90 ---387|(1894.2 —|—134‘+412 191234128 | 4272
14111 586! 88 1398 76.7'-1 165|—+449 94.7 +222 +480 12,7, 4227 "' 4+3417
147 591 —}-186|+487 71.2 —|—268’—{—535 952 +3301+565 1824336 +431
153! 59.6|--174 -+-443| 776 269;-4496| 95.7 —|-344 ~+535( 13.7|-4360 414
1591 60.17 4194 | 4438| 78.1 4291 +483)f 96.2|4368 —|—517 14.2 —}-385'+397
165 60.6 |+ 239 444611 786 +344|—|—486 96.6|—{-429 5201 147 —{-454|—!—4H
'176 -} 261 | 4415 +338:+431 +awa’-.-1~0 1412 347
182/(1862.0 | 4-273 , 398 [|1880.0 - 335 +40111898.0 | -381 —+410||1916 1 |-} 388 312
188! 62.4|4298|+393] 805 +3431|+379 98.5 -|-374|+379 165|+372 }-283
194/ 62.9|4-200 |+352|| 81.0 4323 -}333|| 99.0{+350 +337| 17.0, 348|250
l200 63.4 | 1238 4 264 814 -]-255:+233 99.5 —}—270|‘+231 17.5:-}—259‘ —+145
|206 639 |-+ 270|262 81.9 4286 --244(1900.0|-}-301 4258\ 18.0 -4-291|-4-197
212 4177 4167 l+185 —+150(| 00.5 4193 |--170|i 1854182122
218 + 84|+ 12 + 84,4 56 -+ 77, + 83 -+ 85|+ 60
223 + 6|— 1 \ O\——ZZ — 11411 4+ 1|4 4

£l
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Finally we give in Table VII' the new reduction of the meridian
observations by Prof. Baknuyzen, which was referred to above. The
column M--N, contains the excess of the observed correction to the
tabular longitude of the moon over Nuwcomp’s “great fluctuation”.
The systematic corrections mentioned in Part I have already been
applied. For the years 1905 to 1912 two results are given: the upper
one is derived from the observations of the limb, the lower from
the crater Mosting A. The third column contains the means of the
numbers of the second column and the results from the occultations,
i. e. Newcoms’s muwor fluctuations. The latter were however corrected
by -+ 0"18 for reasons stated in Prof. Baxmuyzen’s paper (these
Proceedings, Jan. 1912). For the years 1905.5 to 1908.5 the mean
given depends on the observations of the limb and the crater alone.
From these means I have subtracted the sum of the corrections for
the difference between the theories of Hanxsgn and Brown, which
were given in Part T of this paper. This sum was computed by a
graphical process, of which I estimale the maximum error at about
=+ 0".05. The thus corrected mean is given in the fourth column.
The second decimal, which has no real value, has been dropped.
The last column gives the residuals remaining after subtracting Ross’s
empirical formula, without its constant term — 0".18, viz.:

4 2.9 sin 6°.316 (t— 1844.5) + 0.8 sin 15°.65 (t—1880)

It will be seen that these residuals, although small, are as
a rule somewhat larger than those found previously by Ross
himself and by BakmvyzEN. The explanation_of this is as follows.
The residuals A-Ross given by Baruuyzen in 1911 (these Proceedings
Jan. 1912, p. 691) showed a marked period of nine years, which
entirely disappears by the application of the perturbational corrections
(14) and (22). The term (43) is nearly identical (o the term which
was already applied by Ross, and consequently does not affect the
residuals to any appreciable extent. The terms (20), (15), and (21)
however, especially (21), precduce a considerable increase of the
residuals. No doubt it would be possible by a small adjustment of
Ross’s formula considerably to improve the representation, but it is
evident that a perfect agreement with the observations can never be
reached by a formnla containing only two terms. If a new empirical
formula were to be derived it would, of course, be necessary first
to correct the term of long period, and to apply the corresponding
corrections to the theory. It secms opportune to defer such an inves-
tigation until the moon’s longitude for the next few years will be
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TABLE VIL
2 57|25 4 = 57 g
l12g)88| ¢ + |12z 88 €
Q Q
18415 +0"08-0780| -+-173 | +0"8 |[18835| — 2741 |—2r20! —179 ! o1
485 11 22/ +1 66| +2.3| +1 6| 845| —2.30 |—2.10 - 171402
1950 26110 28 0.8 0.0] 55 —2.46|-2.38 —22|—02
505 [+o 3114-0.76|-L1.0| 0.0|| 865 —2.60 |—2.60 —2.6|—0.4
515 l+1 S141.18 1.1 -0.1]| 875] —s.11 ol 28| —06
52.5 '—]—l 201-H1.15/+1.0,—0 5 885| —3.64{—3.47—34(—12
53.5 ;—I—l 951+1 .42/ +1.41—0 .4 895! —250(-2.90 —2.6|-0.3
54501220041 .04 12.0 —0.1| 05| —2.10|—2.05 25| 00
555 -1 57104 42.2| —0.2| o15| —3.65|—3.28—2.8|—02
565 |1 4014175 +2 0| —0.7| 925| —3.78 |-3.00—2 8| 02
51.5 +2 A48+2.39|+2.41—0.6 935 —3.02|—2.76] 2.9{—0.3
585137114370 +3.21 0.0| 945| —2.32|—2.56 3.3]—0.1
505143 8343 .96/ +3.1 | —0.4| 955| —1.95|—1.98—3.1—0.6
605 15 104 60 436|101 || 965! —155|—128l—25 o2
615141814 14 +32 | —0 3l 75| —080|—154-23—03
625’—]—5.11—{—4 60| 4+4.0|405]| 985 —0.84!—1.07-15!+02
63.5 |+4 2114370/ 437|404 995 —0.30|—0.80,—0.7|4-0.6
645 {—{—2.83—{—2.96 +3.6|+0.5]19005] —0.12 +0.04{ 40|41 5]
65512 0442 42| +3.6 | +0.8|| 015] —0.26 |—0.08' 0.9 (1.1
66.5 :+1 524226/ 436 | 41.3]| 025 4033 |10.42{--1 4|11
615 |+0.56+0.93| 42.2| 0.3 03.51 —0.17 {40.32 1 .2 +0 4
685 |40.304-0 15| +-1.6 | 10 4|| 045] 4050 |+-0.94/+1.6|+0.3
| 095 0L F00) T
705 40 30140 64| 1.1 | 107 +1.53 3|0
15— 1 261—1 .18 —0.7| —0.6 1942
125 }—1.21 ~-1.40-1.0—04 06.5 2-{-1 43 +1 78241402
185 1—1.70/—1 65| —1 .3 | —0 .4 +2.39
145 |~2.21—214]—2.0 —0.7| | [ro.6s T2 O TOS
15512 40|—2.25( —2.5 | —1.0 19 64
1651 —1 891 90l —2.7| —1.0| 5| 4501 [T2-05 183|106
115 |—0.87|—1 28] —2 4| —0 6 +3.21
185 40.32—0 44| —1.7| 0 2|l %] |4a.12[ 31838\ +09
795 |—0.231—0 26| —1 .4 |10 6 4532
80.5 |—0.33{—0.76| —1.5 | +0.5 105 -+4 .36 484 +5.1142.0
81.5(~0.16|—0.78( —1.1 | 109 45 57
825|—1.39|—1.30)—1.2| 0.8 115 3+5.04 530|451 +1.9
55
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known, or al least uniil we know lLow long the increase,” which
began a few years ago, "will lasf.

Tre accompanying diagram shows for the ycars 1847 to 1912 the
excess of the observed longitude of the moon over Nuwcomp’s great
fluctuation, i. e. the number contained in the fourth column of Table VII.
Ross’s curve is also given, (including the constant term — 0".18).
The broken line is the smooth curve mentioned in Part I from
which the values given in Table III were read off. The diagram
also contains the puvely periodic part As and A, of the perturbation
in longitude produced by the absorption of gravitation on the two
hypotheses regarding the distribution of density within the earth.

Chemistry. — “7he equilibrium ZTetrugonal Tin & Rhombic Tin.”
By Prof. Ernst Comrn. (Commmumeated by Prof. van RoMBureH).

(Communicated in the meeting of November 30, 1912).

It hos struck me, and from several quarters my altention has
been called (o it, that in a communication from Messt> Samirs and
pr Lerow ') “On the system Tin” there occur a number of mistakes
which require rectification.

1. The relation between the existence of a transitionpoint tetra-
gonal {in =5 rhombic tin at 200° and the method of preparalion of
the so-called corn-tin or gram-tin has been first pointed out in the
paper which I dave pnblished in 1904 with Dr. E. Gonpscamipt *).
From the communication of Mess's Smirs and px Leruw the reader
might conclude that they (or Scraum) have fivst noticed this connection.

2. In the  paper which I published in 1904 with Dr. E. GoLb-
scamipT, a conclusion was drawn, from the experiments of WERrIGIN,
Lrwkoserr, and Tamva®n®) as to the situation of the said {ransition
point. which proved fo'be erroneous. Dr. Drerns has pointed this
out ") and as in my opinion'he was.quite right. 1 have hastened to
rectify my errvor in the section of Anree’s Handbuch der anorganischen
Chemie [Vol. 8, (2) 532 (1909), special p. 552] edited by myself.
Evidently, the recent literatnre on this subject has not been known
to Mess's Smurs and pe Luwvw, for they still base their communication
on my paper that appeared five years previously.

1y These Proc. XV, p. 676.

%) Chem. Weekblad 1, 437 (1904), special p. 446. Zeitschr. [, physikal, Chem,
50, 225 (1904), special p. 234.

3 Drud Ann. 10, 647 (1903).

4) Dissertalion, Delft 1908, p. 33.
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3. Mess' Sars and pr Lusuw write:?) “Why in refercuce to these
experiments Coiey and Gorpscinupr give 195° for the point of transi-
tion in the “Chemisch Weelhlad”, and 170° iy the “Zeitschrift fur
physikal. Chemie” is quite wnaccountable.” The difficulty disappears
immediately when onc refers o the said paper®); it then appears
that the following sentence has escaped Mess's Smirs and pr LERUW’S
notice. “Wir setzen hier vorlaufig 170°, doch beabsichligsen wir-auf
die genaue Bestimmung dieser Temperatur noch spater zurickzu-
kommen. In der Figur steht irrtunlich 195°.°° %

I will refer again to the (ransition: tetragonal tin 22 rhombic tin
as soon as the investigations announced in my above paper shall
be concluded.

Utrecht, November 1912. vaN ’1 Horr-Laboratory.

Physiology. — “On loculised atrophy in the luteral geniculute body
causing quadrantic hemianopsin of both the right lower fields
of wvision”. By Prof. C. WINKLER.

(Communicated in the meeting of November 30, 1912).

In 1904 Brrvor and Connikk ') observed blindness in the upper
quadrants of both the left fields of vision by an invalid, who afler
death proved to be the bearer of a focus in the right hemisphere,
through which the surroundings of the calcarine fissure, from (he
occipital pole to the confluence with the parieto-occipital fissure were
destroyed.

This observation is one of the few, in which quadrantic-hemianop-
sia responded to a focus, which chiefly destroyed the cortex, although
the optic radiation, as shown in the drawings of Bruvor and CoLLiEg,
here 100 was nol spared in the least, on the contrary it was des-
troyed to an important exlent (especially the medio-ventral part).

Brevor and Corrikr pointed out, that already at that time in the
literature there was sufficieni ground o suggest, that foci in the
dorso-lateral division of the strala sagittalia of the occipital lobe can
canse bLlindness in the lower quadrants of the crossed optic fields.
On the other hand foci in the ventro-medial division of these stratla

1) These Proc. XV, p. 677.

2) Chem. Weekblad 1, 487 (1904), special p. 449.

5 Zeitsclir, ftir physikal. Chemie 50, 225 (1904), special p. 236, nole 2.

) C. E. Beovor anp James Cowuter. A coulribution lo the sludy of the cortical
localisalion. A case of quadranlic hemianopsia wilh pathological examination, Brain.
1904, XXVI p. 1568,
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¢, WINKLER. “On localised atrophy In the lateral geniculate body.

Fig. 1. Lateral surface of-t here in quadrantic-hemianopsia
of both the right lower is of vision.

g 2, Medial surface of the same hemisphere, (The lines indicate the place of
the sections, drawn with the same number on Plate [1 and II)

toceedings Royal Acal Amsterdam. Vol XV,

P L

Fig. 11. Medial surface of the right hemis

the proximal part of the G. cuneus,
occipito-tempor
the place of the

{The lines i

B Neur, Bladen. 1911 |
____-_:.__. n_n._|m.1uh_1_,_.:._n.._.p___
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C. WINKLER. “On localised atrophy in the lateral genlculate body".

Fasmicubas Finmdi-om digtalia

wivn bongitudinaiin medials TS
ot =

Pars. retrdentivslanis =s————Zw__
[T - .........r.h.
- :

R

irmiliaisn graisda corlialis)

....ll.\
gt inalis faeriof <% _
uah nagitinle b T
\1
Pt
Sivabwm sagitiale Istermam = L
Fihrae tapets

capeube by Ebwws, which wiber The geakulsdorieal radiation Seegh e swe ool Wik,
imfermal copeale. and paw il the aratem sagitsle slormam sveesd

s .
1] i

el &1 i
.M.ﬂmmM .“ is
iz h b

b 1 e Inlrad i,

= © baady, Al the crlls

: o anil Ehves arv Josd

A gy G i ™ ety e (et

= padt of e laberal
iFnielile Body

Fig " uidirsne Semcaniain
Quadrastic hemi-snopsia of boln (e right bower Redds of sision.  bn o The leogs,
The meta-entral disision of the strata sagiftalia b stact  Cegenoration of the dors-lateral S of the gemindsnsfiol
Fudiation asl of e dorssl part of (he sren of Worssah  The capsld idurstl parih of e lal genic. body bses dll Ui apils gnsd
of Wesnpcsr. (B onpsile of ihe smili snl i ool deif arw ntally infaet

Proconsbmgs Megel bosd Amsterdem Vol X7

i T ety brespnefisse of hodln (be righl ey ficlds of viios
The fresh fews 39 be msrlod in Slash. Thee sld fores () of Dhee. 97 Ml o
] alits % Bhew T in g | el Nig 2

-59-



. WINKLER. “On localised sirophy in the lateral geskcuiste body™ PL N

Fig. bl Glirmare Armdonopais of beth fhe Figl kewer
e
o i (8 g b B B

: Fig 5. Ouadranie Armiswcpiss o A8 W5 rsl lov bekde o vk,
Fig & Quadrants rmisnspas b both s fight brwer Robds o sisiem 5 lime 8 im g wesi g T
15 s ¥ in B § e iy T

53 fif By
fa | His ety
(¥ * :«i= ‘-ii
fig I Hs Sf :

Bl wemivalis
Anabaem

Fmciostas  engit.
oo e gl
Jul 1es Fiaid af

Fig 1L Bramacfoct. ol prasppration +f b bateval gesbuisiv oy, v et
Wocon (im fhe medbo-vareral o of Whe il redistizn), Less
o 8% 1he iulls e Bheon) i Dhe cacds of The lieral preirstas bty
vkt o tha bty

Fig. W Bemomiefies
15 Mo 4 B i)

ol it e

diry i corem in

e
B Voot . pad
e grmesl, oty
inll he oeits
Shie arw bl

T Heal

Fig. 1% Srmindier dvoph

E
5
i
i
|
]
£
B

ST R e————
s

i o g e, Bt
prvaimaby gvlh ded

Fig b Bemwsbipar Fig. ih  firmesrfar
5 liew 13 A 01y 5 Vs 5 Bg B
Frocedegs Iigral' dend Aatrelam Vol XV,

-60 -



841

sagittalia can cause quadrantic hemianopsia in the crossed upper
fields of vision (Henscumy, Forster, WILBRAND efc.)?)

Vox Monanow *) proceeds still more in the here taken direction.
Jdf the dorsal division of the occipital lobe (Upper Cuneus, O, —0,)
incl. the dorsal part of the optic radiation is destroyed, then exclu-
sively the,dorsal layer of the lateral medullary capsule of the lateral
geniculate body degenerates, and of this body the fronto-medial part.

. On .the -contrary after destruction of the ventral convolution of
the oceipital lobe (ventral lip of the calcarine fissurve, the Gyrus
lingualis, the Gyrus occipito-temporalis) it gives rise to a secondary
degeneration of the veniral division of the geniculo-cortical radiation
and, degeneration of the ventro-lateral pari (cauda) of thz lateral
geniculate body.

The projeciion of the rclina on the coriex could no longer be
inferpreled as simple as Henscurny had taught us. It was not limited
only to the surroundings. of the caleavine fissure and had to be
regarded from a different point of view.

It had to be borne in mind that in each.laleral geniculate body
there was already a first field of projection for the two homonymous
retinal halves. Another projection, secondary {o {his, took place
through the geniculo-cortical radiation, which united this Lody with
the cortex. But in a particular way.

As long as the dorsal division of the radiation and the caput of
this body did not slhow secondary change, the vision in the lower
crossed quz{dmnts of the fields of vision was infact. (Brrvor and
Corrizr). i

As long as the veniral division of the radiation and the caunda of
the body lacked these changes, the vision in the upper crossed
guadrants of the fields of vision conld remain intact.

The radiation from tlns body spreads itself however to a greater
area of the cortex than to the surroundings of the calcarine fissure
only. Withoul doubt also the upper Cuneus, 0,0, i.c. the whole

1y 8. E. Howscuey., Pathologie des Gehirns. Upsala 1890-94 and 1903 C[ Sur
les centres opliques cérébranx. Rev. gén d'Ophth. Paris 1894. Revue ciitique de
Ia doclvine sur le cenlre cottical de la vision Congr. int. de Médecine. Paris 1900
La projection de la réline swr la paclie corticale calcatine. Sem. med. 1908,

Wiesraxpr Hemianopische Gesichtsfeldformen., Wiesbaden. 1890.

WiLsraspr und Sineor. Neuvologic des Auges. 3 Bde 1900/1904.

Forsrer. Unorientirtheit, Rindenblindheit, Andeulung von Scelenblindheit, Arch.
£. Opth, 1890 and WiLeraxpr. Doppelversorgung det Macula lutea und der Kérster’sche
I'all von doppelseiliger homonymer Hemianopsie. Beitr. zur Augenheilkunde
(Festschir. fir Férster.)

%) Von Monakow. Gehirnpathologie. 1905. S. 757.
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“of the oceipital pole has to be taken in account as vox MoNakOW
desires, bul most probably even more. ‘ ‘ teo
The retinal projection on the coriex, secondary to ihat of the
lateral geniculate body is therefore without_doubt much-more com-
‘plicated than Henscuey had fignred lo himself. - | o

In 1909 I myself*) conld prove that the geniculo-cortical radiation
and the geniculate hody reacied differently. if by dovsally sitnated foci the
-dorso-lateral division of -the strala sagittalia was eut through, than
they did, if ventrally situated-foci destroyed the ventro-medial divi-
sion of these strala in the occipital pole. In the first case, with in-
complete quadrantic hemianopsia of the lower fields of vision, (he
dorsal division of {he radiation and the medial part of the geniculate
body was greatly, but nol allogether degenerated.

In the second case the degeneration took place in the ventral divisinn
of the radiation and the cauda of the body. Both degenerations were
incomplele. At present 1 can communicate (wo new cases, this
time of complete partial alrophy of the lateral geniculate body
fcauda or caput), of which one with exquisite quadrantic hemianopsia,
and through which I am obliged to extend even more than MoNakow
did, the areae of the coriex for the lateral geniculate body.

I8

Nephritis. Attack of unconsciousness on Dec. 9th 1910, followed by transi-
lory sensory aphusic, alexiv and permanent quandrantic hemianopsiain the
lower right fields of vision. which in July 1911 is tested through the oph-
thalmologist. In January 1912 second insull, which causes death. Autopsic:
Old haemorrhagic cyst in the Gyrus temporalis II and the Gyrus angularis,
sectioning complelely the dorsal optic radiations. Fresh bleeding tmmediately
next to this in the dorsal strata sagitialic.

Miss C. P. S..., 37 years, is the eldest of 9 children, of which 5 are still
living. The mother of this family died 50 years old of apoplexy, the father 75
years old of nephrilis. Mental or nervous diseases did not exist in the family.

No abusus alcoholicus, no syphils, Before this present illness she had nothing
lo complain of.

On the 9 of December 1910, she all al once fell unconscious, remained uncons-
cious for 10 days. Afler coming lo, she spoke wilh much difticulty, she could not find
the words, asked for *‘scur” (zuur) when she meant “hutter milk” (karnemelk), etc.

She soon regained a cerlain quantity of words, although she did not understand
everylhing allright, bul even now (July 1911) she names with difficalty the objecls,'
whicli she 1ecognises well. Especially proper names and nouns she often uses in
the wrong way. Moreover after Lhe atlack she could nol read, parlially, as she
says, because she soon grew tired, partially hecause she did not understand much
of whal she read. '

1y €. WixgLsr. De achlerhoofdskwab en de half-blindheid. P;sych. en Neurol,
Bladen. 1910 Bl 1—16. ‘ . K

-62 -




843

Lastly after the attack she had been paralysed on the right side, hut the'fame-
ness had passed off completely after three weeks. e

Afterwards she often had been giddy, in March, on {he 4™ of June and on the
15% of June; but this always happened at the beginning of Lhe menses, which
were very irregular afler (he attack, She noliced that afler the attack she did not
see very well to the right: it seemed as if white spols were there. The electric
light on the market-place seemed lo hang lower than formerly to her, and now
and then it was, as if brown spiders hung in fronl of the right eye. Since the
9t of December she sees woise through the 1ight eye She also often complains
of headache, vomilling at the same lime. Moreover the urine contains 4%,
albumen and many cylinders covered with cpithelium of the kidneys.

On account of these complainis she was brought into my ward of the Univer-
sity Hospital (Binnen-Gasthuis).

The patient looks very ill. s a woman of middle height. Anaemic. Much arteiio-
sclerosis. Somewhat enlarged heart. The second tore over the valvula aortae is
Joud. Pulse 90 - 120 .

Her attitude is active, she (akes intervest in her surioundmgs, is well oiientated
in time and in space. sleeps calmly, eals sufficiently. She can walk and makes
every movement.

Nowhere on the (trunc or exlremilies any tiouble of motility or sensibility is
to be found Except a lowered ahdominal reflex at the right side, all the retlexes
of the extiemities are within normal limits. No sign of Babinski. There are impedi-
aments 1n speach. She undestands simple commands without an yexception and follows
them out. Her ahundance of words is unlimited hut she often misspeaks herself.

lost of the objecls are well named; they are always well recognised. Now and
then she has to think long over lhem and after all uses the wrong word for them.

She recognises every lelter of the alphabel and pronounces them corectly.
"Also short words. She can read loud, bul she reads paraphatically and the longer
words are regularly badly reproduced. She does not comprehend the reading or
-only. insufficiently. To comprehend the reading she repeals it several times loudly
and then as a rule she does not understand il, she forgets many things. Yet she
can do light work. She manages her little affair in pottery.

- The smell is not affected.

The pupils are cqually wide, the right one does not react on light as correctly
.as lhe left. She eannot converge and the reaclion of the pupils by convergence is
not lo he seen.

.~ The vision of lhe right cye is 1/s; of the lefl eye /.

There is quadrantic hemianopsia in both the lower quandranis of the right
fields of vision (s. figure). .

Dr. Swrr, the ophthalmologist writes aboul the fundus oculi: “Tlere is no
-trace of papillitis - On the right the bordeis of the papilla ave clearly limited, but
there have been bleedings and theve is still some vedema of the relina (vetinitis
albuminarica), On the left the papilla is also clearly limiled, bul here too arevests
of haemorrhages.

Theve is exquisilc hemianopsia in the lower quadrants of the right fields of
vision. That the macula vision is lost in lhe right anoptic sector is probably due
to the bad vision of that cye.

,The eye-movements, especially by their turning lo the-vight and more so of
the left eye, are limiled. The lefl eye deviales (o the temporal side. Tt is impossi-
ble to divect bolll eyes lo one point. :

e e ey
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The hearing has nol been strongly disturbed, cerlainly nol on one side only.
A licking walch can be heard on both sides al a distaace of 1 Meter.

T T
;..i-.._ . Fapeastuy Pt = S

Lo
-

" T

Field of vision on July 6 1911,

The diagnosis was made of nephritis with rvetinitis albuminurica and a focus in
the left Gyrns angularis, cutiing through the dovsal strata sagiltalia.

July the 11t she left the hospital. On the 10™ of January 1912 she was brought
in unconscious and died three days later.

The accounl of the section shows: Hypertrophia cordis with nepliritis inlerstitia-
lis ehromica and a foeus in the left hemisphere, in the Gyrus temporalis 1l and
the Gyrus angularis. The brown coloured focus spreads itsell oul in a straight
direction along the distal thivd of the fissura 1, and follows this along its ascend-
ing branch. The dorsal bounder of the Gyros lemporals 11 and the ventral Gyrus
angularis are sunken in (s. lig. 1 and 2. On the seclion the focus proves lo be
a cyst with orange coloured walls, seclioning the strata sagittalia, in the neigh-
bowrhood of the relro-lenlicular internal capsule and sectioning them completely
in wore distal slides (fig 6 and 7). More distally, it soon retracts from the strala,

There is however a second fresh focus in the sirala sagillalia, an haemorbagy
ol bright colonr, consisling of scarcely altered blood corpuscles (See lig. 7 in ¥).

In resuming the eclinieal data, it i nol lo be doubted that the second fresh
focus caused lhe letal ending insult on the 100 of Japuary 1912 and that the
first apoplectic cyst vesponds lo the insull of the 9% of December 1910, which
brought forth the quadrantic hemianopsia as well as lhe secondary degeneralions.

The importance of this observation lies in the first place
in the fact, that a quadrantic hemianopsia of both the right
lower fielils of vision, noted with all ‘possible precaution, is
cansed by a foens entling “completely” through the dorso-lateral
division of the sirata sagittalia. Therefore too the secondary degene-
rations are of great importance. They lasted for 13 months and
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made alterations proximally in.(he lateral geniculafe body and dis-
tally in the occipital lobe.

As the reproduction of lhe Weigerr—PaL preparation 1) (fig. 6 and 7) and ploto
1 and 2 show, the two foci are thus situated that the older cuts the dorsal
division of the strata sagittalia” over the whole width.

This fccus — Lhe important one of the fwo — 1'eaclJ'es‘ close up to the lateral
geniculale body (fig 6, pointed out by the first line through fig. I and, 2) and
stretches, cutling through the strata sagiltalia, along the dorsal boumlaly of
the cornu inferius and posterius (fig. 7, pointed out by the first following linc
through fig. "1 and 2), where the fresh focus too is found. it ends about 2 c¢m,
proximally from the distal end of the cornu poslerius. Nowhere the ventro-medial
division of the strata is affecled directly by the focus. In fig. 6 and in fig. 7,
Urs is intact. '

According to the destruction by the focus, totally different fibre-syslems are
affected and a massive degeneralion lowards the occipital pole takes place.

The degeneraled mass of fibres has been drawn on a more distally situated
section (s fig. 8, line 8 through fig. 1 and 2) 1 c.m. distally from the focus 1).
In this is visible, thal the tapelum-fibres are very soon restored after their trans
seclion, showing nearly a normal tapetum and forceps posterior round the very
wide ventricle. In a less degree this is also the case with the stratum sagittale
internum. 1t has fewer fibres than normal, and between them are spread dege-
nereled fields in different spots. But the loss of fibres in the slratum sagittale
externum is enormous. No normal fibres are to be found in it. This mighty black
layer in Weigerr—PaL preparations is here replaced by a while band, as well
wn the dorsolateral as in the venlro-medial division.

Smaller white siripes, coming from the degenerated band round the ventricle
penetrate to far into the medullary cones of the convolutions, surrounding the
calcarine fissure, also lo the praecunens and to the gyrus angularis, The gyri ocei-
pito- tempowhs and fusiformis have suffered least.

The massive degenerated ring round the ventricle is always found distally from
tbe ventricle-end till the oceipital pole. About 1/; e.m. hehind this end (s. fig. 9,
line 9 from fig. 1 and 2) the distal point ol the reslored stratum sagitlale inter-
num is still touched and lies as a black island within the while degenerated mass
of the slratum sagillale externum, while nearly all the medullary cones of the
convolutions are degenerated and only fibrae arcuatae seem to be left.

The praceuneus has suffered least. In the section, which falls about 1 ¢ m. from
the occipital pole (s. fig. 10, last line through fig. 1 and 2) it is likewise. l‘lom
the massive centre degeneraled stripes penetrate in every conwolution.

All this' proves that perceplion in the upper fields of vision is
still possible, notwithstanding the stratum sagittale externum in the
occipital pole is missing. If thereforc the fibres, used for visual per-.
ception are to be looked for in that layer, as seems probably to me,

1) Al these figures have been drawn with the grealest care; they are enlarged
21/ limes and reduced lo 7/ ol their size at the reproduction. Photos would
have shown the same things, but drawings are more instructive as combinations
of several seclions are possible.

-65 -



B4n

those which are spared here, do not at all belong to the occipifal
pole, but they must issue from far more proximal parts of the Gyrus
occipito-temporalis. ,

This conclusion is the more valuable, if we look at the influence
which the focus has had on the geniculo-cortical radiation and on
the lateral geniculate body. - .

)

h '

To make this clear I have drawn in fig. 4 a normal sectlon of the suuoundmgs
of this body and in fig. 8 a cell-prepmation?) of the same, to make compatison
possible.

In these figures one sees the lateral geniculate body, which shows on frontal
sections the form of a shoe (s. fig. 8) and in which can be distingnished a dorso-
medial part: the capul, and a latero ventral one: the cauda.

Within its own fibre-capsule covering the whole of it, (s. fig. 4) layers of
fibres — lamirae mecdullares — are alternately followed by layeis of cells. The
cells in the ventral layers are large, those in the dorsal ones much smaller,
although, especially in the capital part lavge cells penetrate in these dorsal layers.
The 51ze of the dorsal celis differs a great deal between themselves. Many of lhem
are very small.

In the normal fibre preparation the cauda contrasts but little against tlie caput,
because the radiation of the optic tract has already begun in this proximal section.
" On the dorso-lateral side the lateral geniculate body is covered by the triangular
area of Wernicke through which (he geniculo-coitical radiation penetrates. In lhe
dorsal part of this area (s. fig. 4) the fibre-direction is tolally different from the
transverse sectioned fibres of its veniral part

A rather thick layer of very thin subependymal fibres suriounds the area of
Wernicke against the ependym of the venlricle. As soon as the geniculo-cortical
radiation has freed itself fiom this area, it opens ils way in elegant curvings
through the fionto oceipital hundle and the relro-lenticular division of the intetnal
capsule to the strattm sagitiale externum. So it seems at least, although nobody
will dare to make a decided conclusion aboul the origin of these fibres, crossing
liere in all directions.

1If we compare the above desctihed area of the noimal brain with an identical
of owr quadranlic hemianopsia, it then follows, (not to mention the degenerations
in the fronto-occipilal bundle, in the mere proximally situated pails of the corona
radiata, etc) that the dorsal layers ‘of the geniculo-cortical radiation, and more in
particular of the atea of \Wernicks, are lotally degenerated. The ventral division
of this fibre-aren on the other hand, 1s nol much injured, neither is the neighbouring
dorsal and ventral part of the proper medullavy capsule of the laleral geniculate
body (s. fig. 6). In the cauda of the body we find intact Jaminae medullares.
In the capul (in ils dorsomedial part) e pmpel medullary capsule is dotsally
-and venlrally gone as well as the siriae medullares All the cells of this caput are
{s. fig. D) vanished, the dorsal as well as the large venlral ones. The layers in
which lhey were situated are lo be seen as thick layers of glia. The whole body

e e et
3

1y The ccll-preparations ‘of this body lave been drawn will the camera of Zeiss;
they ave enlarged 20 limes and reduced to 7/, of then size by the 1eploductmn
Idem with the retro-lenlicular area. :
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is reduced to almost half ils normal sizel), bul in ils” cauda the small dorsal
anl the large vential cells (s. flg. 6) ave completely intact ; there too the striae
medullares as well as the proper capsule are on the whole untouched.

The conclusion is readily made: the possibility of sight in ihe
upper quadranis is due to the conservation of the cells and fibres
in the cauda of the lateral geniculate body, their projection on the
cortex being preserved by the ventral layer of the area of WerNICKE
and of the geniculo-cortical radiation.

But where do these cells find their projection on the cortex? Not
in the occipital pole which in my opinion was totally separated
by the focus from’ the lateral gemeculale body, as is shown by the
complete degeneration of the stratum sagittale externum and all the
medullary cones of the occipital convolutions (only fibrae arcuatae
remained). Perhaps from the gyrus occipito-temporalis, its medulla
being bw partly cut through by the focus (s. fig. 7). Distally from
it (s. fig. 9) the medullary cones of the temporal circouvolutions
were normal, those of the occipital lobe (s. fig. 9) were degenerated.
Proximally from 1t this convolution with normal medullary cone
contributed to the forming of ihe intact ventral division of the sirata
sagittalia.

The answer to the question where the field of projection of the
lateral cells of this body was situated, was bronght to me by a very
remarkable right hemisphere, given to me by Professor Bork. He
had found it by accident in the corpse of a woman of whose ante-
cedents nothing was known,

IT.

. -

This right hemisphete carries the rests of a very old pathological process, which
has 1educed on the (ransition of Uie basal temporal and occipital lobe all the
convolutions with their medullary cones to a thin membrane. When the pia mater
was removed it was lorn near the cuneus. (s. fig. 11). The occipital pole is intact
On the middle of the cuneus the delect hegins with a sharp edge. The proximal
end of the cuneus, of the gyrus lingualis and of the gyius fusiformis, as well
as the medial part of the gyrus occipito temporalis (as far as near to the f. 1himca)
ae replaced by a thin membrane (s. fig. 11, 13, 14, 15 and 16).

The series of sections show the following #). The first remarkable alteration is
drawn in fig. 16 (pointed out by Lhe line 16 on fig. 11 and comparable wilh
fig. 9 of the first observalion). Thrice Lhe distal end of the defect has been cut.
[rstly in A in the depth of the fiss calcarina. There the cortex is gone and the

) The enlargement is similar lo thal of Lhe normal figure. (s. fig. 3).
) In oider lo give an easy survey the scclions ate reversed and drawn as-if
they came {tom a left hemisphere.
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medulla of the circonvolution lics uncovered. The line of Gennarr ends on hoth
sides sharply against the defect, is not atrophied, even mightier than usual and
formed by thicker fibres; secondly in B, where venirally from the f. pariéto-oceipitalis
the medulla of the cuneus lies uncovered and in (. where the defecl begins in
the gyrus fusiformis.

“In the white matter opposite the fissura calearina o iriangular degeneraled ﬁcld
is to be seen. It is siluated for Lhe greater pail venirally,“bul also a bit Jatevally
round the sectioned distal end of the strata sagitlalia

In figure 18 (pointed out by line 15 of fig. 11 and comparable to fig. 8 of tlm
firsl observation, the defect is found distally from the confluence of the fiss. cal-
carina and f. pariélo occipitalis. All the basal convolutions arve missing.

Cuneus, lingualis, fustformis, as well as the medial boider of the ventricle arc
entirely gone. The medial medullury cone of lhe g. occipito temporalis lies unco
vered. The degenerated field is larger, lies partly in the ventral, partly already in
the latero-dorsal division of the stratum sagittale internum, but also in the stralum
sagitlale externum, especially there where the ventral division of it passes inlo
the lateral. For the rest he stratum sagillale externum is seen quite‘distinctly
Lere (in fig. 8 totally gone), a proof that his area consists of more fibres than
the geniculo-cortical radiation only (all gone in fig. 8).

In fig. 14 (pointed oul by line 14 of fig. 11 and comparable to fig. 7) the
splenium corporis callosi is sectioned. ,

Except a rest of the Cornu Ammonis no convolulions are to be found ventrally
from the cornu inferius. The grealer part of the gyrus occipito-temporalis is gone.
The intact ventral strata sagittalia, as were found in fig. 7 are missing. The dege-
nerated field (due to the defect) lies laterally and dorsally from the ventricle in
both the sirata sagittalia.

A great parl of the dorsal slratum sagitlale exlernum is intact. In fig. 7 exactly
this large layer was lolally destroyed and therefore also Lhe geniculo-corlical radia-
tion to the occipital lobe.

In fig. 13 (poinled out by the lines 13 of fig. 11, comparable to fig. G) the
retro-lenticular avea is sectioned 1).

As if this section were the negative of that reproduced in fig. 6, onc hardly
finds here normal fibres in fields, which were there the besi prescrved In the
ventral part of the ocmculo cortical vadiation and of the avea of WERNICKE all the
fibves are gone. The ventral and lateral part of the proper capsule of the lateral
geniculate body scarcely consist of normal fibres, the striae medullares in Lhe
canda are gone, and the body is reduced to half its normal size.

On the other hand the dorsal part of the geniculo cortical radiation and the
area of WERNICER, the dorso-medial proper capsule and the striac medullares
in the caput of the geniculale body are only relatively changed ?).

“The same reverse is shown in the cell-preparalions of the body itself. Latero-
ventral, in the cauda of the body not one cell is to be found.

Thick layers of neuroglia, where once lhe cells were alternate with less thick
layers of neuroglin (now representing the striae), but all celis, the dorsal as well
as the ventral, have disappeared. On the olher hand, the dorso-medial part, the
capul of lhis ganglion contains well ranged cell layers, small dorsal ones as

1 Here, as well as hefore, parposely I do not point out several olher degene-
vations, Tv make things still less complicated I do not even menlion the influence
upon lthe pulvinar of both these foci. "
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well as a number of venlral large cells. This geniculate body i m every lcﬂpucl
the negative of fig. 6

The result of this observation is clear enough: The important defect
in the occipital lobe above mentioned, was not sufficient to produce
an atrophy of the dorso-medial division of the lateral geniculate
body. The cauda on -the other hand lost all the cells and fibres.
From our first observation we learned thal the cauda remained
uninjured, when the focus (s. fig. 6 and fig. 7) totally destroyed the
dorsal layer of the strala sagitlalia. There (according to the spot
of degeneration in our secend observation in fig. 14) the geniculd-
cortical radiation from the ventral occipilal convolutions is already
situated dorsally from the cornu inferius.

Moreover on the same scctions in ouv first observation the ventral
strala sagittalia are intact, and exactly these are completely missing

in the second (s. fig. 13). New was fo me the exquisite total loss
of all the cells and fibres, either in the lateral, either in the medial i
half of the geniculate body, as is found in both these observations, ﬁ
although I possess many other partial atrophies of it after occi- b
pital-lesions. ﬁ,
Generally spoken, lesions of the medic-ventral occipital convolu- It

tions cause alrophy of the latero-ventral part of the geniculate body,
but in my cases it has never been a {ofal one. i
As long as the gyrus occipito-temporalis proximally from the cal- i
carine fissure is uninjured, not all the laterally situated fibres dis- i
appear, but cells oflen remain in the venlral, occasionally also in the ;'j
dorsal layers. ') Only after the knowledge of such extremes asabove i
described, I have learned to appreciate the incomplete atrophies.
Wedges tuarning their Dbase to- the dorsal part of the geniculate ]
body, fall ouf. Their localisation differs by the place of the focus, !
although they never touwch the dorso-medial part of il, as long as :
the focus only destroys the veniro-medial occipital convolutions. ,
In this way e.g. must be considered the ventral occipital focus i
with atrophy in the canda of the lateral geniculate body, described
by myself in 1910. At present I complete this observation referring 3
to the same figures in order to describe that geniculale body exactly., !‘
w. ;
A basal delect in the left hewisphere (s. fig. 17, also Psych. and Nearol. Bladen
1910. p. 16 more precisely the pholes on plate IV and fig 12 on plale V) elimi- 5
— 4
1) Nearly lhe same can bhe said of dmmlly situaled foci (mutatis mulandis) :
which seclion the optic radiation cither close lo, the geniculale body or fullhex ofl, 4
[ shall refer to this later on, i
:
,
f
i
1 o
i
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nates the Oy, the gyrus lingualis and fusiformis to the confluence of the calcarine
fissure with the parieto-occipital fissure (s. Psych Bladen Pl 1V, fig. 6). Also a
part of the gyrus occipito-temporalis, Jying more proamally, is injured. l

Through this lesion the ventral division of the geniculo-corlical radiation as
well as that of the area of Wrraickr is degencrated, bul in less degree ifs most
ventral layer (c[. Ps. Bladen, Pl. V, fig. 19) -

The geniculate bhody belonging to this is drawn in fig, 18. It is smaller than
normal, but nol as far reduced as in both the former observalions. The proper
capsule is not changed dorso-merhally and the same can be said ofils cells, dorsal
as well as the ventral ones, helonging to the caput of the ganghon. -

The cauda is for the greater part alrophied but not the most laterally siluated
division of it There, venlral and dorsal cells aie to be seen within an almost nor-
mal capsule. Between caput and cauda, not or only little changed, one finds in
the middle a part, where :1l 1s detroyed; the dorsal and veniral cells, the sttine
medullares, the proper fibres and the proper capsule.

P )
In this case an esample is shown of an incomplete .atrophy of the
cauda of the lateral geniculate body, incomplete because the focus
did destroy the ventral occipital convolutions, but had not touched
the gyrus occipito-temporalis far enough proximally. Therefore the
most ventral layers of the geniculo-cortical radiation and the most
lateral parts of the cauda remained free from degenerative alroply.

Recapitulating I come to the following conclusions:

1. Vision in the upper quadrants of the field of vision is possible,
notwithstanding the total loss of all the cells and fibres in the medial
(caput) division of the crossed lateral geniculate body, as long as the
cells and fibres of the cauda (origin of the ventral geniculo-cortical
radiation) arve intact.

2. It is not sufficient that the ventral occipital convolulions are
destioyed to make all the cells disappear out of the lateral (cauda)
division of the geniculale body. This only occurs when more proxi-
mally situated parts of the gyrus occipito-temporalis are destroyed.

3. The cortical areae belonging to the lateral geniculate body
are not only limited to the cortex of the occipital lobe.

Chemistry. — “On the occurrence of metals™.in the: liver”. By
Prof. L. van Irsvmk and Dr. J. J. van Eck. (Comnunicated
by Prof. BINTHOVEN). S
(Communicated in the meeting of November 30, 1912).

In the analysis of organs as to the presence of metallic poisons,
we found in the lignid obtained after destruction of 170 grams of
liver, kidney and heart, in addition to iraces of arsenic and copper,
as much zinc as corresponds with 80 mgs. of zinc oxide per kilo-
gram of organs. As there was no veason to suppose that a poisoning
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with a zine sall had been altempted the literature was consulied lo
see whether anything was known as to the occurrence of zine in
the human body. This investigation gave a positive result: Commu-
nications have been made by LucHsrtir and Bennamy!, and by
Raovrt and Breron*) from which it appears that the human liver
may contain 10—76 mgs of zine per kilogram. The-quantity might
be dependent on ihe ‘age, the sfate of healih and the natuve of the
food of the persons from which the liver 15 derived.

As the method of investigation did not appear to us correct in
every respect and as ihe number of livers tesled was comparatively
small and as, moteover, the results could not be {aken as applying
to Holland without further evidence, we have investigated anumber
of human livers of Dutfch origin., We have also extended the inves-
tigation to the occurrence of arsenic and copper.

As regards the presence of arsenic, the results of BromamuxpaL *)
are opposed 1o those of the French investigators. Whereas the latter
assume the presence of normally-cccurring arsenic, according fo
Browmusparn the liver does not normally contain the same.

As to the distribution of copper in the animal and vegetable orga-
nigm, investigations have been carried out by Lurmanx *). There was
reason (o suppose that the “charring process” employed by him had
caused the vesults to be too low ; moreover, figures of Dutch origin,
are also wanting here.

For the desiruction of the organic matter we, with a few modi-
fications, made use of the process devised by KersoscH in the phar-
maceutical laboratory at Leiden. This method has the great advantage
that the organic substance is completely desiroyed, the only reagents
used being sulphuvic and nitric acids which can be obtained absolutely
free from arsenic.

For this purpose, a current:of hydrochlovic acid is passed for sonte
bours through sulphuric acid heated at 250—-270°, whereas nitric
acid can be obtained free from arsenic by distillation. In a check-
experiment where 25 cc. of sulphuric acid and 250 ce. of nitric acid
had been used and of which 5—6 cc. "of liquid were left after distil-
lation: no arsenical mirtér could be obtained in a modified Marsh-
apparacus. From previous  investigations, it had already appeared °)
that the limit of sensitiveness may be taken as 0.000L mg. of avsenic.

4y Compt.-rend. de.l'Ac! dev Sc. 84, 1877, p. 687—690,

+ % ldem. 85, 1877, p. 40—42. ’
8 Azsem(,um in het dietlijk’ organisme. Dissérlalie Leiden 1908,

. by Arch. H) glenc 24, 189{)
5 BLOEMENDAL e -~ -
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As to the exact madus operandi of (he quantitative determinations,
we refer to the more detailed communication to be published elsewhere.
The vesults of our investigations are collected in the annexed table,
augmented with the data furnished to us as to the origin of the livers.

HUMAN LIVERS.

e S e e e e ,_~Number c;;..nTg-_;.
e ) Course per kilo of liver,

Age 3 Occupation Residence calculated as:
of death ——

As | Cu Zn
Still-born . — 126.1173.9
Some hours — [30.0152.2
5 weeks m. Leiden 0 | 8.055.7
3 months  |m. " Acute enteritis 0 [18.9)55.0
3Y, years m. | Rijnsburg Diphtheria trace 110.6{67.8:

5, m. | Leiden ’ 0.06 | 2.9 —
21, f. | Servant " Morbus Basedowi 0 |5.7136.1
24 f. Woudrichem | Miliary tuberculosist 0 [11.2]79.6

28 m.| Greengrocer Den Haag 0 | 4.8 —
28 f Noordwijk Pneumonia 0 (14.856.2
32 , m.| Navvy Friesland Septicaemia 0.03 { 6.0[50.6
3%, f. Hazerswoude | Carcinoma 0 }5.0017.1
3% f. | Housewife Leiden " trace {17.7/60.5
37, m.| Roadman Den Haag 2.631) 3.8/54.3
39 m.| Gardener Voorhout Kidney tuberculosis| trace | 3.2(79.4
43 m.| Dealer Nieuwkoop Brain bleeding trace |6.15(44.5
40-50,, m.| Goldsmith Leiden Tumour in stomachj trace {10.0/62.3
50 f. Vlaardingen | Tumour in kidney| 0 [13.8/64.6
[ - f. Leiden Apoplexy 0 | 7.4/55.9
0o, m.| Casuallabourer " Hypertroph. prostat.| 0.1 |10.6{26.7
4, f, " Apoplexy 0.015]| 9.0{53.0
%, f. | None " Rib fracture 0.5 | 9.1(86.8
8 f. " Heart disease trace | 3.8/35.0
8 m. . Arteriosclerosis 0 | 8.0{41.1

a medicine,
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In the investigalion of the liver of a new-born calf were found,
per kilo, 31 mgs. of copper and 81.1 mgs. of zinc.

From the results obiained the following conclusions may be drawn :

1. Arsenic is not a normal constituent of the human liver.

2. Copper and zine appear to occur regularly in the human liver.

3. They are already deposited in the liver during the foetal siage
and, as vegards copper, even in a larger quantity than in the fol-
lowing period.

4. Otherwise, there seems to exist no relation between the copper
and zinc contenl of the liver and the age, sex, occupation and place
of residence.

5. The figures given by Lmnmany for the copper conlent are com-
parvatively low. His maximum fignre of 5 mg. per kilogram of liver
i, as a rule. exceeded in Holland.

Pharmaceutical Laboratory
University, Leiden.

Chemistry. — “Hquilibria i fernary systems. [1”. By Prof,
SCHRRINEMAKERS.

(Communicated in the meeting of November 30, 1912).

In the previous communication we have observed the changes
when at a constant temperature there is a change of pressure, and
from this deduced the saturation lines of a solid substance # under
their own vapour pressure. We will now Dbriefly consider the case
that, at a constant pressure, there is a change in temperature. At
a constant temperature a reduction of pressure causes an expansion
of the gas region and a contraction of the liquidum region; under
a constant pressare the same happens on elevating the temperature.

A system that exhibits at a constant temperature a maximum
vapour pressure (minimum), has al a constant pressure a minimum
boiling point (maximum). .

At a constant temperature, the influence of the pressure on the
situation and form of the saturation lne of ['1s generally small
unless at temperatures close to the melting point of F, at a constant
pressure the influence of the temperature is usually much greater
and the movement of the line, therefore, much more rapid. Yet, as
a rule, the liguidum line will move wmore rapidly than the saturation
line unless indeed the latler is on the point of disappearing.

At a constant temperalure, the saturation line of [ may disappear
on increasing or reducing the pressure; this depends on whether, on
melting, an increase or a decreasc of the volume takes plare Under

56

Procecdings Royal Acad. Amstecdam. Vol XV,
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a constant pressure it disappears at an elevation of temperature only.

From all this it follows that most of the diagrams described above
which occur at a constant temperature on reduction of pressure
will also. as a rule, form at a constant pressure by an elevation of
temperature. At a constant temperature, the lignid and the gas of
the three-phase equilibrinm 74 L 4 (7 each proceed along an
isothermic-polybaric curve which we have called the saturation line
of I under its own vapour pressure and the vapour line appertaining
thereto.

Under a constant pressure, the liquid and the gas of the three-
phase equilibrium F 4 L - ¢ each proceed along a polythermic-
isobaric curve. As these solutions saturated with F can, at a given
pressure, be in equilibrium with vaponr and consequenily boil at
that temperature we will call these lines the boiling point line of
the solutions saturated with /# and the vapour line appertaining
thereto.

The sataration line of /7 under its own pressure may be circum-
phased [fig. 7 (I) and 11 (I)]") as well as exphased [fig. 12 (I} apd
13 (I)]. The same applies to the boiling point line of the solutions
saturated with £, with this difference, however, that fig. 13 (I)
does not occur. The saturation line of F under its own vapour
pressure exhibits a pressure maximum and minimum ; the boiling
point line of the solutions saturated with /' a temperature maximum
and minimum. These are, however, so situated that the arrows of
the figs. 7 (I), 11 (I) and 12 (I) should point in the opposite
* direction.

We will refer later to these curves in various respects.

We can also unite these boiling point lines with their correlated
vapour lmes for different pressures, in a same plane. We then
oblain a diagram analogous to fig. 14 (I) in which the arrows,
however, must point in the opposite direction. If the pressure axis
is taken perpendicularly to the plane of drawing, the spaceal
vepreseniation gives two planes, namely the boiling point plang of
the solutions saturated with I7 and the correlated vapour plane.

We will now consider stil in another way the saturation lines
under their own pressure and the boiling point lines of the liquids
saturated with a solid substance.

We assume that a solid substance I of the composition «, 5, and

1) The number (I) placed behind a figure signifies that a figure from the frst
communication is intended.

-74 -



855

1—a—B is in equilibrium with a liquid L of the composition 2, y
and 1—a—y and with a vapour L of the composition x,, y, and
1—a,—y,. We call the volumes of these phases v, V, and 7,
their entropies %, H, and H,, their thermodynamic potentials §, 2
and 7.

As equilibrium conditions we find -

0Z 0Z
2~ =0 5o — (=03, =}

0z, 02,
L—lm—dg ! - A= ()
0z oz, 0z 0z,

Py _é—;—l- en E = a—%—
From this we find:
[(w—a) » + (1—B)] do + [(8 —a)s + (y—B)] dy = AdP—BaT" . ()
[(2,—a)r, + (v, = B)s,] dry + [(w,—a)s, + (y,— B 1 dy, = A,dP - B,dT'(3)
rde + sdy = ».d, 4 s, dy, + <6V1 —a—I{ a -—((—jﬂ—-y—i)dT 4)
T O oz, Oz

%, d=z

oV, 3V (OH, OH\
sdv + tdy = s,de, + t,dy, + (W — 5;) aP— (—— —5, ) ©®
° J1 D b

If we only want a relation between dr, dy, dP, and d7' then
from the previous equations we deduce:

e =) + (y - Bsl dv + [(y—ea)s + (y—B)t]dy = AdP—BdT . (6)

l(r,— ) + (y,—y)sldar + [te,— s + (y,—))dy = CAP—DdT . (7)

In this:

oV oV 0H 0H
A=V—v+ (a—2) . 4 (15‘—1/)@ B=H—n+ (a—-ﬂ,)é—w— -+ (ﬁ—y)ﬁ

C=V,— V—{—(n;—ml)g—;—}-(y—yl) STVD:HI— H+ (m—ﬂ'l)-g‘?i;i"f' (3/—2/1)%5-[.
In order to obtain the saturation line of the solid substance I
under its own vapour pressure we call in (6) and (7) dI'=0; we
then obtain :
[(e—a)r+ @ —B sl de + (e —a)s + [y — B ] dy = 4dP  (8)
[(@,—2)» + (g, —y) s] de + [(w,—2)s -+ (y,—y) t] dy = CdP (9)
'The correlated vapour line is obtained: by interchanging in these
relations the gquantities velating to vapour and liquid. In order that
the pressure in a point of the saturation line under its own pressure
may become maximum or mirimum 7 in (8) and (9) must be = 0.

Hence :
56
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[(@ —a)r + (y—P)slda + [(w~a)s + (y —B)¢] dy = 0. (10)
(&, —2) 7 + (y,—9) s} do + [(&,—2) s + (y,—)t] dy = 0. (1)

This means that in this point the saturation line under its own
vapour pressure comes into contact with the isothermic-isobaric satu-
ration line of ¥ (10) and with the liquidum line of the heterogeneous
region LG {(11).

We can satisfy (10), and (11) by:

y=B_vy L ay
r—a &,

This means that the three points represeniing the solid substance
I, the liquid and the vapour are situated on a straight line. Hence,
we find that on a saturation line of a solid substance 1 under its
own vapour pressure, {he pressure is maximum or minimum when
the three phases (/, L, and () are represented by points of a straight
line, or in other words, when between the three phases a phase
reaction is possible.

If we imagine before us the equation of the correlating vapour
line we notice that when the pressure in a point of the. saturation
line under its own vapour pressure is at its maximum or minimum,
this must also be the case in the corresponding point of the correlated
vapour line. It then also follows that the correlated vapour line, the
vapour saturation line of 7/ and the vapour line of the heterogeneous
region LG meet in this point.

The previous remarks apply, of course, also to the boiling point
line of the solutions saturated with F; in (6) and (7) dP must then
be supposed = 0.

Hence we conclude:

When solid matter, liquid and gas have such a composition that
between them a phase reaction is possible (the three figurating points
then lie on a straight line) then, on the saturation line of the satu-
rated solutions under its own pressure, the pressure is at its maximum
or minimum; on the boiling point line this will be the case with
the temperature. The same applies to the vapour lines appertaining
to these curves. In each of these maximum or minimum points the
three curves come into contact with each other.

The properties found above have been already deduced by another
way in the first communication.

We will now investigalé the saturation line of 7 under its own
vapour pressure in the vicinity of point JF. First of all, itis évident
that one line may pass throngh point F.

For if in (8) we call z=a and y = it follows that dP=0;

(9) is converted into:
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[(@,—a)r 4 (g, = B) sl da + [(s,—a) s + (y,—P) t] dy = 0. (13)

. dy . .
We thus find a definife value for g‘l; at the same time it appears
& .

from (13) that in point [ the saturation line under its own vapour
pressure and the liquidum line of .the heterogeneous region LG
meet each other. It further appears from (13) that the tangent to
the saturation line in F under its own vapour pressure and the line
which connects the points F with the vapour phase are conjugated
diagonals of the indicatrix in point F. (The same applies, of course
to the boiling point line of the saturated solutions). '

If accidentally, not only the liquid but also the vapour still has
the composition £, therefore, when not only =« and y =8, but
also #, = ¢ and y, =B, then g{- becomes indefinite.

In this case, however a maximum or minimum vapour pressure
appears in the ternary system LG; we will refer to this later.

From (6) and (7) we deduce for # =« and y = 8:

(BC—AD) dT
4

This relation determines the change in temperature d71° around
point #; this is always differing from O unless one chooses du and
dy in such a manner' that the second member of (1) becomes nil.
According to (13, this signifies that, starting from %, one moves
over the tangent to the liquidum line of the heterogeneous region L (X

We now choose dx and dy along the line which connects the
point [ with the vapour phase; for this we put:

? de = (v,—a) di. and dy = (y,~B)dr . . . . (1)

We then obtain from (14)

(BO—AD) dT=(V—0) (e, ~a)* + 2 (8,—0) (1, —) s +- (3,—B)* § &1 (16)

In this we have replaced 4 by the value V—u, which 4 obtains
for ==« and y =p. -

Let us investigate the sign of:

K=BC — AD=(II—%)C— (V—-2v) L.

Now, C is the increase in volume when a quantity of vapowr is
generated from an indefinitely large quantity of liquid; D is the
inerease in -entropy in this reaciion. Hence so long we are not too
close to temperatures at which eritical phenomena ocenr between
liquid and vapour, C is as a rule large’ in regard to (V—v); H—q
and D are quantities of about the same kind. If now V <w, then
K is for certain positive; if, however, V" > », then K is, as arule,

={@—a)r + (1, —Psda + i@, —a)s - (y;—3)Gdy (14
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also still positive on account of the small value of V —» inregard
to (. We wll, therefore, in future always pul K positive; should
it become negative the necessary alterations can readily be introduced.

We now distinguish two cases.

a. V>wv, d7 and dX have the same sign;

b. V<, dT and d) have the opposite sign.

Now, it follows from (15) that dA >> 0 signifies that one is moving
from point [ towards the vapour phase. From this we conclude:

The part of a saturation line passing through the point F' of the
substance I under its own vapour pressure and situated in the
vieinity of 77 moves at an increase of temperature:

a. if V>, towards the vapour phase appertaining to point A

b. als 7 < v, away from the vapour phase appertaining to point £

From (6) and (7) instead of (16) we can deduce also:

KaP = (H—) {(x,—a)' » + 2 (2, — ) (y, —B) s + (y,—P)* 2. (17)

From this we conclude: ’

The part of a boiling point line of the saturaled solutions of /
sitnated in the vicinity of /7 moves, on increase of pressure, always
more towards the vapour phase appertaining to point 7.

In order to get a better knowledge of the saturation line of F
under its own vapour pressure which passes throngh the point F
and of the boiling point line of the saturated solntions of F we will
also introduce in our formulae.terms with de*, dzdy, and dy*. In
order to simplify the calculations a little we will assume provisionally
that the vapour consists of one component only.

We, therefore call in our previpus formulae z, =0 and y, = 0.
Our equilibrium conditions (1) then are converted into:

BZ 07

Z - "% Yoy az/

=Z. . . ... (18

0L
7+ a5 -H?a =% . . . . . . (19
Y
We now write for (18), 7’ bemg kept constant:
1 or 0s

(m+ys)dw+(ms+yt)dy+~( tog )dw +

+(+%a +Ja)dde+ (t+%a +u )dl/ =
oV oV '
(V——V——.@W—-ya'/>dl7-}-.... Y 1)
From (19) follows:
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(ar+3s) do + (as+8t) dy + %(ag—r -+ Bgi) da® +
s 0¢ 1/ 0s ot .
+(“a+5&)flmdy+g(a@+5@)dﬂ + ..
:(U—Vl———aa—v-—-ﬁf—)z)dl’-i— ..... R 18
oz oy

Let us now deduce (21) from (20) after having substituted in (20)
t=a and y=p: we find:

1 1
?1-.d.'c'-'-[—sd.'vdg/+—é~tdy“—|—...:AdP+... .. (29

in which the coefficients of dP.dx and dP.dy are nil, whereas
for the sake of Dbrevity we write the coefficient of dP in (21)
—(d -4 C). A and C then have herein the same values as in our
former equations. Then, however, we assume ¢ = ¢, y = 8,2, =0,
and = 0.

From (22) follows d/’ of the order d2* and dy*, here from (21)
at” first approximation :

l (er 4 Bsyde 4+ (s +-Bt)dy =10 . . . . (23)

In connection with (13) it appears from this that the liquidum
line passing through point /' and the saturation line of /7 under its
own vapour pressure come into contact with each other.

If we eliminate dP from (21) and (22) we obtain:

(ar + 89 do + (as + B0 dy + L(a% L z)u +
& T
b, g% 2 Vdedy 43 (> 1 8% 1 ;z)w——omi
+(aa—m+ a—w—}—s—{— .s)ay-{-g(aazl—{—ﬂgg-/—k + 2t ) dy* =0 (24)

. : ¢
in which 2=~
A -
For the liquidum line passing through point F' we find:

or 0
(o4 80 o e+ B0 dy + 3 (G485 +o+7 ) do

0s 0t 0s 0t .
+(ogtpg o )asty + 3 (ag 485 o) dr=0. 2

For the sake of brevity we write (24) and (25) as follows:
caX F Y e X @A XY K+ FT=0 . (26)
. aX + Y 4 4 eX* - dXY F4e¥Y*=0. . . . (2D
Equation (26) now relates to the saturation line, under its own
pressure, passing through F, (27) on the liquidum line of the hete-
rogeneous region LG passing through F.
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Now the curvature of (27) is given by:
2abd—a’e—b%
Sl (28)
(a® + %)Y
that of curve (26) by:
20bd—a’e—b*c— Au’t ~|—Jb”r—-2abs)
(a* 4 b)) '
As (28) and (29) have the same denominator we, in order to
compare the curvatures of both curves, only want the numerators.
For the sake of brevity we wrile:
2abd —a’e — 0 =Q. . . . . . . (30)

. (29)

and
2abd — a*e — ¢ — A(at + D'r — 2ab)=Q—AS . (31)
If, by means of the known values of @ and { we calculate the
value of S we find:
S = (vt — s?) (a®r 4 2 efs 5~ B)

hence, S is always positive. .

In order to find the direction of the curvature we calculate the
coordinates & and % of the cenire of the curved circle and ascertain
al which side of the tangent this centre is situated.- Therefore, we
call the origin of the coordinate system the pomt which in this case
represenis the vapour, 0. We now find the following: the liquidum line
is curved in the point F towards O when Q< O; it is curved in
I away from Quif Q> 0.

A consideration of @ shows thal this can be positive as well as
negative; hence, the liqudum line can be curved in £, away from
0 as well as towards O.

In order to find the saturation line under its own vapour pressure
we will consider two cases. .

Owmg to the small value of V —w, A will generally have
a large positive value. In Fig. 1, wherein for the moment we
disregard the curve d’JF¢, the liquidum line is represented hy dFe;
the point O is supposed to be somewhere to the left of this curve
dFe so that this is curved towards O; () is consequently negative.

ad X “
[24
a & &
e/
g £ ¢
Fig. 1. " Tig. 2
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- From this it follows al once that @ — AS is also negative and that
the saturation line under its own vapour pressure, namely the curve
Fab, must possess a curvature stronger than that of the liquidum
line. It further follows from our previous considerations that they
must intevsect also the line O somewhere between O and F so
that they must exhibit a form as indicaled schematically in fig. 1.
The change in pressure along this curve is delermined in F by (22),
from which it follows, that, starting from 7, P is positive whether
towards @ or towards 0. The pressure in I 1s, therefore a mini-
mum one and increases in the direction of the arrows. The solution
with maximum vapour pressure is, of course, in this case situated
on the intersecting point of this curve with the line OF.

We will now disregard the liquidum line dZFe of fig. 1 and sup-
pose it to be replaced by d’#e¢’ which is curved in another direc-
tion: @ is, therefore, positive so that @ — A.S can be positive as
well as negative. If the liquidum line is not curved too strongly
(@ —AS will be negative and the saturation line under its own
vapour pressure again exhibils a form like the curve aFb of Fig. 1.
[t however the liquidum line is curved very strongly and A is not
too large, then @ —2 S can also become positive, so that both
curves in I are bent in the same direction. This has been assumed
in Fig. 2 wherein dFe¢ represents the liquidum line and aFb the
saturation line under its own vapour pressure. As in this case, Qis
larger than @ — AS it follows, as assumed in Fig. 2, that in the vicinity
of I the curve df'e must be bent more strongly than the ecurve a Fb.

V< w. A has, therefore, generally a large negative value. In the
same way as above we find that Figs. 3 and 4 can now appear.
The safuration line under its own vapour pressure is again represented
by aFb, the liquidum line by dFe. In Fig. 3 are united two cases,

s

a

N

& 4 F
e € €
Fig. 3 Fig. 4.

namely a liquidum line dFe curved towards O and another d'Fe
carved in the opposite direction. We must remember also that the
line OF must intersect the saluration line somewhere in a point
situaled &t the other side of & than the point 0. 4 now being
negative, it further follows from (22) that the pressure of A must
now decrease {owards a as well as towards §; hence, the arrows
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again indicate the direclion in which the vapour pressure increases.

The previous considerations’ relate to the saturation line under its
own vapour pressure; in a similar manner we may likewise inves-
tigale the boiling point line of the saturated solulions. We must then
. . . oD _-D
in (26) replace A by w in which pu= B=HE

Instead of @—A.S we must then consider @—p S. u is now always
positive and as regards absolute value smaller than A. Further we
must replace AdLP in (22) by BdZ. As, moreover, the line OF must
intersect the boiling point line of the saturated solutions in a point
between O and F, we re-find the cases represented in figs. 1 and 2
in which af'b now represents the boiling point line of the saturated
solutions. If, however, the arrows must indicate Lhe direction of an
increasing temperature one must imagine them to point in the

opposite direction.

If we compare the values of Q--A.S and Q—pu .S in regard to
each other, we may search for the different situations of the satu-
ration line under its own pressure, and for the boiling point line of
the saturated soluticns in regard to each other, in the vicinity of
point F. 1 will, however, not go in for this now ; I will, however, refer

in the vicinity of the point F.

to it when discussing the value of o

Whether all conceivable combinations are actually possible is diffi-
cult to predict. Perhaps a solution might be found by introducing
the condition of equilibrium of vaN DER WaaLs and expressing the
different quantities in the @ and b of vaN DER Waars, which must
then be considered as functions of # and y.

We will now deduce the vapour saturation lines under their own
pressure and the boiling point lines of the saturated solutions yet in

another manner.
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In order to find the saturation line, under its own pressure. of a
definite temperature 7' we take the vapour- and the liguidum surface
of this temperature 7'; we then obtain fig. 5 in which the pressure
axis is taken perpendiculavly to the component triangle ABC. The
liquidum surface is represenied by the drawn, the vapour plane by the
dotted lines. If the vapour conlains only two of the components the
vapour side reduces itself to a curve siinated in one of the border
planes ; if it contains but one single component it reduces itself to
a single point. Like in our former considerations, we further assume,
provisionally, that in the liquidum side occurs neither a maximum,
minimum, nor a stationary point.

We further take, at the assumed temperature 7' and an arbitrary
pressure P, a saturation line of the solid substance F. If we alter
the pressuve, 7' remaining constant, this saturation line changes its
form. If, to the component triangle, we place perpendicularly the
P-axis and if on this we place the different saturation lines we get
an isothermic-polybaric saturation surface of . This surface may lie
as in fig. 6 or 7; the component triangle has been omitted from
both figures. the arrows point in the direction of increasing pressure.
That both cases are possible is evident from what follows:

V' >v. At the assumed temperature 7' the substance [ will
melt at a definite pressure. Because the substance melts with increase
of volume the saturation line of Z will appear on elevation of

Vi
_P] P

£
Fig. 6. Fig. 7.
pressure, so thar we obtain a surface like in fig. 6, namely with the
convex side directed downwards.

V< v At the assumed temperature 7' the solid substance F
will also melt at a definite pressure. Because on melting there is
now a decrease of volume, the saturation line of F will now appear
on reduction of pressure. We thus obtain a surtace like in fig. 7,
namely with the concave side directed downwards.

The surfaces of figs. 5, 6, and 7 are isothermic-polybaric; they,
therefore, apply only to a definite temperature; if this is changed
those surface alter their form and situation. On elevation of tempe-
rature the liquidum and vapour surfaces of fig. 5 shift upwards likewise
the surface of fig, 6. On elevation of temperature, the surface of fig. 7
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moves, however, downwards; as V is smaller than » the correlated
melting pressure will fall on increase of the melting temperature of Z.

As a small change in the melting point usually causes a very
great change in pressure both suvfaces of figs. 6 and 7 will generally
move much more rapidly than the vapour and liquidum side of
fig. 5.

V'>wv. We now suppose the saturation line of fig. 6 to be
introduced also in fig. 5, to begin with we assume the point I of
the saturation surface to be far below the liquidum side. All points
of the section of both surfaces now represent liquids saturaled with
solid # and in equnilibrium with vapour, consequently the system
F 4 L+ G As the points of tue section all appertain o the same
temperature, this section is therefore the previously recorded satu-
ration line of the solid substance /' under its own vapour pressure.
If we project this section on the component triangle we obtain a
curve surrounding point F' like the drawn curves in fig. 7 (I) or
fig. 11 (I). It is also evident that the pressure must increase in the
direction of the arrows of these figures. We now again imagine in
fig. 5 the section of liquidum surface and saturation surface ; with each
point of this section corresponds a definite point of the vapour surface.
On the vapour surface is situaled, therefore. a curve indicating the
vapours in equilibrium with the solutions saturaled with £7; this
curve 1s the vapour line appertaming to the saturaton line under
its own vapour pressure. If this curve is prciected on the component
triangle we obtamn a carve surrounding point I such as the dotted
curve of figs. 7 /1) or 11 (I). -

If the temperature 1s increased the liquidum. gas. and saturation
surfaces of /' move upwards; as the latter surface, however, moves
more rapidly than the first, there occurs a temperature where £
falls on the liquidum surface so that the solid substance [ is in
equilibrium with a liqud of the same composition and with a vapour.
Like van per WaALs in the binary systems. we may call this tem-
perature the minimum melting point of /.

As the plane of contact infroduced in /7 at the saturation surface
is borizontal, the saturation surface must intersect the liquidum surface.
We notice that this section proceeds from /7 towards the direc-
tion of the vapouar surface. If we project this curve on the com-
ponent triangles we oblain the corve afid of figs. 1 or 2. The curves
de or d'¢ of these figures are the sections of the plane of contact
in A at the saturation surface with the liquidum side; they are
consequently the liqudum lines of the heterogeneous region LG
at this minimum melting point of the substance L.
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From a consideration of fig. 5 it immediately follows that the
vapour lines appertaining to the curves aFb of figs. 8 and 2 are
exphased and may, or may not, intersect the saturation line.

If we still increase the temperalure a little. the point F gets above
the liquidum surface and the saturation line of F under its own
pressure becomes exphased. We then obtain fig. 12 (I) in which the
vapour line may. or may not. intersect the saturation curve under
its own vapour pressure.

If we increase the temperature still a little more. the saturation
and the liquidum surface come into contact in a point; it is evident
that on the saturation surface of /7 this point does not coincide with
Zr, but is shifted towards the gas surface. We now have the highest
temperature at which the system /- L 4 G exists. In fig. 12 (I)
both lines contract {0 a point; both points he with /' on &
straight line.

V < ». We now 1magine the saturation surface of fig. 7 to have
been introduced in fig. 5 and in such a manner that the point /7
is situated above the liquidum surface. The section is then again a
saturation line of the substance F under its Own vapour pressure,
which surrounds the point F. In projection we, therefore, again
obtain fig. 7(I) or 11(I) with an exphased or circumphased correlated
vapour line which has shifted towards the side of the vapour surface.

On mmea.smg the temperature the liquudum and vapour surface
shift in an upweud direction but the saturation surface of [ shifts,
however, downwards. At a definite temperature, the minimum melt-
ing point temperature of 7 (point /) arrives at the Liquidum side
and it is now evident that the saturation line uuder its own vapour
pressure has shifted, starting from 7, from the gas surface. In pro-
jection we thus obtain the curves ¢ [/ of fig. 3 or 4. The corre-
lated vapour lire has, of course, shifted towards the side of the
gas surface and muay be either exphased or circumphased.

What will happen al a further increase of temperature will now
be readily understood.

In order to find the boiling point line
of the solutions saturated with Z, for a
definite pressure J/, we take the vapour
surface and the liquidum surface for this
pressure P; we then obtain fig. 8 in which
the temperaipre axis is taken perpendicu-
larly to the component (riangle ABC. The
hqmdum surfare isrepresenied by the drawn,
the vapour surface by the dotted lines, In
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order to act in accordance with our determined assumption that C
is the component with the highest vapour pressure the boiling point
of C has been taken lower than that of 4 and B. .

We now also take a polythermic-isobaric saturation surface of F.
At the assumed pressure P, there exists, for an entire series of
temperatures, at each temperature a definite saturation line of /.
If these are put on a temperalure axis, the polythermic-isobaric
saturation surface is formed which we can represent by fig. 7 in
which however, we must imagine P to be replaced by 7'; we will
call this figure fig. 7a. -

The figs. 7o and 8 apply only to one definite pressure; if this is
altered they change their situation and form. On increase of pressure
both surfaces of fig. 8 move upwards; the saturation surface of the
figure 7a can move upwards as well as downwards. This depends on
whether on melting, there is an increase or decrease of volume.
As however, a change in pressure causes, as a rule. a comparatively
small change in the melting point of a substance, the movement
of the saturation surface of the substance /' will be slower than that
of the two surfaces in fig. 8:

We now imagine the saturation surface of the fig. 7a to be intro-
duced in fig. 8 and in such a manner that the point & lies above
the liquidum side. The section is then the boiling point line of the
solutions saturaled with F'; the correlated vapour line has, as seen
from the figure, shified towards the vapour surface. A l)x'oj‘éé‘tion on the
component ftriangle gives a cirenmphased boiling point line of the
solutions saturated with /" and a circumphased and an exphased vapour
line. We thus again obtain the figures 7 (I) or 11 (I) in which
however, the arrows, indicaling the direction of inereasing tempera-
tures, must be supposed to point in tlie opposite direction.

On further increase in pressure, the point F first arrives at the
liquidum surface, then the liquidum surface comes inlo contact with
the saturation surface of [ from which follow the previously
described boiling point lines of 1ihe saturated solutions and their
correlated vapour lines.

In place of the saturation surface of F we could also have consi-
dered the vapour saturation surface of F and its movement in regard
to the vapour snrface of the system L G. We will refer later to the
vapour saluration surfaces of a solid substance, in connection with
another investigation.

We have already slafed above thal the vapour surface, when the
vapour contains {wo componenis only, reduces itself to a vapour
curve, and to a point when the vapour contains only one component,

-86 -



867

This causes thal many of the properties already meniioned may be’
deduced and expressed in a much more simple manner. I will refer
to this later when discussing the vapour pressures and boiling points
of aqueous solutions saturated with salts and double salts, which in~
some cases have been determined experimentally. ,
(70 be continued).

Chemistry. — “Zquilibria in ternary systems.” 11. By Prof.
SCAREINEMAKERS.

(Communicated in the meeting of Dec. 28, 19192).

[n the previous communications') we have assumed that in the
system liquid-vapour occurs neither a maximum or minimum,
nor a siationary peint; we have also limited ourselves to the appear-
ance of*two three-phase triargles.

We will now discuss first the case that in the ternary system
occurs a point with a minimum vapour pressure. .

Let us imagine that in fig. 1 (1) the liquidum line de¢ and the
vapour line d,e¢, of the heterogeneous region LG surround the sa-
.turation line of Z, so that we get a diagram as in fig. 1. The
saturation line of /7 is here surrounded by the liguiduni region L,
this by the heterogeneous region LG and this in turn by the vapour
region. All liquids saturated with # therefore occur at the stated
P and 7" in a stable condition.

On reduction of pressure, the liquidum region contracts so as to
disappear simultaneously with the heterogeneous region LG in a
point. This point represenis for the stated temperature, the liquid
and the vaponr which, at the minimum pressure of the system liquid
+ gas can be in equilibrium with each other.
This point may occur without as well as within
the saluration line of /. As at lower tempera-
tures the region I'L is generally large, butsmall
at temperatures in the vicinity of the melting
point of F. the said point will appear, at high
temperatures, usually without, and at lower iem-

Fig. 1. peratures as well within as withont the saturation
line of I .

We now first consider the case where the point with a minimum
vapour pressure falls ,outside the saturation line of I, or in other
words thal the liquidum and the helerogeneous region disappear in
a point outside the saturation line of I,

1) These Proc. p. 700 and 852,

-87-



868

If starting from fig, 1 we now reduce the pressure, the Jiquidum
line of the heterogeneous region approaches the saturation carve of F and
‘meets this at a definite temperature. The diagram now formed may
be deduced from fig. 2 (1) if we suppose the saturation curve of F
therein to be surrounded by the curves d ¢ and d,e,. The diagrams
appearing on further reduction of the pressure can be represented
by figs. 3 (1), 4 (1), 5 (1), 6 (1), or 3 (1), 8 (1), 9 (1) and 10 (1).
In each of these figures, however, the curves de¢ and d,¢, must be
imagined lo be bent in such a manner that they entirely surround
the liguidum region, they finally disappear in the point with the
minimum pressure.

From this it now follows that the liquid as well as the vapour
of the three-phase equilibrium /' 4 L 4 (¢ proceeds along a closed
curve like in fig. 7 (1) or 11 (1), the saturation line under its own
pressure is, therefore, again circumphased and the correlated vapour
line cireumphased or exphased.

If we consider lemperatures very close to the meltmg point of Z7,
we find as in the first communication, that the saturation line
under its own vapour pressure becomes exphased and that we
obtain diagrams such as in figs. 12 (1) and 13 (1).

We now consider the case where the point with minimum vapour
pressure falls within the saturation line of Z7, or in other words,
that the liquidum and the heterogeneous region disappear in a point
within the saturation surface of I

We again start from fig. 1 and reduce the pressure first of all
until the liquidom and safuration curve come into contact, then
until both curves intersect. We now obtain a diagram asin fig.3 (1)
in which, however, the saturation curve of F is supposed to be
surrounded Dby the heterogeneous region L (.

) On further reduction of pressure,
the liquiduin line of the heteroge-
neous region and the saturation line
of /' may once more come into con-
tact, so that on further reduction of
4y pressare two new three-phase triang-
¢ les are formed; we then obtain a
diagram such as fig. 2z with four
4 three-phase triangles. The liquidum
? vegion now consists of the two iso-
lated pieces apyq and hrhs, the hele-
rogeneous region likewise of itwo
isolated parls, namely of a,g,gpa
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.

and b'hthsh, whereas .the vapour region forms a coherent whole.

In fig. 2 we find the following equilibria :

Curve aly' represents vapours in equilibrium with liquids of the
carve apg ;

Curve 04 represents vapours in equilibrium with liquds of the
carve bsh;

Curve a'l* and ¢'h' represents vapours in equilibrium with the
solid substance I;

Curve apg represents liquids in equilibrium with the vapours of
the curve a'y’;

Curve bsh represents liquids in equilibvium with vapours of the
curve b ;

Curve apg (and brh) vepresents liquids saturated with the solid
substance f.

If, at the temperature and the pressure applymng lo fig. 2, we
join the components, then, according 1o the situation of the figura-
ting point, there is formed within :

the gasregion. . . . an unsaturated vapour:

the liquidum region an unsaturated solution ;

apyg.a, - - o oo . a vapour of a,¢, -+ a liquid of apg;
bshhb, . . . . . . .. a vapour of 0.4, + a liquid of sk,
abl .. ... ... a vapour of a.b, 4 solid F7;
g a vapour of ¢,h, - solid I;

agg .o a liquid of agy - solid I

brhd .o a liquid of b7k - solid I7;

aa, ... vapour @, + liquid « - solid F;
oo . w 0+, 0+, Iy
g lr N &
Y/ T A N

On further reduction of pressure, the liquidum line apg and hsh
which surrounds the liquidum region contracts still more so that
on the one side the points a and g coincide at a pressure P, this
will be likewise the case with their conjugated poinis ¢, and g, ;
the two triangles Fa,a and Fy,g then coincide along a siraight line
and the pressure [ for the system F - L+ G is a minjimnm
pressure. The same applies when the two (riangles Fbb' and Fhh,
coincide.

After the four three-phase ({riangles have disappeared from fig. 2
owing to reduction of pressure, the vapour saturation line of 7
composed in Fig. 2 of the two branches n,b, and ¢k, forms a
closed curve which surrounds the heterogenzous region LG as well

' 57

Proceedings Royal Acad. Amsterdam. Vol. XV,
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as ihe salurafion line of /7. Hence, al these pressures only unsatu-
raled vapours and {hose saturated with solid F can occur in the
stable condition. . )

From a consideraion of the equilibrium -4 L 4 G it appears
that the sataration curve of J© under its own vapour pressure is a
curve surrounding the point Z, on which™ however, now occur two
points with a maximum vapour pressure. The same applies 1o the
correlaled vapour curve surrounding the former curve. Each maxi-
mum or minimum poini of the one curve lies with the correlaied-
maximum or minimum point of the other curve and the point F
on a siraight line.

We have assumed above that when the liguidum and the hetero-
geneous region disappear in a point within the saturation line of
I two three-phase triangles, as in fig. 2. appear. We may, however,
also imagine that the liquidum line of the heterogeneous region LG
in fig. 1 contracts in such a manner that it intersects the saturation
line of F in two points only; only two three-phase triangles are
then formed. ;

The saturation line of /7 under its own vapour pressure and the
correlated liguidum line are then both eircumphased and exhibit one
point with a maximum and one with a minimum vapour pressure.
When the liqunidum region disappears at one temperature within and
at another temperature without the saturation point of 7, it will,
at a definite temperature disappear in a point of the saturation line.
Among all solutions saturated at-this temperature with /7 and in
equilibrium with vapour there will be one which is in equilibrium
with a vapour of the same composition. The saturation line of £
under its own vapour pressure and the correlating vapour line then
meet in the point with the minimum vapour pressure.

We have noticed above that there exist saturation lines of /7 under
their own vapour pressure which exhibil two vapour pressure maxima
and two minima. Such cnrves must. of course, be capable of con-
version into curves with one maximum and one minimum; this
takes place by the coincidence of a maximum and a minimum of the
first curve causing the part of the curve situaled between these two
points to disappear. The two other parts then again merge in each other.

We have deduced above the saturation line under ils own vapowr
pressure with two maxima and two minima in the assumption that
the liquidum <region disappears somewhere within the saturation line
ol /7. We may also however. imagine similar cases if this disappear-
ance lakes place in a point oulside the saturation line of /7. We
have only to suppose that in fig. 1 the liquidum line of the hetero-
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geneous region LG coniracts so as lo disappear in a poinl outside
the saturalion line of F.

After the contact of the lignidnm and satnration lines two poinis
of intersection appear; if now no further contact {akes place, these
points finally coincide in a point of contact so that the saturation
line under its own vapour pressure exhibits but one maximuom or
minimum,

If, however, after the appearance of the first two points of inter-
section a second point of contact occurs we obtain four points of
intersection of which. at first two, and afterwards the other two
coincide in a point of contact, so that in all four of these points
are formed. The saturation line under its own vapour pressure then
exhibits two maxima and two minima.

By way of a 'transition case it might happen that the second
point of contaci, which appears after the formation of the two first
points of intersection, coincided with one of these points so that a
point of the second order was formed. On further change of pressure
two points of intersection then again occurred, which finally coincided
in a new point of contact. The saturation line under ils own vapour
pressure then represents fthe transition form beiween that with cone
maximum and one wminimum and that with two maxima and two
minima.

After .what has been stated it will surely be unnecessary to con-
sider the case where, in the system liquid-vapour, a vapour pressure
maximuam or a stalionary point occurs; we will refer to this and to
a few peculiar boiling point lines perhaps later.

We will now just consider what happens if we take the compound
I’ only and apply heat. If we imagine /' placed in a vacuum at a
low temperature a portion of this compound /7 will evaporate and
there is formed the equilibrium: solid # 4~ vapour I. On increase
of temperature the vapour pressure of F is raised; in a P.7-diagram
we thus obtain a curve such as aX of fig. 3, namely the sublima-
fion curve of the substance /. Al a definite temperature 7% and a
pressure Pk an infinitely small quédntity of liquid is now formed;
ihis, of course, has not the composition /7 but another composition
K. As only an infinitely small amount of liquid has formed as yet,
the vapour still has the composition /. The point K is, therefore
the terminal point of the sublimation line, called by vAN Dur Waars
in his binary systems the upper sublimation point of the compound.

If we increase the temperature, say, io 7", more of the compound
mells; there is (hen formed (he three-phase equilibriom /- L -+ G
in which neither L nor G have {he composition F. L and ¢ have

b7*
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such a composition thal we can form from both the solid subsiance
75 the three figurating points are, therefore, situated on a siraight

Fig. 3.

line. Besides. L and G are always present in quantities equivalent
to the reaction L —+ G'—J"; L and ( are. consequenily. presenti
in such amounts that from both we can forin F without any L or
(¢ remaining.

As a rule, the three-phase equilibrium 7+ L 4+ G can exist,
at the temperature 7" with a whole series of pressures. namely, with
the pressures occurring on the saturation line under its own vapour
pressure of the solid substance I at the temperature 7”. As in this
particnlar case a phase reaction is possible between the three phases
or in other words, as the points /7, L, and G lie on a straight line,
the three-phase equilibrium exisis here ouly at a definite pressure,
namely, the mayimum or minimum pressure which occur at the
temperature 7" on the saturation line of /7 under its own vapour
pressure. In this particular ecase it is _the minimum pressure, as will
appear later.

Al a further increase of temperature more of the substance I7
keeps on melling and L and G alter thelr composition; we will
regulate the yolume in such a manner that there is but an infinilely
small amount of vapour which, of course, does not affect the pres-
sure. If we represent the pressure and temperature graphically, &
curve is formed such as curve K [ of fig. 3.

Finally we now arrive at a temperature and correlated pressure
al which all solid /7 has fused ; as particnlarly af the last moments,
we have faken carc that bul infinitely little vapour is present, the
liquid now has the composition J7; the vapour has quite a different
composition . .
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As the solid substance /7 and the liquid now have the same com-
position we have atlained the melting poinl of I. If now we 1egulate
the temperature and pressure in such a manner that the solid malter
F remains in equilibrium with its melt the system proceeds along
the melting point line Fd of fig. 3. Here, it has been assumed that
the volume v of the solid substance is much smaller than the volume
V of its melt. If this is not the case, the melting point line Fd starts
from [ towards lower temperatures. In binary systems, Van bper
Waats has called the initial point /7 of the meliing point line, the
minimum melting point of the solid substance I

Hence, we have forced the subsiance # {o proceed along:

a. the sublimation line a/X

0. the three phase line AN

¢. the melting point line Zd
we can, however, consider slill other lines.

In the upper sublimation point K we have solid F 4 vapour # -
infinitely little liquid. We now increase the volume until the solid
subslance J7 has been converted tolally info vapour, or else we
remove the solid substance. We then have the system: vapour /'
infinitely litlle liquid or we may also say, a vapour F which can
be in equilibrium with a liquid. If the temperature is increased the
vapour /7 will continue o exist; it is then, however, no longer in
equilibrium  with liquid. In order, to again form an infinitely small
quantity of liquid, or in ollier words {o again bring the vapour in
equilibrium with a liquid, it will generally be necessary o increase
the pressure.

Hence, al an increase in lemperature, one can always regulate
the pressure in such a manner that a vapour of the composition £
is in equilibrium with an infinitely small quaniity of liquid which,
of course, changes its composilion wilh the temperature. If pressure
and temperature are represented in fig. 2, the curve Kf of this figure
is formed.

In the minimum melting point £ we can siarl {rom the sysiem
solid F -4 liquid - infinitely lillle vapour afler we have first
eliminated the solid substance A thereof. If now, we elevaie the
temperature, the pressure may be always regulaled in such a manner
that this liquid of the composition F' is in equilibrium with an
infinitely small quantily of vapour which, of course, changes its
composition wilth the {emperature. The corresponding [7-line is
represented in fig. 3 by the curve ffu.

As, on the line ¢F, a liquid of the composition & is in equilibrium
with vapour we ‘will call this line the evaporation line of F. On

-903-



874

the line Kf a vapour of the composition [ is in equilibrium with
liquid ; we will, therefore, call Kf the condensation line of . The
melasiable prolongations of Fz and Kf are represenled in the figure
by Fe¢’ and Kf’. Hence, in poini /7 three curves coincide namely,
the meliing point line (Fd), the evaporation line (F¢) and the three-
phase line (#K); in poini K three curves also meei, namely, the
sublimation line (vX), the three-phase line {(K/7) and the conden-
sation line (XF). .

The metastable prolongations of the sublimation line aX and
the meliing point line d/7 intersect in a point .S; af this temperature
Ts and- pressure Ps now occurs, in a melaslable condition, the
equilibrium : solid I'~+ liqmd £ -+ vapour F. If now the substance
I behaved as a simple substance which can only yield a liquid and
a vapour of the same composition, .S would represent the triple
point of the substance F'; owing 1o the occurrence of the three-phase
equilibrivm F - L 4 G this ftriple point is, however, metastable
here. Through this metasiable triple point .S now also passes, besides
the sublimation and the melting point curve of F, the evaporation
line ¢’Sg of I This represenis the equilibrium liqmd F - vapour
F occurring in the metastable condition; on this curve ¢’Sg liquid
and vapour, therefore, have the composition # and not, as on /' Kf,
only the vapour, and as in ¢’Fe only the liquid. We will call the
curve ¢Sy the iheoretical evaporation line.

In ovder to find what conditions of the substance I are vepresented
by the points of the different regions we take this substance in a
condition answering to a point of the sublimation line aX. We then
have solid # 4 vapour /. From a consideration of what takes place
on supply or al withdraw of heat, or on increase or decrease in
volume we now deduce: to the right and below the line aX occurs
the vapour vegion, to the left and above the line aXK is found the
solid region of F.

Acting in a similar wmanner with the points of the other lines,
we find that four regions may be distinguished, namely, a gas region
indicated in the figure by an encircled @, a solid region indicated
by an encircled £, a liquidum vegion indicated by an encircled /.
and a liquidum-gas region indicated by an encircled L - ¢. Hence
if the substance [ is brought to a temperature and under a pressure
covresponding with a point of the solid region, the substance F is
solid; it brought lo a {emperature and under a pressure corresponding
with a point of the liquidum-gas region, /7 is resolved into liquid
and gas elc. )

We will also consider fig. 3 just once more in connection with the
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previously mentioned saturation lines of /' and the liquidum and
vapour lines of the heterogeneous region L - . For this, we first
choose a temperature 7' corresponding with point 4 of fig. 3 and
a very high pressure so that we find ourselves in the solid region.

On the pressure being reduced we arvive from the solid region
into the liquidum region, then into the liquidum-gas region and
finally into the gas vegion. If we choose a temperature 7'z corre-
sponding with point B of fig. 3, the substance £ on reduction of
pressure first traverses the solid region, then the hqmdum-gas region
and finally the gas region. Reduction of pressuve al the temperature
T¢ transfers the substance from the solid region to the gas region.

We now start from the temperature 74 and a very high pressure:
the corresponding diagram then consisis of fig 1 (1) wherein, howe-
ver, is »till wanted ithe gas region and the heterogeneous region
L 4 G of this figure. It is now evident that the componnd F can
only exist in the solid condilion; 1t can, of course, be in equilibrium
with a liguid, but this hquid cannot form unless to the compound
is added a little of at least one of its components The pure com-
pound /7 which we have still under consideration can only ocecur
in the solid coudition.

On reduetion of pressure, the saturation line of /' coniracts so ac
to coincide finally with point /7 of fig. 1 (1). At this pressure occurs,
therefore, the equilibrium solid '+ liquid #, so that in fig. 3 we
proceed from the solid region to a point of the melting pomt line
Iid. The heterogeneous region L -+ G of fig. L (1) niay, or may
not, have appeared at this pressure, in any case, however, 1l has
not yet extended to the point /7 of this figure.

As, on further reduction of pressure, the saturation line of £
disappears from fig. 1 (1) (in order to keep in with fig. 3 we lake
V>w) [ is now situated in the liquidum region of fig. L (1).
Hence, in fig. 3 we must also arrive in the liquidum region. As on
further reduction of pressure ~the gas region of fig. 1 (1) is further
extended, the liquidum line ¢ d of the heterogeneous region passes.
at a definite pressure, through the point /. This means that the
liquid /' can be in equilibrium with vapour. This is in agreement
with fig. 3; therein we proceed from the liquidum region to the
line Fe.

On further reduction of pressuve, the heterogeneous 1-egion L+ G
shifts over the point F7; the compound £ is now resolved info a
liquid of the liquidum line and into a vapour of the vapour line
which on further decrvease in pressure always change their compo-
sition. Hence the compound F traverses the liquidum gas region
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which is in agreement with fig. 3. This will continue until on further
reduction of pressure the vapour line of the heterogeneous region
passes through point /. This means that a vapour /7 can be in
equilibrvium  with a liquid; this again is in harmony with fig. 3;
iherein we proceed from the liquiduin gas region to the curve Kf.
On still further reduction of pressure the gas region of fig. 1 (1)
moves over the point /7 so that, in harmony with fig. 3 the com-
pound F can occur only in the state of vapour. -

Between the lignidom line d¢ and the vapour line d,e, of the
heterogeneons region L - G of fig. 1 (1) 1s situated the projection
of the line of intersection of the liquidum and the vapour side of
the C-surface. This line indicales a series of solutions which each can
be in equilibrium with a vapour of the same composition; all these -
liquids and vapours, however, are metastable and break up into a
liquid of the liquidum line and a vapour of the vapour line of the
heterogeneous vegion L -+ G We will call this line of intersection
the theoretical liquidum-vapour lme.

As this theoretical line passes, at a definite pressure, through the
pomnt #, there exists at this pressure the equilibriam: liquid £ 4
vapour /7 in a metastable condition; hence, we have a point of the
theoretical evaporation line Sg of fig. 3 and it is, moreover, evident
that this must be situated in the liquidum-gas region of fig. 3.

We now choose a temperature 7'z lower than 774; this will
cause the saturation line of /7 to disappear at 7'z at a lower pres-
sare than at 74. We now choose 7z so low that, on lowering the
pressure the saturation line of /7 has not yet disappeared when the
liguidum line of the heterogeneous region passes through the point
I, T'p is, therefore lower than the minimum melting point of Z.
If we now choose a very high pressure, the corresponding diagram
will then consist of fig. 1 (I) wherein, however, the gas region and
the helerogeneous region L - G are still wanting. On reducing the
pressure fig. 1 (I) is formed first, then fig. 2 (I) and further fig. 3 (I);
at these pressures the compound I7 still oceurs in the solid condition
so that it finds itself in the solid region of fig. 3. At a definite
pressure the metastable part of the liquidum line dabe situated
between the points ¢ and ) in fig. 3 (I) will pass through the point
£7; this means that a Liqud of the composition /7 may be in equili-
brium with vapour. this is only possible in the metastable condition
for in the stable condition & only occurs as a solid. Hence, in fig. 3
we find ourselves in the solid region on a point of the metastable
curve ¢'Z.

On further reddclion of pressure there is now formed (rom fig.
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3 ) the figure 4 (1) or 8(I), we first choose 7’z in such a manner
that on lowering the pressure, the vapour saturation line has not
yet disappeared when the vapour line of the heterogeneous region
passes ihrough the point /. So as to be in harmony with fig. 3,
T bas been chosen lower than the minimum melting point and
higher than the upper sublimation point of the compound F. In conse-
quence of {his, fig. 3 (I) is converted into fig. +(I) on reduction of
pressure, and afterwards at a definite pressure into fig. 5(I). At
this pressure the as yet solid compound # melts with formation of
the vapour m, and the liquid m; hence in fig. 3 we proceed from
the solid region to a point of the three-phase line K Z7.

On further decrease of pressure I is resolved into liquid and gas;
in fig. 3 we, therefore, proceed from the line K I to the liquidum
gas region. On further reduction of pressure the vapour curve e, d,
of fig. 5(I) passes, at a definite pressure through the point #'; this
means that a vapour of the composition /' can be in equilibrium
-with a lignid. The compound F then passes, in fig. 3, from the
liquidum-gas region to the line Kf. On further decrease of pressure
is now formed fig. 6 (I), the point /' lies now in the vapour region
so that the compound Z can only still occur in the state of
vapour.

In fig. 3 we, therefore, proceed from the line K/ to the gas region.

Between fig. 3 (I), in which we assume the metastable part a b
of the liquidum line dade to pass through the point F, and fig.
5(I), in which we assume the vapour line d, ¢, to pass through I,
there must, of course, lie another onc where the theoretical liquidum
vapour line passes through point /7. This means that, in fig. 3, we
must find, at the temperature 7’5, between the curves ¢'f7 and Kf
a point of the curve ¢'Sy. If this theoretical vapour curve already
passes through the point /7 before tig. 5 (I) is formed through reduc-
tion of pressure, the point of intersection of ¢'Sy with the vertical
line then lies in the point D of fig. 3 above the three-phase line;
if, however, this theoretical line passes through the point /' when,
through reduction of pressuve, fig. 5 has formed, the above point of
intersection 1n fig. 3 lies helow the three-phase line. These resulis,
as follows from fig. 3, are in harmony with this figure.

The situation of the metastable sublimation line XS and of the
metasiable melling point line 7S may be found in this manner.
Here, we will jusi determine ihe siluation of the tviple point S. In
this point there exists an equilibrium between solid £~ liguid
F'4 vapour /.

The equilibrium liguid £ - vapour /' requires that the theore-
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tical liquidum vapour line passes through point £7; if this equilibrium
occurs in the stable condition, the liquidum and the vapour line of the
heterogeneous region musi then also pass through the point F; this
is the case when. incidentally, a ternary maximum, minimum or
stationary point occurs in F. If, howevery this equilibrium appears in
the metastable condition, the liquidum and vapour line of the hetero-
geneolis region do not pass through /7 which is then sitnated between
these  two. As, [rom the equilibria solid /74 liquid # - vapour F
and solid 4 -+ vapour I, it follows that the saturation and the
vapour saturation line of /7 coincide io one point in /), the meta-
stable “triple point S must be situated in the liquidum gas region
of fig. 3.

We now choose a temperature 7 (fig. 3) lower than the upper
sublimation poini 7} of fig. 3; the vapour saturation line of /has,
therefore, not yet disappeared when the vapour line of the hetero-
geneons L -} G passes through the point JF. Starting from high
pressures and then reducing the same there is first formed fig. 1 (I)
wherein, at first, the gas and heterogeneous regions are still wanting,
then figs. 1 (I), 2(I) and 3 (I) which is now converted into 8 (I);
then are formed tigs. 9 (I) and 10(I) and finally a figure which we
will call 10a and which is formed from fig. 10 when the vapour
sataration line of F coincides with the point [,

During this lowering of the pressure, as shown from the fignres,
the substance /7 only occurs solid in the stable condition; the sub-
stance /7, therefore, traverses the solid region of fig. 3. Not until
the pressure has been so reduced as to form fig. 10a can solid F
be in equilibrinm with vapour . We then proceed in fig. 3 from
the solid region to a point of the sublimation lJine @ K.

On continued reduction of pressure the vapour saturation line of
I disappears from fig. 10a, so that F lies within the gas region;
hence, I’ can oceur only in the form of vapour, so that in fig. 3 we
proceed to the vapour region.

In the conversion of fig. 3 (1) into fig. 8 (1) the substance " passes
through different metastable conditions. On reduction of pressure the
metastable piece a b of the liquidum line passes through the point &
first, then the theoretical liquidum-vapour line and then the meta-
stable piece a, &, of the vapour line of ihe heterogeneous region
L~ G. This also agrees with fig. 3; on lowering the pressure at
the temperature Z¢ we 1meet in the solid region, successively, the
metastable curves ¢ £, ¢’ S, and f* K.

When_ in a system liquid-gas a liquid and a vapour of the same
composition are in equilibrium, we will call this a singular point of
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the system L - . The appearance of such a point bhas no influ-
ence on fig. 3 unless this accidentally coincides with the point [ of
onz of the previously examined figures. Such a singular point, that
at each 7" occurs only at a definite P, proceeds in the component
triangle along a curve which may happen to pass through I. If
this should {ake place, and if this point is a stalonary point, then, in
the case of the correlated P and 7, the vapour and liquidum line
of the heterogeneous region L -+ (! and the theoretical liquidum
vapour line pass through F'; if this point is a maximum or mini-
wmum one these three lines coincide in /. From this it follows that
in fig. 3 the singular poini must always lie simultaneously on the
lines g’ Sy, ¢ Fe and f/ £ f. The coincidence of a singular point
with the point F therefore causes the above three curves of- fig. 2
to have one point in common; from other considerations it follows
that they get into contact with each other.

This point of conlact may lie in the solid as well as in the liqui-
dum-gas region; in the first case, the system liquid 27 4 vapour F
is metastable, in the second case it is stable.

This point of contact may — but this is not very likely — also
coincide with point S of fig. 3. The system solid /' < liquid I +
vapour /7 would then occur in the stable condition and the subli-
mation and melting point curves would then continue up to the
point S. - (To be continued).

Mathematics. — “On complexes which can be built up of Zmear
congruences”. By Prof. JAN pr Vrius.

(Communicaled in the Mceting of December 28, 1912).

§ 1. We will suppose that the generatrices @ of a scroll of order
m are in (1,1)-correspondence with the generatrices b of a scroll of
order n, and consider the complex containing all the linear congru-
enees admitling any pair of corresponding generatrices a, 0 as direc-
tor lines. The two scrolls admit the same genus p; as the edges of
a complex cone are in (l,1)-correspondence with the generatrices
@, on which they rest, p is also the genus of all the complex
cones '). The rays of a pencil are arranged in a correspondence
(m, m) by ihe generalrices of the scrolls (@), (b); so in general the
complex is of order m -+ n.

1) For m = n = 1 (two pencils) we get the telrahedral complex. In a paper
“On a group of complexes with rational cones of the complex” (Proceedings

of Amsterdam, Vol. VII, p. 577) we already considered the case of a pencﬂ in
(1,1) correspondence with the tangents of a rational plane curve.
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The double edges of a complex cone are rays resting on {wo pairs
a, b; they belong to a congruence contained in the complex, of which
congruence both order and cluss are equal to the number of double
edges of the cone.

Evidently any point common to two corresponding generatrices
a,b is a principal point, the plane containing these lines a principal
plane of the complex. If one of the scrolls is plane, the hearing
plane is a principal plane too; if one of them is a cone, the vertex
is a principal point*).

Any point P of a principal plane 15 singular, the pencil with
vertex P lying in that plane forming a part of the complex cone of
P. The same degeneration presenis itself for any point of each of
the given scrolls; so these surfaces are loci of singular points. Like-
wise any plane through a generatrix @ or & and any plane through
a principal point is siugulor.

By means of one scroll only can also be obtaine compleses con-
sisting of linear congruences. So we can arrange the generatrices of
a scroll in groups of an involution  and consider any pair of any
group as director lines of a linear congruence ?).

In the following lines we treat the biquadratic complex which
can be derived in the manner described above from two projective
reguli. After that we will investigate the particular cases of plane
scrolls or cones.

§ 2. We use the general line coordinales 2y, introdaced by Kruy,
which are linear functions of the coordinales p of Prucker and

satisfy the identity (¢*)= =@’ =0, while 2@,y =0 or (@) =0
6 6

indicates that 2 and y iniersecl each other.
Then a regulus is characterized by the six relations

- af =pr & + 2qx 2 + 71,
satisfying the conditions:
@) =0,0)=0,(pg) =0,(g)=0,2(¢>) + (pr) =0.
Likewise we represent the second regulus by

1} In our paper “Sur quelques compleves rectilignes du iroisiéme degré”
(Archives Teyler, 2nd series, vol. 1X, p. 563—578) we have cousidered among
others the case that one of the scrolls is a pencil whilst the olher is formed by
the tangents of a conic. .

?) This has been applied to a developable in our paper ‘ On complexes of rays
in relation fo o rational skew curve’ (Proceedings of Amsterdam, vol. VI, p. 12)
and on a rational scroll in “A group of compleaes of rays whose singular sur-
faces consist of a scroll and a number of planes”. (Proceedings of Amslerdam,
vol. VIII, p. 662).
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by =pL A* + 2"k 2 + 71
Then we tind for the rays x of the congruence with director
lines a, b
(pa) 2 +2(q2)2 + (ra) =0,
(P'2) 2 42 (¢2) A + (¢'2) = 0,
which we abridge into
Pr L 92Qr+R=0 , Pr4+2Q1LR=0.
By elimination of 2 we get the equation of the biguadratic complex
under discussion. It is
(PR — PRy =4 (PQ — PQ) (QR' — QR),
or, what comes io the same,
(PR —2QQ + PR =4 (PR - @) (PR — Q").

From this ensues thail the complex can be generated in two different
ways by two projective pencils of quadratic complexes. This is shown
by the equations

PR — PR=2u(PQ — P'Q),
W (PR — PR) =2 QR — QR)
and
PR — 2QQ" 4+ PR =2 u (PR — Q%),
w (PR —2QQ + PR)=2 (PR — Q")

The equation (ad) =0 cxpressing the condition thai two ecorre-
sponding generatrices @, & have a point in common, gives rise to a
biguadratic equation in 4 So there are four principal points and
Jour principal planes.

§ 8. We now occupy ourselves with the congruence of the rays
@ cach of which rests on two pairs of homologous generalrices (2).
For such a ray a the two e¢nations

P 4-2Q2+R=0 , P# 4202+ R=0
must be satisfied for the same values of 4; so we have the condition
P QR
Pl Q' Rl

This equation leads to a congruence (3,3). For the quadratic
complexes PQ =F'@Q and PR' = PR have the congruence P=0,
P =0 in common and the lalter congruence does not belong to the
complex QR'= QR.

This vesult is in accordance with the fact that the complex cones
(and curves) mnsl be rational and have to admit therefore three double

edges (and three double langents).
Both the chavacteristic numbers of the congruence can also be

= 0.
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found as follows. A plane through any point 4, of the gencratrix a,
and the corresponding generatrix b, cuts Both reguli respectively in
a conic &, and a line @,. On these sections the other pairs of corre-
sponding lines a,0 determine two projective ranges of points (4), (B).
As tlhese arrange ibe rays of a pencil in the plane (4,),) in a
.correspondence (1,2), the lines AB envelop -a rational curve of class
three with #, as double tangent. Each of the three lines AB passing
through 4, rests on two pairs a0 and belongs therefore to the
congruence.

The curve of class three just found and the pencil with 4, as
verlex form together the complex curve of plane (4,0,). Likewise
the complex cone of A, breaks up into this pencil and a rational
cubic cone.

Any point and any tangential plane of the quadratic scrolls (a), (0)
is singula®. Moveover the points of the principal planes and the
planes through the principal points are simgular.

§ 4. If we add the relation (p'#)=0 to the conditions enumerated
in § 2, it follows from 2(¢"”) -4 (p)==0 that the coordinates ¢;
also determine a line, which is to cut p' and » on account of
(p'g) =0, (¢")=0 without belonging to the regulus. So it lies
either in the plane ¢ through p' and ' or on a quadratic cone with
the point of intersection 7' of p' and r' as vertex.

In the first case each line of = belongs to the complex and even
twice as it euts two generatrices of the regulus (a). In other words:
v is a double principal plane.

In the second case an analogous reasoniug shows that 7" is a
double principal point.

§ 5. In the two latter particular cases the complex has lost the property
of corresponding dually with self. On the conirary this properiy
is ofill preserved by- the complex generated by {wo projective reguli
the first of which consists of the tangents of a conic «* (in planc a)
and the second is formed by the edges of a quadratic cone # (with
verlex B). -

The range of points B, on the section 8, of 5 and « isin (1,1)-
corvespondence wilh the system (a). So the points B, are in (2,2)-
correspondence with the points of intersection 4, of the generatrices
a and the conic 3,°. So the complex admils four principal points,
each of which bears a principal plane.

Furthermove « is a double principal plane, D a double principal
point, ,
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The complex cone of point P has PB for double edge; for PB-
cals Lwo gencrairices ¢ and al the same time the corresponding
lines 5. So the congruence (3,3) of the general case must break up
here into a (1,0), a (0,1) and a (2,2).

In orvder to check this we consider the correspondence between
the points A =a,r, and the corresponding planes 8§ =6,0,. If 4
describes a line, @, and a, generale an involution; as &, and 0, do
then likewise, # will rolate abont a fixed axis. So the correspondence
(4,8) is a correlation. Therefore plane « coniains a conic «,*, each
point A4, of which is incident with the trace b, of the homologous
plane f,. So each point A4, is the vertex of a pencil belonging to
the complex and lying in plane 8,. These pencils generate a con-
gruence (2,2). For their planes envelop a quadratic cone with vertex
B, two tangential planes B, of which pass throngh the arbitrarily
chosen point P; so the lines conneeting P with the homologous
points A, belong to the congruence in question, which evidently is
dual in itself. :

§ 6. We will now suppose that the tangents a of the conic o*
in plane « and the tangents b of the conic g in plane # are in
(1, I)-correspondence. Then the congruence with any pair of corre-
sponding tangents a, 0 as director lines generates once more a
complex of order four, evidently nof dual in ilself. .

By the correspondence (a.b) the points of the line ¢ common io
« and B are"arranged in a (2,2)-correspondence. The four coinei-
dencies are principal points of the complex and the lines @, b con-
curring in any of these points delermine a principal plane So we
have indicated four sheaves of rays and four fields of raysbelonging
to the complex.

The planes ¢ and  are also fields of rays of the complex; for
any line s of @ is cut on ¢ by two lines & but also by the corre-
sponding lines @; s0 s belongs twice to the complex.

We account for this by saying that e and 3 are double principal
planes.

The complex cone of any point P meets ¢ in four points, i.e. in
the four principal points; so we deal with a biguadratic complex.

The complex cone is rational, ils edges corresponding one {o one
to the tangenis of a*; thercfore it has to admit three double "edges.
Likewise the complex curve of any planc has to admit #hree double
tangents.

§ 7. In order to investigate this more closely we consider the

|
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‘relationship between any point 4 of @, as point common lo two
tangents a,,a, and the point B common to the corresponding
tangents 0y, 0,.

If A describes a line /4 its polar line with respect to «* will rotate
about a fixed point, whilst the pair a,, a, generates an involution.
But then b,,5, must also generate an involution, so that B describss
a line Ip. So the point fields (4), (B) are in projective correspond-
ence (collinear. homographic). )

By projecting the field (4) out of any point P unto # we obtain
in B two projective collocal fields, admitting three coincidencies. So
the congruence of the lines 45 is of sheaf degree (ovder) three. Its
Jield degree (class) however is one; for if 4 describes the section
of @ with any plane I, B will arrive once in II, i. e. IT contains
only one line AB.

The congruence (3,1) found here is generated, as we know, by
the azes (= biplanar lines) of a twisted cubic y?*, i.e. any line 4B
lies in two osculating planes of ¢

Evidently any line AZB is double edge of the complex cone of any
of its points P. However the complex rays through A form the
pencil A4 (¢) counted twice and the pencils determined by the lines
b,, b,; for B the analogous property holds.

§ 8. Bvidently the three double edges of the complex cone of P
are the mutual intersections of the three osculating planes of y°
passing through 2.

Likewise the complex curve in II has for double tangent the axisof
y* lying in that plane, the other fwo double tangenis coinciding with
the intersections of II with ¢ and B. For, each of the lines ¥', 0"
which concur in the point ¢iI determines a complex ray lying in
II, which lines coincide both with « IT.

An osculating plane 2 of vy* contains w' axes, enveloping a conic
w®. Any plane & is singular for the congruence (4B). So the com-
plex cuvve in 2 is the conic o* counted twice.

As the congrnence (3,1) cannol admit singular points, no point
bearing more than three planes &2, no complex cone can degenerale
but those corresponding to the principal pomnts and the points of
the principal plane. We already remarked this for « and 8 for any
point of a single principal plane the complex cone breaks up into
a pencil and a rational cubic cone.

The complex cone of any point of the developable with y* as cus-
pidal edge admits an edge along which two sheets touch each other
(the plane section has two branches touching each other). For any
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point of y* the cone josresses an edge along which two sheets oscu-
late each other (the ¢cction has two branches with a common point
of inflexion tonching each other).

A cuspidal edye connects any point 4, of «* with the correspond-
ing point B, of p®. The locus of the line 4,B, is a biguedratic
scroll, of which « and $ contain two generatrices. Any point of
this scroll admits a complex cone with a cuspidal edge.

Evidently the biquadratic scroll is rational, so it has a twisted
cubic as nodal curve: For any point P of this curve the complex
cone has fwo cuspical edges.

- By replacing the two conics a?, p* (as bearers of flaitened reguli)
by two quadratic cones we obtain a complex evidently dually rela-
ted to that treated above.

If «* and @ touch the line ¢ = « 3 whilst ¢ corresponds to itself
in the relationship between a and &, the complex degenerates into
the special linear complex with axis ¢ and a cubic complex. Evi-
dently the same holds for the general biquadratic complex {§ 2) if
the reguli admit a common generatrix corresponding to itself.

Chemistry. — “Un the system phosphorus”. By Prof. A. Smrs, J.
W. TeaweN, and Dr. H. L. s Lervw. (Communicated by Prof.
A. F. HorrEMAN).

(Communicated in the meeting of November 30, 1912).

In a previous communication on the application of the theory of
allotropy to the system phosphorus') it was pointed out that the
possibility ~existed that the line for the internal equilibrium of
molten white phosphorus is not the prolongation of the line for the
internal equilibriuin  of molten red phosphorus, in consequence of
the appearance of critical phenomena below the meliing-point of
the red modification. The latter could namely be the case if the
system «l—pBP belonged to the type ether-anthraquinone, which
did not seem improbable to us.

This supposition was founded on the following consideration. In
the first place it follows from the determinations of the surface-
tension carried out by Astox and Ramsay ®), that the white phosplorus
would possess a critical point at 422° Hence the critical point of

1) Zeitsch f. phys. Chem. 77, 867 (1911).
) J. Chem, Soc. 65, 173 (1894).
Cf. also Scuencrk, Handb. Asreg 1li; 374.
58
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the pseudo-component «F will probably lie below 422°. The
melting-point of the pseudo-component B lies certainly above the
melting-point of the red modification, hence above 610° so that’
we arrive at {he conclusion that the melting-point of the second
pseudo-component is probably situated more than 200° above the
crifical point of the first psendo-component.

In the second place the liquid white phosphorus, which must be
considered as a supersaturate solution, contains no appreciable quantity
of the phosphorus insoluble in carbon disulphide even at higher -
temperatures from which it may be inferred that the solubility of 3P,
or of mixed crystals containing BP, in lignid eP is exceedingly slight.

In these considerations we arrive accordingly at the conclusion
that in the system phosphorns exactly those conditions are satisfied
which a system must satisfy if there is to be a chance for the
appearance of critical phenomena by the side of the solid substance.

Experiment has really taught us that the pseudo system of the
phosphiorus belongs to the type ether-anthraquinone.

It is true thal in a pretty extensive investigation in which pure
white phosphorus in capillaries of infusible glass was suddenly
immersed m a bath of high temperature, a critical phenomenon
could not be obsersed, because the observation is very much hampered
by the deposition of a red solid phase, which always precedes, but
yet phenomena appeared which pointed to the existence of a eritical =
point below the melting-point temperature of the red phosphorus.

Though the observed phenomena will be more fully discussed in
a following communication, we may already mention here that
among others it was found that on sudden immersion of a capillary
with white phosphorus in a bath of 450°, at first solid red phosphorus
deposited, and that then the liquid suddenly totally disappeared, in
which a shock was felt in the hand in which the iron bar was
held, on which the capillary was suspended by means of a copper
wire. At the moment of the shock the whole capillary filled with
solid red substance, which, however did not consist of the well-known
red phosphoras, for if the capillary was removed from the bath of
450°, and suddenly immersed in a bath of 510° it appeared that
already at (his temperature melting took place, so 100° below the
unary melting-point of the red phosphorus. The perfectly colourless
liquid, however, which originated at 510° was strongly metastable,
and the velocity of crystallisation being rather great at this tem-
perature, the formed liquid became soon solid again.

It now appeared that this phenomenon must be explained as
follows. At high temperature, i. e. at abous 300°, the velocity of
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crystallisation of the red phosphorus is so great that it begins to be
deposited. This veloc1t, of conversion, however, is not so greal as
is gencrally thought, for even at 330" the vapour {ension of the
rapidly heaied white phosphorus, which contained pretly much red
solid substance, appeared to be still the same as that of the liquid,
becaunse the liquid still present was sufficient {o conirol the vapour
tension. How long this will continue of ccurse depends on the
relative volumes ocenpied by the solid and the liquid phosphoras
and by the vapour.

In the experiment with the capillary the velocity of heating is so
great that even at considerably bhigher temperatures liquid white
phosphorus still continues to exist by the side of the solid red mass.
If, however, the temperature rises above the temperature of the first
critical endpomnt p of the pseudo-binary systew, the liquid becomes
so strongly metastable that it suddenly disappears, and then the red
solid substance deposits from the fluid phase formed, through the
whole of the capillary.

If the capillary is immersed i a bath of 620°, a colourless hquid
is obtained, wlnch exbibits something particular when cooled exposed
fo the air, wlich was already observed by Srock and Godorka ).
They say namely- “Kuhlt man die Schmelze recht langsam ab, so
fangt sie Dbei etwa 580° an feste, role Teilchen auszuscheiden,
der Vorgang macht den Emdruck einer Kistallisation. Bei etwa 570°
uberziehen sich dann ploizlich?y die Wande des Glasrohres aufihrer
ganzen Lange (auch oberbalb der Flussigkeit) mit rotem Phosphor,
welcher in der Hilze sehr dunkel, bei Zimmertemperatur leuchtend
purpurrot aussieht. Beim Offnen des abgeluhlten Rohres merkt man,
dass es auch farblosen Phosphor enthalt”.

Srock and GomoLka cooled down slowly, bul we found that the
phenomenon Dbecame more distinct, when the capillary is cooled by
exposure {o the air. It is then seen that red solid substance depo-
sits in the liquid, the vapour space and also the glass wall remaining
perfecily colourless there on account of the fact that the Jiquid which
deposits from the vapour, is perfectly colourless. At a given moment
a violent phenomenon is observed in the ecapillary, while at the
same momeni 1ery clearly a shock is fell. The liqoid has disap-
peared, and the inner wall of the capillary is covered everywhere,
also al the place where before the vapour was found, with a solid,
red sabstance, containing rather great quantities of «/f.

This phenomenon is explained by means of the following consi-

1) Ber. 42, 4510 (1909).

2) The italics are ours.

58%
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deration. The second critical end-point q of the pseudo-system lies
below the melting-point of the red phosphorus. If now the tempe-
rature of the capillary has fallen below this critical endpoint, the
ligmd has become strongly metastable, and hence al a given moment
it will suddenly be converted to a fluid phase, from which sohd
red substance will be deposited, also there-where before the colour-
less vapour was found.

That the solid substance formed in this way 1s not m internal
equilibrium follows most clearly from this that on being rapidly
heated it does mnot show the melting-pomnt of red phosphorus, but
melts at a lower temperature, e.g. at 583°. As will be shown in
a following communication, this bebaviour also admits of an easy
mterpretation, just as the phenomena observed by Stock ) on sudden
cooling of phosphorus vapour heated to different temperatures. These
phenomena are not strange, on the contrary, they were to be expected
in virtue of these considerations, and thus afford a notinconsiderable
support to the theory.

An important question which remained to be answered, was this-
“can 1t be experimentally demonstrated that in contradiction to what
was assumed up to now the vapour pressuve line of molten white
phosphorus and that of molten red phosphorus do not belong to the
same curve?’ If the system phosphorus really belongs to the type
ether-anthraquinone, the vapour piessure line of molten white phos-
phorus 1s not the prolongation of the vapour pressure line of molten
red phosphorus.

To find this out the vapour tension of molten white phosphorus
was determined up to the temperature of 338° by means of the
manometer of JACKsON?), as has already been described by Messrs.
Scaerrer and TRrEUB °).

Further by the aid of a new apparatus, which will be described
later, the vapour pressure line of molten red phosphorus was
determined, in which it appeared that the triple point pressure of
red phosporus amounts to almost 50 atmospheres. To answer the
question proposed above the vapour fension, which the liquid white
phosphorus would possess at the triple point temperature of the red
phosphorus (610°), was calculated from the observations by the aid

of the integrated relation

a b
Inp=— —= 4+ =log T 4 C
np ar TRt
1) Ber. 45, 1514 (1912).
%) J. Chem. Soc. 99, 1066 (1911).
J) Verslag Kon. Akad. v. Wet. 256 Nov. 1911, 529.
Zeitschr. I, phys. chem. 81, 308 (1912).
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by putting Q=a -+ &7 1 the formula
dinp  Q
4T T RT*

If we had to do with one and the same vapour pressure line,
about 50 atm would bave to be found for that pressure.

If on the other hand the pseudo system exhibits the type ether-
anthraquinone, and the vapour pressure lme of the liquid whte
phosphorus possesses a critical point below 610° the prolongation
of that line- above this critical temperature will of course have no
physical significance, but if this prolongation points to a pressure
kigher than 50 atmospheres at 610° the question put above will be
answered by this The result of the extrapolation was that at 610°
the pressure would amount to about 350 atmospheres. This result
1§ 50 convineing that 1t shows the erroneousness of the earlier view
with perfect certainty, so that 1t may be considered indisputable
already now that the view about the type of the pseudo-system has
been correct ).

S0

18atm]

4 442° 4.60' o’

1) Also the system cyanogen has been investigated and conforms entirely to
that of phosphorus. In the same way as for phosphorus we have succeeded n
showing by means of experiments of soldification that we have to do with diffe-
rent kinds of molecules, which can be in equilibrium with each other in sohd and

liquid cyanogen.
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We will conclude this communication with the schematic PJ-
figure of the phosphorus; the connection between the unary and the -
pseudo-binary system will be treated in a following publication.

When the calculated critical temperature 422° for lignid white
phosphorus is correct about 18 atmospheres follows {rom the vapour
pressure line for the critical pressure. The critical point is indicated
by %, in the drawing. The vapour pressmre line of molten red phos-
phorus exhibits probably a peculiarity that has never becen met with as
yet, viz. two critical points %, and Z,, the former of which is metastable.

Tt is of course also possible even probable that unmixing takes place
in the pseudo-system between p and ¢, s0 in the metastable region.
The point -Z, might, therefore, lie al even lower lempei*atnre and
pressure than the point Z,. Possibly the continued invesligation may
give an indication with regard to this too.

It may finally be pointed onl that when we apply Van pir Waars's

equation,
Pk . T
log — — ——1
og » J ( T )
and write .
logp = — —Tak + ¢

3,94 is found for the value of f.

This equation does mol represent the observed vélpour pressure
line as well as the former, the canse of this may be that f is nol
constant as has been found indeed with several substances.

Anorg. Chem. Laboratory of the University.
1

Amsterdam, Nov. 29, 1912.

Mathematics. — “On loci, congruences und focal systems deduced
Jrom a twisted cubic and a twoisted biguadratic curve”. 111,
By Prof. HuNprix ve VRrigs.

(Comnmunicated in the meeling of November 30, 1912).

17. Tf we assume that the line / itself is a ray of the complex
without however belonging to the congruence deduced from £°, then
the (wo surfaces £2* and L' undergo considerable modifications.
The surface £2°° has no lowering of ovder; insiead of the regulus,
namely, which is the locus of the rays s conjugaled to the points of
I we now have a quadratic cone (passing likewise through the cone.
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vertices) whose vertex P; is the focus of /, because the two conjugated lines
of /, which cross each other in general and exactly therefore generate
a regulus, now both pass through I’ ; bui P; does not lie on 2°,
because [ is a ray of the complex, but not of the congruence. A
. generatrix of the cone therefore intersecls °, as formerly a line of
the regulus, in six points, from which ensues thai / now again is
a sixfold line of the surface. And to a plane A through / corve-
sponds as formerly a twisted cubic through the cone vertices and
- which now passes moreover through /P, because [ is a tangent of
the complex conic lying in A, but which now again intersects 2°,
except in the cone vertices, in fourteen points; thus in 2 lie 14
generatrices of the surface, so that this is indeed of order 6"+ 14 = 20,
The curve £'3, the section of the cone with &£° has also 6 nodal
points lying on A%, so thai 2%° contains 6 nodal generatrices.

The nodal eurve of 2% undergoes a very considerable modification
as vegards the poinls it has in common with [ Through such
a point namely must go 2 generatrices of the surface lying with /
in one plane; but now { is itself a ray of the complex and three
rays of the complex can then only pass through one point when ihe
complex cone of that point breaks up into iwo pencils; so the only
points which the nodal curve can have in common with / are the
points of intersection of / with the four tetrahedron faces.

These points which in § 15 we have called S; coincide with the
points which were called 7% in the same §. Let us assumec the
plane /7. As now again and for the same reason as before nine
of the fourteen generatrices of 2** lying in this plane pass through 7'
(§ 13) the five remaining ones must pass throngh another point 7%
lying in =, and whose complex conic breaks up into r, and the plane
T*l; now however this point coincides with ,S,. For the complex
cone of S, likewise breaks up into two pencils, of whick one lies
in 7,, the second in a plane through 7" * and 7', ; now however, {0 this
second pencil evidently belougs our ray [ and so indeed the complex
cone of S, degenerates in (his way inlo 7, and a plane through
I; so S, and 7% ave identical. To S,, mgardéd as a focus, a ray s
through 7, is conjugated which lies at the same time on the
quadratic cone, thus in other wouvds the ray /2 77 ; the latier intersects
L° besides in 7} in 5 more poinls and the rays s conjugaled lo
these ave the 5 generalvices of 2% through S, = 17* lying in the
plane [7; the sixth generatrix through this point conjugated {o
T, lies in %,, but not in the plane I7%.

So we see that through S, pass five generafrices of £° lying in
the same plane; so the four points S; are } .5 .4 =10-fold poinis
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Jor the nodal curve; this curve cannot have other points in common
with 1. So i@t cuts 1 in jfour tenfold points (i.e. the 40 points of
before have changed into four tenfold ones) and so it is aguin of
order 40 + 91 = 131.

Also the surface &' undergoes considerable modifications as the
conic lying in a plane 2 must now always touch the line I The
complex cone for a point /2 of / contains the ray /; the two tangen-
tial planes through [ to the cone coincide therefore; from which
ensues that for each point P of [ the two conies passing through it, -
coincide. The most intuitive representation of this fact is obtained
by imagining instead of the point of contact of a & with [ two
poiuts of intersection lying at infinitesimal distance, if then on /
we assume three of such like points, then through 1 and 2 passes
a conic and through 2 and 3 an other differing but slightly from it,
so that really through pownt 2 pass two conics. The loci of the
conics 15 thus now again a 2' with nodal line [, but this line has
become a cuspidal edge, i.e. whereas formerly an arbitrary plane
intersected £2* along a plane curve with a nodal point on/and only
the planes through the four points .S, (§ 15) furnished curves with
cusps, now every arbitrary plane of infersection contains a curve
wilh a cusp on !/ (and with a cuspidal tangent wn the plane of the
conic through that cusp). Furthermorc we must notice that as the
points 7} * coincide with S, the four nodal points 7° will be found
on the nodal line itself, thus forming in reality no more a tetra-
hedion proper, nevertheless the property of the simultaneouns cir-
cumseription round about and in each other remains if one likes.

18. The curve of intersection of order eighty of £2* and £ is
again easy to indicate; 1t consists of the line [ counted twelve times
(for a cuspidal edge remains a nodal edge), and of a curve of contact
of order 34 to be counted double (§ 15) which has with a plane A
through [ fourteen points lying outside / in common and therefore
twenty lying on [; these last however can be no others than the
four pomts S, for otherwise a generatrix of £ would have to -
tonch a % of 2% on [, which could only he possible (as { itself
touches A%) if a generatrix of £*° conld coincide with / which is as
we know not possible. The curve of contact of £24 and £*° passes
thus five times through each of the four points S, which corresponds
to the fact that five generatrices of £ touch in S,, the degenerated
conic (viz. the pair of pomts .S,, 7}) lying in the plane /7).

The method indicated in § 14 to determine the number of toisal
lines of the first kind undergoes no modification whatever; we can
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however control this method here because we have to deal here
with a cone instead of a regnlus. The first polar surface of P, na-
mely with respect to £° is a £2° containing 4* one time, and there-
fore cutting 2° along 4° counted twice and a residual curve of order
24, so that the circumseribed cone at the verlex P, is of order 24
Now this cone cuts the quadratic cone [P;] in 48 edges, so 48 edges
of [P] touch £2° and therefore £'*. The number of torsal lines of
the first kind is thus indeed 48, and that this same number must
-now be found in general follows from the law of the permanency
of the number.

These numbers 6 and 48, as well as the number of points (namely
40) which the nodal curve of £2°° has in common with / can be
controlled with the aid of the symmetrical correspendence of order
70 existing between the planes A through / (§ 16). To the 140 double
planes d belong, as we saw beforve. the planes through [/ and the
nodal lines and those through [/ and the torsal lines of the first kind,
together appearing there at a number of 54, but representing 60
double planes. The nodal curve of £*° has with [ only the 4 points
S, in common which however count for 10 each and which have
the property that five of the six generatrices through each of those
points lie in one plane; such a plane is thus undoubtedly a many-
fold plane of the correspondence, the question is only how many
single double planes it contains. Now there lie in the plane (7, e.g.
9 generatrices through 7' cutting [ in different points; through each
of the last pass five other generatrices, and so we find so far 45
planes conjugated to the plane (7',.

Now we have moreover the plane through / and the 6t genera-
trix through S, (lying in r,); however by regarding, just as we
have done at the beginning of § 16, a plane 2 in the immediate
vieinity of /7' and in which thus five generatrices cut each other
nearly in one point of [ we can easily convince ourselves that
this plane counts for 5 coinciding planes conjugated to (7. To (T
are conjugated 454 5=250 planes no¢ coinciding with /T and
thus 20 planes coinciding with [T, ; i.e. just as in the general case
a plann 2 through two generatrices cutiing each other on / counts
for two double planes, so here each plane /7, containing five such
generatrices counts for 53>{4 donble planes; so the four planes
[T, represent 80 double planes, and they furnish with the 60 already
found the 140 double planes as they ought fto.

As by the transition to a ray of the complex all numbers have
remained unchanged, the surface £2° conlains now again 58 torsal
lines of the 2nd kind; the 43X 131 =524 poinis of imntersection
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of £' with the nodal curve of £ lie now however a litile differ-
ently. The points 7 remain 36-fold for the nodal curve and they
- therefore furnish 4 X 72 = 288 points of intersection, the 58 torsal
lines of the 2" kind give 58, the 6 nodal edges give 3 X 6 =18
other ones; the 4 points S, = 7,* however_absorb each of them 40
points of intersection. Let us namely imagine our figure variable
and in particular [ continuously passing into a complex ray, we then
see how the 4 points 77" tend more and more to S,, but at the
same time how the 40 points of intersection of [ with the nodal curve
group themselves more and more into 4 groups of 10 in such a
way that each group is as it were aliracted by one of the points
S,; now each of those 40 points counts for 2, each point 7'* for
20 points of those we looked for; so on the moment that 73,* as
well as the 10 points of the corresponding group coincide with
S, this point counts for 40, so the four t{ogether for 160 and the
sam of the four numbers printed in heavy type is again 524.

19. More considerable are the modifications if finally we now
assume that [ becomes a ray of the congruence; nothing is to be
noticed al ', as [ remains a ray of the complex, but the other
locus becomes a surface 2%, for which / is only a fivefold line.
The regulus of before is namely now again replaced by a cone
| P.], but the vertex itself I° now lies on £°, because /[ is a ray
of the congruence, thus itself a generalrix. It even appears twice
as a gencralrix, for the cone cuts £2* according to a #'* which has
now 2.0. also a nodal point in P, and to this nodal point the line
[ corresponds twice. A generairix of the cone [F,] cuts 2°iu Prand
in five other points; so through the corresponding focus on / pass
five generatrices not coinciding with /, i.e. / is a fivefold line.

To a plane 2 through / a twisted cubic is conjugated containing
the four vertices of the cones and P; and cutting 2° in 13 points
more; so in a plane 2 lie besides / 13 generalvices, i. v. our surface
is a 2% of order 18 with « fivefold line I.

) Among the generatrices of the cone [/] there ave two touching
£ in P, and likewise among the twisted cubics; the foci of the
former are the points of interdection proper of / with two generatrices
comeiding with /, the planes conjugated (o the lalter being the con-
necling planes; thus two particular torsal planes and pinch points
(see § 20).

The line P;7T, is a generatrix of the cone [P] and it culs °
besides in these two pointe in four more; the corresponding four
rays s pass through S, = 7.* and lie in the plane {7; whilst the
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ray s conjugated to 7} lies in v, but nol in 7 7,, so the points .S;
are 4 .4.3 = 6-fold poinis for the nodal curve and others this curve
can evidently not have in common with /. So it has 24 points
anited in 4 sixfold points in common with /, and as there are in
a plane & through / §.13.12 =78 poinis not lying on [ the order of
the nodal cuive now amounts lo 24 -+ 78 = 102. The number of
nodal points of a plane section of ' amounts thns now to
102 4 6 4 10 =118, and from this cnsues for the class 1817 —
— 2118 =70 =1¢B; the formula &s = 2. &8 — 2. &¢ furnishes there-
fore 6 =2.70— 2 .18 =104 torsal lines of both kinds.

The formula

; E=pt+qg—y

now again applied lo determine the number of generairices of the
cone [P touching £ and thus of the number of torsal lines of the
first kind gives the following results. The plane of the condition p
cuts A" in 12 points; through each of these passes a generafrix of
the cone cutting 2° besides i 2 in four points more; so the num-
ber p is equal to 48, aand likewise g. The line of the condition g cuts
the cone in two points and through each of these passes a genera-
trix of that cone, on which lie besides P five points of £'*; so ¢
is=2.20, and thus ¢ =2.48 — 2.20 = 56. Among these however
are included the six nodal lines counted twice; the number of
torsal lines of the first Lind amounts thus to 56 — 2 X 6 = 44.

To conirol this we again consider the first polar surface of /2
with respect (o £ a £° touching £° in P, and passing through
#. The intersection with 2" consisls therefore of 2 counted twice and
a residual curve of ovder 30 — 2.3 = 24 which however 1s projected
out of [ by a cone of order 22 only, because P itself is a nodal
point of that curve (for &£° and £° touch each other in Pj; this
cone has with the cone [/;] 44 generafrices in common, and
these touch /2. )

The nwwmber of torsal lines of the 2" Jind of L2 amounts lo
104 — 6 — 44 = 54.

The correspondence of the planes A through [ is now of ovder 52
with 104 double planes. For, in a plane 2 lie besides / thirteen ge-
neratrices of 2 and through each of the 13 points in which these
cut [ four others pass; so lo each plane A 4 X 13 = 52 others are con-
jugated. The double plancs are 1. the planes through the 44 torsal
lines of the first kind; 2. the planes through the 6 nodal edges,
each counted twice; 3. the 4 planes /7; each counted twelve times,
because in each such like plane 4 generatrices pass through the point
S (comp. § 18); s0 we find 44 - 2.6 - 4.12 = 104 double planes,
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And as rvegards finally the number of 4 > 102 — 408 points of
intersection of the nodal curve with &, in the four points 7} lie -
again 288 (comp. § 18), in the pinch points of the torsallines of the .
second kind 54, in those of the six nodal edges 18 and in the four
poinis S, which are sixfold for the nodal curve, 48, together
288 4+ 54 4 18 - 48 = 408.

20. The two particular pinch points on [/ which we have found in
the preceding § were the two foci of the ray of the congruence /
and the two torsal planes the two focal planes; for, in these points/
was eat by a ray of the congruence at infinitesimal distance. If
henceforth with a slight modification in the notation the line [ is
called s, the focus /P,, then P, lies on &° and it is in general
an ordinary point of this surface. Iet us assume the tangential
plane in this point and in it an arbifrary line ¢ through P,; then
this has two conjugated lines crossing each other, and if thervefore a
point P describes the line #, the ray s of the complex conjugated
to P will generate a regulus {o which also belongs our ray s,
a ray of the congruence. As however ¢ is a tangent of ° a second
generafrix of the regulus lying at infinitesimal distance from s, will*
belong to the congruence, however without cutting s,. If however,
we mnow imagine the complex cone at point P, and if we intersect
it by the tangential plane, we find two lines ¢ which are at the
same time lines s, viz. rays of the complex, and whose two conju-
gated lines cut each other. Now the lines s conjugated to the points
P of t will describe two cones containing also s,, and having their
vertices on s, whilst we kunow out of onr former considerations
that these vertices are nothing but the foei of the two rays ¢; and
now s, will be cut in each of these foci .by a ray of the congru-
ence at infinitesimal distance; _the two cone vertices are thus the
foci of s,. So: we find the foci of a ray s, of the congruence by
determining the focus P, (lying on &) of s,, by intersecting the com-
plex cone of this point by the tangential plane in P, to 2°, and by
taking the foci of the two lines of intersection t. And the two focal
planes are the tangential planes through s, to the complex cones of
the  foci. ’

If P, is a point of the nodal curve &* of &' then s, is a double
ray of the congruence (§ 12); the complex cone of P, intersects the
t wo tangential planes of P, in twice two rays ¢, so that we now
have on .s-o"two pairs of foci and through s, two pairs of focal planes;
and as the focal surface of the congruence is touched by eachray of
the congrnence in the two foci, so each double ray will touch the
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focal surface four times. The four tangential planes are the focal
planes, however in such a way that if one pair of foci is called
F,, F, the focal plane of £, is (angential plane in F, and reversely.

Let P, be a point of %', lying as a swgle curve on £° thens,is
the tangent to 4* in P, and it belongs to the congruence. The com-
plex cone of P, intersects the tangential plane in this point to £°
according to s, itself and an other generatrix; so of the two foci
of s, point P, is one whilst the other is the focus of the second
generatrix of the complex cone of [, lying in the tangential plane;
and of the two focal planes the osculation plane of £* in P, isone,
because this really contains two rays of the congruence intersecting
each other in P, and lying at infinitesimal distance (viz. two tangents
of %%); so it touches the focal surface in the other focus, i.e. the
surface of tangents of £* which is of order 8 envelops the focal
surface, and the curve &' itself lies on the focal surface.

The question how the cone vertices 7, bear themselves with
respect to the congruence, is already answered in § 11; £°
intersects the plane r; according to a plane £* and the rays s con-
jugated to these form a cone of order 9 with the vertex 7; and
with three nodal edges and three fourfold edges, the latter of which
coincide with the three tetrahedron edges through 73,

Let us assume an arbitrary point P of £°, then to this a ray s
through 7% is conjugated ; now the complex cone of P degenerates
into a pair of planes, of which 7, is one component, whilst the other
passes through 7, and this degenerated cone cuts the tangential plane
in P to £° along the tangent ¢ in P (o %°® and according to an other
line #* through P. To that tangent the point 7} is conjugated as
focus, so that for each ray of the congruence through 7} this point
itself is one of the foci, the other being the focus of the line *.

In order to find the focal plane of the considered ray s in the
point 7% we should have to know according to the preceding the
complex cone of 7 which is in first instance entirely indefinite ;
let us however bear in mind that in the general case that complex
cone is at the same time the locus of the ray s conjugated to the
points of the tangent £ then in this case also we can have a defi-
nite cone, viz. the cone which replaces the regulus if the line / passes
into a complex ray s, and which contains in general the four
cone vertices and which will contain here, where 7 itself is the
cone vertex, the three tetrahedron edges through this point. On this
cone lie the two rays s conjugated to the two points of £° lying.
at infinitesimal distance from each other on #, and the plane through these
is the focal plane of our ray s in 7%; but those edges of the qua-
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dratic complex cone lying at infinitesimal distance lie of course also
on the cone of order 9 (sce above); so we can say more briefly
that for each ray of this cone 7, is one of the foei and the tangen- ~
tial plane to the cone is one of the focal planes.

Each ray of the congruence through 73, so each generatrix of
the cone of order nine with this point as-verlex, must have in P,
two coinciding points in common with the focal surface; so 7; is
for the focal surface a manifold point, however without the cone
of order 9 being the cone of contact; for the tangential planes of -
this cone touch the focal surface in the foci-of ils generatrices not
coinciding with 77 ; the cone of contact in 7’ is enveloped by ihe

focal planes of this last category of foci.

21. Over against the question which complex rays through 77 belong
to the congruence, is the other one which complex rays out of r, belong
to the congruence. In the preceding we have repeatedly come across
these rays. Indeed, any surface £°° formed by the congruence rays
which cut a line / or a complex ray s, and any surface £2'* formed
by the congruence rays which cut a congruence ray s contained
such a ray as we proved above; we shall now show that all these
rays form a pencil. To that end we imagine the tangential plane
o in 7, to £ and we cat it according to the line » by r,. We
now saw in the preceding that the rayvs s conjugated to the points
of 7, form a quadratic cone with 7; as verlex and containing the
three tetraliedron edges through 7 ; if the base curve of this cone
lying 1n w; is 4%, then reversely the points of £* are the foci of the
rays s lying in o and passing through 7}, for the rays s conjugated
o the points of a line pass through the focus of that line and
the ray s conjugaled to a point of 7, passes moreover through 77

If a poinf P describes one of the rays of the pencil [7}] lying
in ¢, say s, then the rays s conjugated o the points £ form the
complex cone of the focus P, of s,, which point lies on £*; this
complex cone breaks up however into a pair of planes, viz v, and a
plane through P, and T, and the line of intersection # of these
two planes is the ray of the congruence conjugated to 77, in as far
as this point is regarded as a point of the ray s,; so the question
is how the rays ¢, bear themselves when s, describes the pencil
[77] or, what comes to the same, how the planes 7i¢ bear them-
selves in those circumstances. We shall try to find how many of
those planes through an arbitrary ray s, pass through 7. In each
arbitrary plane through s, the complex conic breaks up inlo {wo
pencils; one has the vertex 73, the other a point 73* lying in ;.
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In each plane through s, lies however one such point 73*; but if
S, is the point of intersection of s, with =,, then also the complex
cone of 5, breaks up into a pair of planes of which one compo-
nent is of course again =, the other being a plane through S, 77 ; so
S, is itself a point 77*, ard the consequence of this is that 7}*
describes a conic £** which passes in the first place through S, and
in the second place, as is easy to see, (hrough the three cone vertices
lying in 7,; for if a plane through s, passes also through a second
vertex, then the complex conic breaks up into the two pencils at
T; and at that second cone vertex.

All rays through a point 7,* of 2** cuiting s, are according fo
the preceding rays of the complex; from this ensucs reversely that
the complex cones of all points of ¢, in r, have the same base curve,
namely A%%. If now the degenerated complex cone of a point of £* is
to pass through s,, then that point must evidently lie also on £**
and of such points there exists apart from the three cone vertices
lying in 7,, only one; in the pencil {7}] there is thus only one ray
for which the (degenerated) complex cone of 1ts focus passes through
an indicated ray s,, i.e. the second components of the complex
cones of the foci of the rays of the pencil [7.] form a pencil
of planes, or the rays of =, belonging to the comgruence form a
pencil.

The axis @ of the pencil of planes must of necessily cut the curve
k*; for, if this were not so. then an atbitrary plane through a would
cut £* in two points, and then the complex curve in that plane would
break up into three pencils (among which one at 7} is always included)
instead of into two. This objection does not exist when « cuts the
curve 4* in a point A4; for then each plane through « cuts £°
besides in 4 in only one point 7% more, and A itself is a point
- 1% for the plane through a which touches &*. The awis o is simply
that line which has the property that the complex cones of s points
have as' common base curve the conic &* itself; for, for each plane
through « the point 7% lying on %* must lie at the same time on
£, s0 £* and A** coincide.

For each ray of the pencil [4] lying in r, point A is evidently
one focus and r, the corresponding focal plane, for each ray is cuf
in 4 by an adjacent one of the pencil; the other focnsis the second
point of intersection 7% with &* and here the second focal plane
passes through I. Zhe focal surface must ther¢fore touch v alony
the conic &*; the pomt A dtself is however a singular point, for here
any plane through a is a tangential plane.

For the langent in A to A* the two foci coincide evidently with
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A; the focal planes, however, do not coincide, for one is 7, and the
other connects the tangent to 1.

22. Order and class of the focal surface can be immediately
determined by means of two dualistically opposite equations of
SCHUBERT, viz. . -

eop® = opyg, + oph, — O'Ee,
and

N

eoe’= 0¢eg, + oeh, — ape?).

We conjugate to each ray g of the congruence all other rays as
rays 4, we then obtan a set of &* pairs of rays and we can apply
to these the two equations just quoted. The symbol ¢ indicates
that the two rays of a pair must infersect each other, & that they
lie at infinitesimal distance and p* that the point of intersection p
must lie in two planes at a time, thus on an indicated line; so
eop® is evidently the order of the focal surface. The condition opg,
indicates the number of pairs which cut each other, whilst the point
of intersection p lies in a given plane and the ray g likewise in a
given plane, now there lie in a given plane 14 rays of our congru-
ence, thus 14 rays g; each of these intersects the plane of the con-
dition p in one point and through each of these pass 5 more rays
of the congruence, opg, is therefore 14 X 5 =70, and oph, means
the same and is thus likewise = 70.

With ap? we must pay more altention to the point of intersection
of the two rays and to the connecting plane than to the rays them-
selves; gpe indicates namely the number of pairs of rays which cut
each other and where the point of intersection lies on a given line
and at the same time the connecting plane passes through that line;
this number is evidently the third of the three characteristics of the
congruence, thus the rank, however multiplied by 2 because each
pair of rays of the congruence represents 2 pairs gh; so Gp?is = 80,
so that the order of the jfocal surface us equal tv 70 4 70—80 = 60.

ede’ indicates the number of pairs of rays at infinitesimal distance
whose connecting plane passes through 2 given points, so through
a given line, i e. the class of the focal surface. Now oceg, indicates
the number of pairs of rays whose connecting plane passes through
a given point, whilst also the ray ¢ passes through a given point.
So tbere are 6 rays ¢ and in the plane through one of those rays
and the point of the condition ¢ lie besides g still 13 others; geg,

1) ‘ScuuBERT 1. c. page 62.
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and oeh, are thus each =6 X 13 =78, and ope was 80, so the class
of the focal surface ="78 4 78 — 80 = 76.

I may be permitted {o point out in passing a slight inaccuracy
commitied by Scruserr on page 64 of his “Kalkul” where he gives
formulae for order and class of the focal surface of a congruence
taking the number r?;e, called by him ¢, only onceinto account;in
Pascar-Scriere’s well known  “Repertorinm’” vol. 1I, page 407 we
find indicated the exact formulae, with the' rank number » counted
twice.

In a congraence of rays appear in general o' rays whose two
foci coincide; these too are easy fo trace in our congruence. For,
according to §20 in order to find the foci of an arbitrary ray s,
we must apply in the focus 7, the complex cone and the tangential
plane to £° and intersect these by each other; the foci of the lines
of intersection are the foci of s, and the tangential planes through s,
to the complex cones of the foci the focal planes. So as soon as the
complex cone of /P, touches the tangential plane £' along a line
{, the two foci of s, will coincide in the foens of ¢ and the focal
planes will coincide in the tangential plane through s, fo the complex
cone of the only focus.

The points P, whose complex cones touch £° are to be found
again with the aid of Scuusrrr’s “Kalkul”. We conjugate the two
rays s. along which the complex cone of a point £, of L' cats the
tangential plane in that point, to each other; so we obtain in that
manner a set of co® pairs of rays and we apply to it the formula:

&0p == 0¢e + Ok 4 0p*® — ope');

The left member namely indicates the number of coincidences whose
points of intersection lie in a given plane, that is thus evidently the
order of the curve which is the locus of the points 2, to be found.
dg. indicates the number of pairs of rays whose component ¢ lies
in a given plane; this plane cuts out of £° a plane curve 4* which
possesses no other singularities than three nodes and which is so
of class 6.5 —2.3=24. and all the complex rays in ths plane
envelop & conic; so there lie 48 complex rays ¢ wm this plane
touching 2°. If we apply in one of the points of contact the tangential
plane to L', then there lies in it one ray /; so gy, is 48 and likewise
of course dhk,. :

With op* we must trace the number of paiis of rays whose points
of intersection lie in two given planes at the same time, thus on a
given line; this line intersecls ' in six points and in the tangential

1) Scuuserr . ¢ page 62.
59
Procecdings Royal Acad. Amsterdam. Vol, XV.
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plane lie two rays of the complex cone and thus also {wo pairs ¢/,
because each of ihe two rays can be either ¢ or %; so op* =12. For
ope finaily the point of conlact must lie in a given plane, the
tangenfial plane mus{ pass through a given point; so we can either
apply the tangential planes in the points of a plane section of R°
and determine the class of the developable enveloped by it, or we
can construct the circumscribed cone and calcnlale the order of the
curve of contact. The latter is the simplest; for the curve of contact
is the intersection of £° with the first polar surface of the vertex-
of the cone and therefore of order 6.5—2.3 = 24, because the
first polar surface contains the nodal curve £* and the latler counted
twice separates itself from it. Bui the {wo complex rays through the point
of contact and in the tangential plane count again for two pairs and
so ope =48, from which eusues eop =48 + 48 4 12 — 48 =60: -
so there lies on &° a certwan curve k™ of order 60 having the property
that the rays s conjuyated 1o its points have coinciding foci and
. Jocal planes. .

We can ask bow the curve £ will bear itself with respect
to the four cone vertices 7:, where the complex cone becomes
indefinite. We now know however out of § 21 that in the plane
T, only one ray with coinciding foci lies, viz. the tangent in 4 to
L, s0 k*° will pass once through the four cone vertices. That for that
tangent in A to 4* the ftwo focal planes do not coincide, is an
accidental circumstance, which is further of no more inportance;
this resull was based namely on the supposition that through an edge
of the cone passes only one tangential plane of that cone;however,
for the point A4 the complex cone breaks up inlo a pair of planes

- whose line of intersection is just the tangentin 4 to 4%, the tangential
plane through that line to the cone is thus infirstinstance indefinite.

The rays of the congruence with coinciding foci determine a seroll
of which we will finally determine the order. To {hai end the scroll
must be infersected by an arbitrary line and we nmow know ihat all
rays of ihe congruence meeting a line / form a regulus £*° and

that the foci of those rays are siuated on a curve A'* lying on £°
and passing singly through the 4 cone veriices. It 15 clear that to a
point of intersection of A and A*" a ray corvesponds with coinciding
foc1 and, cutting /. with the exceplion of the cone vertices; for, to 7%
is conjugated as regards A'° the tangent in A (o &%, on the other
hand as regards A'* the connecting line of the point of intersection
of / and v, with 4, as we now know. Now A" is, as we know,
the complele mtersection of 2" with a regulus; so the complete number of
points of intersection of £ and £ amounts to 120. If we set apart

O ——— e e e
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from these the four cone vertices, we then find as result that e
rays of the congruence with coinciding foci form a requlus of order 116.
The carve 4" intersects r, besides in the three cone vertices
lying in this plane in 57 points more, lying of course on the section
k* of &' and 7.; to each of these points a ray through 7, i3 conjugated
with coinciding foci; the 4 cone vertices ave thus for the surface 2'*°
57-fold points.

Physics. — “Some remarkable velations, either accurate or approvi-
3
mative, for different substances”” By Prof. J. D. vax per
Waals.

(Communicated in the meeting of November 30, 1912).
In a previous communication (June 1910 These Proc. XIX p. 113)
I pointed out the pertfectly accurate or approaximative equality of the
ratio of the limiting. liguid densily to the critical density, and the
ratio of the critical density to that which would be pressnt for 7%, ,

po and v, , if ]}% should always be eqnal to 1. With the symbols

used there
21 4 ) = s

I have added the factor ¢, which must then be equal to 1 or must
differ little from 1. .

The rule given there has attracted some aliention. For first of all"\
Dr. Jwan TimmmrMaNs has informed me that he has found this rule
entirely confirmed for six subslances, for which the observalions made
weve perfectly trustworthy For a seventh substance there was a
great difference, but he thought that for this real association might
perbaps occur, as is the case for acelic acid '). Besides this rule has
also been adopted by KammrriNer Onnes and Keesom in their recent
work for the Encyklopidie: Die Zustandsgleichung. The rule is in-
deed apl to rouse. some astonishmeni, because it pronounces the
equality belween iwo quantilies, which, at least at the first glance.
have nothing in common.

It is to be expecled {hal this approximative equality will have
to be explained by the way in which the quantity & varies withv;
but it is seen al the same time that perfect equality cannot be put

1) The numerical values have been communicated in Lhe “Scientific Proceedings
of the Royal Dublin Society”, October 1912.
59¢

-123 -



904

gencrally. There 1s. 1ndeed, a remarkable difference for invariable
molecules, ie. for such for which the quantity b does not change.
UL __ UL

8
Then the quantity s =— and —=-—=23. In this case ¢ is nol
3 b Vlam

9
1, bui 3 If there exsis a vecililinear diameler for substances with

such molecules., y =

1o} =

I

Perfect equality or almost perfeci equality can thevefore, only be
expected for snbstances for which & greatly varies with the volume.
Thus for substances for which s iy about equal~to 3.77, the value
of y 15 about equal io 0.8 or 0.9. The following remarks are the
result of my invesligation to get more certainty about this question.

According to the formula-

Vlun
is g
by
P— == s
biim
or
b s s GA(A)
b r T T Y e
or )

b, f—1(88
—_— =t ——
])[nn 3 9 o

88
Now the thought has forced itself npon me to put oo
sr

f
=

and hence also
by f—1

Oam 3

88 9 » )
The rclation 6;(/»:1, or = gé is salisfied for enbstances for

9
which & 15 constant Then »¢ =28, and as we saw above =7z
For subsiances with variable value of 8, »s << 8 and ¢ decreases,

. 1
but comparatively slowly. Not before rs = 75, g would be = 1,

and for subsiances for which #s has this value, the rule
2(1 + y)=s

B e TR T
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1
would be perfectly accurate. Ifrs > 7 5’ 2 (1 4+ y) > s, and not before

<15, 20 )<

9 ps
The rule at which we arrive when we put P=g3g Vi
by _f—1
blnn— 3
is satisfied for substances for which 5 1s invariable. Then of course
b, , —1 .
Z-’— =1 and j:é&oz'f—g—: L. For all other substances > 4, and
lun
.f‘“l s . bq
—-5;—~> 1, the first member of the equailon, viz —~ 13 then, of
{im

course, also always greater than 1 Laler on we shall set ourselves
the task to mquire mnto the theoretical reason for this relation. But
for the present we shall accept 1l as perfectly accurate, and see to

27
what conclusions 1t leads. If we wriie -62.5‘ for f—1, we get:

b9 (3 Y\
— =gt == — s
blzm 64 8
bq

. 3
The value of s can, therefore, nof be sinaller than T For — =
lon

2

- 8 .
aud so for f="7s= 51/2 = 3,77, a value which moreover already

2

s 64 b,
follows from the equaliy =5 put above. For —L =3, to

j —1 bim

8
which f=10 would belong, s would be = §.V3’ or s =4,62.

But so ligh a value of f or s bas only seldom been found If
before in the absence of a leading idea, I assumed a still greater

b,
ratio for —-, this was a mistake.
lun

From:
by  9s°
bhm - 64

bq vl 9 /e Qhun
P =~ e =—=2(1 4
bum Vim 8 (8) oL ( 7

Of cowrse we find back the rule from which we have started
but with a determined value for the factor ¢. As I showed before

follows

~
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(5r) <8, but for by far the majority of the closely investigated
1 2 (i

substances (s7) > 75. For thewm 2047 must be > 1. But the pos-

8

2(1-
stbility of 2 {—_y_)< 1 is. nol excluded even for normal substances.
s &
Yet we should not lose sight of the fact that 1t has not yet been
mvestigated in how far the exisience of quasi-association has influence
on the rule of the rectilinear diameter. A close investigation about
the value of (rs) for different substances, and comparison of the
value of y following from this with the experimenial daia is, there-
fore. very desirable. '
. , . 0 .
If from the knowledge of the value of —— we want to determine

[1m
the value of », the given relations are not safficient for an uccurate
determination. The relation

by __9‘ sm\?
bllm-—-T2 8

by 9 [(f—1p
bim 72 27 ’

9
indeed, holds. As, however, the yalue of the factor of — is not accurately
N

or

known, and as we only know that this factor is smaller than 1, and the

by . .
smaller as —%- is grealer, we can only give a value for » below

lun

) ) . b, )
which it must remain. Thus for — — 92 the value of r is below

lon

3 8 8 8
— == 2,12. Already with the formula — <1, or +r<l—, or r<l—
V2 78 5 s

. . : 8 by
we arrive at the given value for r. If we, namely, puts = 3 Y.~
lim
3
r < -—-'—*b;— .
biun

Only in the case that {0 is invariable, the sign < must be replaced
by the sign =. But even for such a greal variability of & that the

1 .
value of rs would have decreased to 7 r 7 would still amount to
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8 )
the ry part of the value calculated according {o the above formnula.

It is, indeed, very remarkable thail alveady with such slight vara-

4]

diminished so

by
bility of 6 as will be the case for — =2,

lun lun

greatly that the value changes from 3 to about 2, whereas bf’— only
y
decreases to about 0.95 or 0.96, as I caleulated before.

Let us now proceed to wnqure whether a theoretical reason can
be given for the above mentioned relations. That though they may
possibly not be quile rigorously accurate, they will hold with a high
degree of approximation, cannot be denied.

That 6 varies with » I have had to admit immediately when I
tested the equation of state given by me by the observations of
AnprEws, in which even volumes occur which ave smaller than b,.
And I have long heen of opimon tbat this diminution of & with
smaller volume does not mean a real diminution of the molecule,
but that this diminution of &6 would only be an apparent diminution.
I have tried to subject the hypothesis of an apparent diminution to
the caleulation by what T have called the overlapping of the distance
spheres. Then the factor 4 in the expression & = 4 times the volume

.. b .
of the molecules diminishes. The value of — has then the form ofa
9

. . b
series according lo ascending powers of —, and I have at least
v

brought the factor of the 1¢t power, and also that of the 2md power
in a formula, which, however, required such laborious and lengthy
calculations for the second power that I abandoned them hopeless.
Vian Laar has carvied out the computations, and calculated the value
of the coefficient belonging to the 2" power, and expressed the
opinion that ihe series would consist of as many as some 20 terms.
Afterwards Borrzmann has supplemented the calculations, and shown

b
that the value of T would have the form of a quotient with series
g

-, . b -
of terms with ascending powers of 2. More and more the conviction
v

took hold of me that this apparcnt diminution does not exist. I have
not yet oblained perfect certainty that it does not exist. But already

— , b
before by the application of the form ofz—wnh not too great a degree

g
of density, in which some three terms will suffice, 1 have repeatedly
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found that the -calculated coefficients are much ioo great. To this
comes that the coefficients thus calculated must be of the same
value for all subslances, at least if a spherical shape is assigned to
all of them. Atftempis to determine them when the shape deviates
from the spherical form have not yet been tried by anybody, but
it may be expected that they will not differ much from those that
have been calculated for the spherical shape. A contribution of
importance for the decision of the question whether or no apparent-
diminution exists will be furnished by the experimental determination
of the equation of state of a monatomic substance. If we should
have to conclude to diminution of & with decreasing value of v
also for these substances, this diminution of o will certainly have
(0 be called a quasi-diminution, unless one would assign & constitution
for which real diminution is possible also to an atom.

A second view of the canse of the diminution of & with v would
of course be obtained if one should have {o ascribe compressibility
o a molecule, and if one did not explain this compressibility by a
diminution in size of the aloms, but by their coming closer together.

If this is {o be the cause, the diminution of & must not be found
_lor a monatomic molecule. To decide this il would be desirable io

give so considerable and judicious an extension {o the investigations
for such substances as those of Anbrews for carbonic acid.

That a molecule consisting of aloms might be compressible in
consequence of the approach of the atoms seemed a hypothesis o
me worth investigating. And I carried ithis oul in my communi-
cations in 1901 published in these proceedings. I arrived al a
formula there, which may be considered as the equation ol siate
of a molecule consisting of two or {hree separale parts which are

in thermal motion. These separate parts may be separale aloms or -

separale atom groups, which are in close relation ai the temperature
considered, and of which the component atoms are perhaps in
vibration with almost vanishing amplitude and small period.

This formula has the foliowing form:

P+ = + a (b—1b,)} (0—b,) = kRT.
"

In this formula b is the volume of the molecules, &, the volume
of the atoms or atom groups, and the latter would be the volume
of the atoms or atom groups when the molecule was compressed
as much as possible. The quantity % is equal to */, for a molecule
composed of two separate parts, and equal to 1 or < 1 according
to the nature of the motion for a molecule consisting of three parts.
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‘I have represented (he attraction of the separate parts by « (5—b,),

b—
but I shall henceforth denote it by « *, which is hardly more

0
than a change of a formal nature, required to make «’ retain the
. N . iJ (Lz .
character of a pressure on the unity of surface. Just as p <4~ is
v
a pressure directed inward on the unity of area, this is the case

b .
* and the latter represents the increase of that pressure

. b—
with o
¢
in consequence of the mutnal attraction of the separate atoms or

atom groups. It was ounly afler a long hesitation that I dared con-
clude to this value of the atiraction, and when I concluded to it
it was only, to quote Prof. Ricnarps, “with some conviction’.

It follows from (his form for the attraction that it is equal to O
when the atoms touch, and becomes greater when the space allowed
to the motion of the atoms, increases. Moreover [ put a’ propor-
tional to the temperature. I must acknowledge that these suppositions
are not founded on a (rue insight in the constitution of a complex
molecule. But I hoped that the study of the consequences of these
hypotheses which seemed probable to me, and the comparison of
these consequences wiih esperience might contribute lo the know-
ledge of the properties of such a complex molecule. And so far as
1 could then compare with what was known on otlher gronnds, the
impression I obtained, was not entirely unfavourable. And now 1
have been induced lo reconsider the conclusion at which I had
arvived, to see 1if it leads to the relations which [ have drawn up
in the beginning of this communication. But in this respect I have
not obiained perfect certainty yet. I have repealedly discussed some
difficulties which confronted me, with my son—but these discussions
have not yel led fo an undoubted result. At the moment I shall
confine myself fo communicating the proposed rvelations. Later we
hope to be able to derive a rule from the slale of motion of the
atoms in a molecule, which will perhaps lead to the form:

by f—1 _ .

Olim -8 b vk
when £ represenis the namber of degrees of freedom for the motion
of the parts of the molecules divided by the number of degrees of
freedom for the progressive motion of the molecule as a whole,
viz. 3. From this would follow f= 6,448 for 2-atomic subsiances,
and /= 7 for {riatomic substances, or perhaps this ought to be
expressed a» follows: for meolecules wilh an axis of symmetry
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f=6,448. In the absence of such an axis /= 7or /> 7. But this
is still entirely uncertain.

1f the given relations are assumed to be pevfectly correct, the
reduced equation of state assumes the following form:

+ 3 by 1 b) ;8 b
AdF—— =) =T—= —
- v b Tor bq 3 bt

b
For 6 constant, and s0 also — = 1 and rrr= 3 we find back
{im

the same forwn as occurs in Continuiteit p. 127. This form is found from:

—1 1
(“ +L)(vﬂ L ﬁ) =1
p? Per by

If in this eqnation we put @, » and 7’=1, we find:

ber ( .s')
—_— =y (l—~=],
by ‘ J

a reiation, which had already been found before.

Mathematics. —- “On metric propertics of biquadratic twisted curves”.
By Prof. Jax pr Vrirs.

(Communicated in the meeting of December 28, 1912),

§ 1" The quadrafic surfaces @* of a pencil cul the imaginary
circle v*, common to all spheres in the groups of an involution of
order four.-The lines », joining {wo points of the same group enve-
Iop a curve of class lhree. Any of thesc lines r, is the axis of a
pencil of parallel planes cutting a determinale surface @* of the
pencil according to circles.

Such a plane cuts the base ¢* of the pencil (#*) in four concyelic
points. 'So we find: the plunes culting a biquadratic twisted curve
of the first species in four concyclic points envelop a curve of cluss
three lying at infinity.

§ 2.1 Let [ be the axis of a pencil of planes. Any plane 4 cuts
o* in four points which will be denoted by 1, 2, 3, 4, whilst M,
will indicate the centre of the circle (mn. We consider the locus
of the qguadruples of cenlres A/ and lake first the pariicular case
where 1, 2 are fixed points and line [ is a bisecant of ot

As the centres M, and M, (of the circles 124, 128) lie in the
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plane A normally bisecting line 1,2 the locus (4/) consists of a curve
lying in A and of the locus of the centves A/,, M,. But the latter
consists of two different curves, as the points A/, M, never coincide
during the rotation of A about /[ For a coincidence of M,, M,
requires that the circles 234 and 134 coincide ;; a8 1 and 2 are fixed
points, this only happens when 1, 2, 3, 4 are concyclic, but then
the four points Af; belong to different branches of the locus.

§ 3. The locus of the poinis M,, M, situated in A passes siv times
through the midpoint M, of 1,2, for the sphere on 1,2 as diameter

cuts ¢* elsewhere in six points. So this locus is of order eight and,

will be indicated by u®.

The plane I', at infinity contains the centres of four circles
determined by the points of ¢' at infinity. The remaining four points
common to I, and u, originate from two nodes generated as follows.
If 4 touches y*, the point of contact is the pole of the line at
infinity of A with respect to all the “circles” lying in that plane;
so M, and M, coincide then in that poini of contact, but belong to
different branches.

Through [/ pass three planes containing four concyclic points; in
the centre of each of the three corresponding circles 1234 the curve
1 has a node.

By assigning to M, and M, respectively the points 4 and 3 we
establish a correpondence (1,1) between the curves u*® and o*; so
these curves have the same genus. As the singular points of a curve
of genus one are equivalent to 20 nodes, the sixfold point 4/, and
the five nodes already obtained form the singular points of u®. So
this curve is of rark simieen ; its four tangents through J/, originate
from the four tangential planes of o through [/ in which planes 1,
and M, coincide.

§ 4. The locus of M, (and likewise that of M,) is a twisted sextic
n'; its points at infinity ave the points ol ¢ al infinity and the
points of contact of ¥, . with planes through ..

Evidently -it has five points in common with /; so it is rational
and of rank ten.

The three curves u®, w,’, w,* concur in the cenires of the circles
lying in the three cyclic planes through /[ Furthermore each curve
u* has still one point in common with p For in the plane A
touching ¢* in 1 (or in 2), M, (A,) is at the same time one of
the poinis M,, M,; for 3=1 gives 124=324 and therefore M, = M.
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§ 5. In the case of an arbitrary line [ the locus of the poinis M
is a twisted curve p**. Auny plane A through a point at infinity of ¢*
furnishes three points of I, lying in different directions, and on
v*, the curve has two fourfold points. Moreover it possesses three
Jourfolds points in the cyclic planes through /.

As any plane 4 bears four points M none of which generally
lies on [, w*° has with / sizieen points in common. Bach of the eight
tangential planes of o* furnishes a {angential plane of u*’; so this
curve is of rank forty. ’

It is of genus one, f01"0ue can assign the point M to each point
k of ¢*. So the generally known formulas

r=m(n—1) — 2 (h4-7)) — 83,
p=13%(@m—1)(m-2) — (A+D+p),
where we have r=40, m =20, D=30, p=1, give §=0,
h = 140.
So the curve has no cusps, but 140 apparent double points (bise-
cants through any point).

§ 6. If the points 1, 2, 3, 4 of o' form an orthoceniric group,
their plane 4 cuts all the @* according to orthogonal hyperbolas;
then all the planes parallel to 4 farnish orthocentric groups.

The planes culting a direclor cone of #* in two edges normal to
each other cnvelop a cone of the second class, So two coucentric
director cones determine four planes cutting the two corresponding
®* and therefore all the &* of the pencil in orthogonal hyperbolas.
From this ensues: there are fowr systems of parallel planes cutting
o' in orthoceniric groups.

§ 7. We consider in any plane 4 through [ the orthocentres Oy
of the triangles /mn, wlich four points lie with the points 1, 2, 3, 4
on an orthogonal hyperbola o®.

Evidently o® is the scction of 4 with a @* through ¢'; now we
can bring through / a second plane cutting that @? in an orthogo-
nal hyperbola (§ 6). So any point of [ lies on two curves w’, i.e.
] is double line of the locus of the curves o®. Therefore: the locus
(O) of the orthocentra O lies on a surface 2 with double point 1.

In order io determine the degree of (()) we remark that in a
plane A througl a point at infinity of ¢* three points (O lie at infi-
nity in the same direction, which proves that T contains four
threefold points of (0). If 4 touches the circle y*_, the point of
contact [ is separated harmonically by ¥*_ from any point of the
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tangent, i. e. of the line al infinity of A. So all the perpendiculars
of the triangles /mn concur in 1 and 7 is a fowrfold point of (0).
But then the curve is of order twenty.

If two poinis £ coincide in a plane 4 the same happens with two
points Or. So through [ pass eight tangential planes of w* and as
! contains evidently sivéeen points of this curve, w® is of rank forty.

It is of genus one on account of the (1,1)-correspondence between
the poinl 4 of ¢' and 0.

From p=1, r=40, m =20 and D=24 (as there are two
fourfold and four threefold points) we find (§ 5) f=0, A= 146.
So the curve has 146 apparent double points.

§8. 1f [ joins the points L and 2 of ¢* {he locus of the poinis ()
consists of three curves. For the points O, and O, always remain
separaled, if 4 rotates about [ But on the conirary O® and 0*
belong to the same curve; for the difference between the poinis
3 and 4 disappears as soon as A is tangential plane.

We now can delermine the order of the curve (0,) as follows.
We look out in the first place for triangles 234 rectangular in 2.
To that end we consider the cubie curve ¢*, which is the projec-
tion of ¢* out of % on the plane at infinity. On each line through
the trace 12¥of 21 we deterrnine the points A, separating harmo-
nically the projections of 3 and 4 from the circle y*, . As ¢’ culs
the polar of 1_ in three poinis, 1, is threefold point of (//) and
this curve a quintic. Its points of intersection with ¢*  arc 1 couni-
ed thrice, six poin‘ts on y*  and an other sextuple forming three
pairs of traces of mutually rectangular lines 23, 24. So through 1,2
pass three planes for which the angle 324 is. a vight one; therefore
1 is a threefold point of curve (O).

If line 34 is normal to 12, the point O, lies on 1,2. So line 34
gencrates a hyperboloid if 4 rotates round /; so by means of a section
normal to 1,2 it is immediately clear that there are two chords 34
at right angles {o 12.

So five points O, lic on /; thereforc (0,) is a rational curve o,
of order sie with « threefold point. The line [ is the bisecant of o,
passing throngh 1the threefold point. Morcover we find # =10,
h="7 g=0.

Evidently there are three positions of ./ for which 312 isa right
angle; so the poinis 1 and 2 ave #hreefold on the locus of the points
0,, 0,. From this cnsues that this locus is a ciurve w® with two
threefold points.

As 34 happens -to be langent four times, w® is-of rant .sizteen,
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Evidently it is of genus ome (see § 3). Furthermore we have D =8
(two double points on y* ). h==12, §=0.

" The surface £2* (§ 7) containing the three curves o, w,*, w," has

threefold points in 1 and 2. For, all orthogonal hyperbolas pass

through these points. Two of these hyperbolas break up info the

line /=1.2 and a chord 3,4 ail righi angles to it.

§ 9. If [/ has only point 1 with ¢* in common the locus of the
points O consists of an w® containing the points O, and an ' con-
taining the three other points O; this follows immediately if we
consider the points at infinity. '

We determine the order 14 of the latter curve independently by means
of -the number of fimes that one of the points O lies on /. The
plaries containing {wo chords at right angles in 1 envelop a cone
of clngs, siz; for the chord 12 is intersected at right angles by three
chords and bears three planes in which the chords 13 and 14 are
normal to each other (§ 8). So the triangle 1/£ is rectangunlar in 1
for siz positions of .1 and in each of these cases a point O coin-
cides with 1.

The chords of ¢* intersecting [ form a scroll of order five with [
as double director line. So there are five chords normally cutting /,
each case of which furnishes a point O on /. So we findan o' with
stefold point 1, through which point passes still a fivefold secant.
It is of gyenus one. as we can assign the point O to the point £
of ¢'. From m =14, D =25, » =28 (on [ six tangents rest) we
then derive § =20, ~A=52.

The curve o has [ as fivefold secant, is therefore rational and
of rank ten (h =10, g3 = 0).

Now the surface £2' has a thregfold point in 1.

§ 10. We still consider the scroll, locus of the lincs of Kuneg,
ey == M} O1, lying in the planes 4.

Between the points of the curves p** and *° exisls a correspond-
ence (L,1). By projecting the corresponding points M and O oul
of an arbitrary line @ we generate a correspondence (20.20) between
the planes of pencil (@). Of the 40 coincidencies 4 lie in each of
the planes through @ and one of the two points /, each of these points
being fourfold point of p?** and of w*. In cach of the other coin-
cidencies lies a line ¢ resting on «a. So the scroll (¢) is of order 32.

We can verify this by means of the locus of the centres of gravity
G of the triangles /mn. It passes three times through each of the
four points of ¢* at infinily and is therefore of order twelve. As
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this curve is also in (1,1)-correspondence with p*’, whilst it never
happens that G7 and A/, coincide, the reasoning given above leads
here anew 1o the order 32 of (e).

§ 11. A twisted biquadratic curve ¢* of the second species lies
on one quadratic surface ¥* only. It can be considered as partial
intersection of ¥* with {he cubic scroll =" generated by the bise-
cants b of o' cutting a given bisecant ,. Each poini of 0, bears
fwo bisecants b,6’ and the plane (b,6) passes through the single
director line ¢ of ="

The pairs 6.6’ determine an involution on g, the double points of
which lie in two double tangential planes of o*.

Revelsely the line vommon to any two double langennal planes
of o' is single direetor line of a =*; for the bisecants lying in these
planes are cut by onc bisecant &, only and this line is the double
direcior line?) of =*

We now determine the number of orthogonal pairs b, 6':

Any edge of adirecior econe A® of ="' is at right angles to three
other edges; so the planes of the orthogonal pairs envelop a cone
of class three. On A® the pairs 4,5’ delermine an involution and
the planes of the pairs of edges pass through an edge parallel to ¢.
From this it follows that ¢ bears three*) orthogonal pairs b, d’.

As the, Jmes g form a congruence, there are o’ planes £ coun-
taining mthooonal bisecants; so these planes envelop a surface £
of class thrée. The planes intersecting Y™ in orthogonal hyperbolas
arc parallel to the tangential planes of a cone of the second class
and envelop therefore a conic *£2 at infinity. Evidently a common
tangential plane of °£2 ‘and *R culs ¢* in an orthocentric group. So:
the planes of the orthogonal quadrangles inscribed in o* envelop a
developable of cluss siz.

§ 12. We consider once more the locus of the guadruples of
orthocentres in the planes ./ through a line /. If 4 contains a point

%} The lines ¢ form a congruence (8,3).
?) If % is represenled by the equalion

(ax + by 4 ez -+ d)a® = (de + ¥y + o + &)y
we find for any pair b, 0" the equations
y===2x,ar + by 4 ¢c +- d=2* (dw 4 'y 4 'z 4- d).
So the orthiogonal position of the lines (A} and (—.) reqmres evidenily
((ai—e¢)* (1 —24%) + (a—a'2?)*—2a? (b—0'2%) = 0.
So there arve three oithogonal pairs,
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of 6* at infinity, the centres O,. 0,, O, lie in the same direction at

infinity and give rise o a threefold point at infinity. As we have

found in the case of o' (§7) y*, contains two fourfold points of-
(0). But I, bears iwo points O more, originating from the two

trisecants of 6% meeting /. For if in a plane ./ the points 1, 2, 3

are collinear, the three perpendiculars of the flaiiened triangle 124

are parallel. Then the four orthocentra lie on the normal ¢ through

4 on the (risecant; so ¢ is quadrisecant of the curve (0) and the

order of (()) is 22.

There are six tangenis of ¢' meetling / and therefore as many
fangents of w** doing likewise; as w** has evidenily 18 points in
common with /. this curve is of rank 42. As it corresponds in genns
to ¢* and its singular poinis are equivalent {o 24 double points, we
find by’ means of the formulas given above =0, /= 186.

§ 18. If 7 contains the points 1, 2 of ¢*, the locus (O) breaks up
into hiee different curves. As in § 8 we find here through 1, 2
three planes bearing chords 23, 24 normal to each other, so 2 1s
threefold point of ().

But now the line 31 describes a cubic scroll (with double line /)
if 4 rotates about /; so 12 is cul orthogonally by ¢hree chovds. -

So we find for (0,) and (0,) two rational curves ot order seven.

The locus of O, and 0, is once more an w® with #w0 thregfold pomis.

The three curves are situated on a surface L° f'nrmiﬁg the locus
of the orthogonal hyperbolas 1234. For, in the three planes A bear-
ing a chord 34 normal to /=12, the hyperbola degenerates into
these two chords and [; so [ is threefold line from which ensues
moreover that 1 and 2 are fourfold points.

So we may conclude that for an arbitrary position of [ the corve-
sponding orthogonal hyperbolas form a surface of ovder five wiih /
as threefold line.

Let us still consider the case that [ is a frisecant, containing the
points 1, 2, 3 of a'. Then O, is always at infinily and each of the
remaining three points O describes its own curve.

If 4 coincides with 1, O, is af infinity, which also happens if 4
contains a point of ¢' al infinity and if 4 touches y*,,. From thig
we conclude thal each of the points O,, 0,, O, describes a rational
curve of order seven, with thregfold points in iwo of {he points 1, 2, 3.

In fact each of the points 1, 2, 3 is vertex of a rectangular 1ri-
angle for three positions of ., or more exactly of two suchlike tri-
angles; for, if 14 is normal to the trisecant, 1 is orthocentre of 124
and of 134.
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Farthermore there are 3 3 6 positions of A for which O coincides
with 4, leading to a point common to ¢* and (0).

From this we may still conclude that the planes in which the
quadrangle 1234 admits one right angle envelop a surface of
class 36. As to this we have to bear in mind that any plane through
a trisecant of ¢* having the vertex of the right angle on that trise-
cant must be counted {wice as tangenlial plane.

Likewise we find that the planes for which the quadrangle 1234
admits two equal adjacent sides envelop a surface of class 33.

§ 14. Let us finally consider the locus of the centres Af} of the
circles cireumscribed to the triangles /mn in the planes A through /.

Each of the two trisecants cutting / furnishes again a point af
infinity : each of the planes through & point of o* at infinity deter-
mines three points of I', and each of the tangential planes of v,
through [ contains a fourfold point at infinity. So we find a curve
u*, cutting [ in 18 points, with the rani 42.

If [ is the bisecant 12, the pomnts Jf; and M, generate a plane
curve p** with the midpoint A/, of 12 as sizfold point; for the
sphere with 12 as diameter determines on o6 the vertices of six
recltangular triangles with 12 as hypothenuse. As we can once more
assign A, and M, to the points 4 and 3, p* is ke o' of genus
zero. So its singular points are equivalent to 26 double points. So it
must possess besides the double points on y*,, and the sixfold point
M, still four double points more. These can only originate from
concyclic groups 1,2, 3,4. So we conclude. the planes cutting o* in
Jour concyclic points envelop a surface of cluss 4. 1)

So the curve ** corresponding to an arbitrary line [ has four
fourfold points in the centres of the circles each of which
contains a (uadruple of points of 4.

As it culs I, in {wo fourfold points more, we get 1 = 36.
By means of r =42 and p=0 we find p=0, b= 174

If [ is trisecant 123, each of the points M, M,, M, describes
a plane curve of order seven with a sizfold point.

) This is in accordance wilh the results obtained by Mr. M. Sruyvarrr in
his inaugural dissertation (Etude de quelques surfaces algébriques engendrées
par des courbes du second et du troisitme ovdre, Gand, 1912 ; see Chap. I, Sur
les plans coupant un systéme de lignes cn six points d'une conique).

60
Proceedings Royal Acad. Amsterdam. Vol. XV.
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Mathematics. — “On the correspondence of the pairs of points
separated harmonicolly by a twisted quartic curve” By Prof.
Jan pE Veiss.

(Communicated in the meeting of November 30, 1912).

§ 1. We indicate by P and @ two poinis, lying on a chord of a
twisted quariic curve of the first kind, separaied harmonically by this
curve of. As any point P lies generally on two chords, in the
correspondence (P, Q) to any point £ {wo poinls @ are conjugated.

If 7 moves along a line [, Q describes a curve A* of order siw.
For any plane 4 through [ cuts ¢* in four points S and contains
therefore six points @, where Qp lies on a chord S.S; and is
harmonically conjugated to the points /% common to that chord and
[. If [ is an arbitvary line, @ never lies on / when A rolales about /.

The line @Q,,Q,, is separated harmonically from [ by PS5, and
S.S,. By assuming a position for «/ in which S, and .S, coincide
with @Q,, we find for Q,,Q,; a tangent of A° separaied harmonically
from 7 by P,,S, and P,,S,, whilst an other tangent of %.° takes the
place of @,,Q,,. So each of the eighi tangential planes of ¢
contains iwo tangents of °; so the »ank of this curve is sixteen.

Moreover we find that A' has eight points in commion with o.

§ 2. The line p connecling the two points Q, Q' conjugated 1o
P describes a regulus 4* if P moves along ([ For p is the polar
line of P wilh respect to o, i.e. the intersection of the polar planes
of [P with respect to any two quadratic snrfaces through ¢*, and
these polar planes describe two projective pencils.

Let us now consider one of the lwo lines p culling /. The”

corresponding point P bears two chords S5, and S,S, lying in the
plane / = Ip. The points @,, and @, lie on p, the points Q,,, @,,,
Q. Q,; lie on a line m through / harmonically separated from /
by the chords S,S, and S,S,. As A° lies on the regulus /3, m isa
line of 4*. Any (angential plane of 4° confains thereforc a quadri-
secant of A" and beth the reguli of 4* are arranged by 2° in a
correspondence (2, 4). Evidenily the quadrisecants q are the polar
lines of / with respect to the quadratic surfaces through g*.

§ 3. If we assume for [ a chord of (%, the locus of @ breaks
up into four parts, i.e. the chord [ itself, the {angenis » and ¢’ in
the poinis R, B’ common lo / and ¢*, and a twisted cubic X*. The
polar line p now connecls a point ¢ of / with the point Q' of the
second chord £ passing throngh . This line describes a regulus
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having with .1* the line / in common. So the locus of Q' =4l is
a curve A* throngh R and R’, as [ is {o have lwo poinis in cominon
with it and R and R’ correspond amongsi other poinis with them-
selves; the curves A* and o have four more points in common.

§ 4. If ] is a unisecant of o' in &, the locus (@) degenerates
into the tangent r and a 4. Any plane through / contains besides
R three points @Q; of these two must be combined with Z, if the
plane conrains the tangent r. The quadrisccants ¢ of [ become here
trisecants; for » vests on each of the polar lines ¢ of [ (§2). The
plane ¢r touches ¢* in R and confains therefore two points @ united
in R. In relation with the resulls obtained we conclnde from this
that by the correspondence (2,Q) to a unisecant of ¢* a twisted
carve of order five is conjugated having a node in the point common
to the unisecant and ¢*, the nodal fangents lying in the plane /.

So the curve is of rank ten. Through [ pass six common tangential
planes of ¢* and A°. .

§ 5. The vertices 7% of the four quadratvic cones containing o'
ave singular points of the correspondence (22,@Q). For 7' bears oo*
chords and the corresponding points @ lie on the conie =*, commnion
to the polar plane =, = 7,7, 7, of 7' and the quadratic cone with
T, as vertex. )

To the line 717}, as locus of points £ correspond in the fivst place
¢the two conies v, and v,* and moreover the dne 7,7, counted twice.
- For the points S in any plane through S§,S5, form a complete
quadrangle of which 7' and 7, arc diagonal points; in the (hird
diagonal -point @,, and @, coincide, whilst of the remaining four
points @ two lie in =, and two in 7,. So to any point of 7,7
correspond two points of 7,7, and inverscly.

If [ contains the point 7', only, thé six poinls @ lying in a plane
J. through { consist of two points in v, and onr,* and of four points
lying on the line common to 2 and the polar plane of / with respect
to the cone projecting ¢! out of 77. Then the cuvve (@) breaks up
into the comic r,* and a plane curve 4'. In the two tangential planes
of the cone passing through [ the (wo points Q lying onz,* coincide
with two. of the remaining four in a point of intersection of x,?
and A' where the latter is touched by the edge of contact.

§ 6. Let us now consider the surface of the points @ corre-
sponding( to the points P of a plane I If Sk are the points common
to I and o, the six lines SuS: form the infersection of I with the

60*
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locus under discussion. So it is of order siz. As it contains at the
same time the lines fouching ¢* in S, these points are nodal points.
To the two points of =,* lying in II correspon:! (wo points Q
coinciding with 7%, whilst to the point of /I lying on 737" two
points on 77 7% correspond. From this ensues that the four points
T have to be also nodes of II°. -

So to a plane corresponds a surface of order six with eight nodes
and ten hines.

§ 7. Let us now consider the correspondence between two points
P,Q separated harmonically by a twisted quartic curve of the second
kind o'. As P bears three chords of ¢*, it is conjugated to three
points (. To the points P of a line / correspond the points Q of
a twisled curve A%; for each plane through / contains six points Q.

The three points { corresponding to 2 lie in the polar plane of
P with respect to the quadratic surface H?® through &*. The plane
I rotates about the polar line [/ of /[, if P moves along /. So
is a trisecant of A°.

The scroll of the chords of o¢* cufting [ is of order nine; so nine
of these chords also intersect /. To these nine belong the two
trisecants of o' cutting /, each of which represents three chords;
they have to meet [/, as they lie on the hyperboloid H*® and are at
the same time trisecants of A’. The remaining three chords cutting
[ and [’ determine the three points ¢ on /.

§ 8. Bach of the six tangential planes of ¢' passing through /
contains a point and two tangents of +°; so this curve is of rank
twelve and rests in siz points on ¢*. By S; we represent the points
of ¢* lying in a plane drawn through [; the chord b =S§,S, is
paired to the chord &' =S,S, and now we consider the corre-
spondence between the points > and /’ in which & and 4’ intersect
. As P bears three chords we find a (3,3). If b and 5’ intersect [
in the same point P, only the third chord through P furnishes a
point P’ not coinciding with £; from this ensues that the coinci-
dencies of the (3,3) coincide by two in a double coincidency. So
through [ three planes pass for which 6 and 4’ intersect in /; the
line 4 separating / harmonically from & and 4’ then contains four
out of the six points @, the remaining two lying on & and b'.

So the curve A° adwits three quadrvisecants.

§ 9. Let / be a chord of ¢* and S, and S, the points it has in
common with 4%, Through any point P of / pass two more chords
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5,6’ of ¢'. So the locus of the points @Q lies on a cubic seroll A*
with double line /. -

In the plane 0/ two points @ coincide in .S;, two other ones in
S;, whilst @,, lies in / and @,, in b. If P moves along [, g=0Q,,Q,,
~ describes a cubic scroll @* with double line /; for through Q,, pass
two lines ¢,9 to the points @,, of the chords 6,0’ concurring in the
point P corresponding to Q..

The scrolls 4°, @* have the trisecants ¢,, ¢, of ¢ passing through
S, and S, in common. For if P coincides with S,, #, becomes a
chord & and; as Q,, coincides then with .S;, at the same time a
line ¢.

As ! is nodal line for both scrolls, these surfaces have still a
twisted cubic A‘ containing the points (J,, in common. In the planes
touching ¢¢ in S, and S, the point @Q,, coincides with the point of
contact; so 5,8, is a chord of 2. This curve intersects ¢* in the
two points the tangents of which intersect S,S,; it has for chords
the single director lines of the scrolls A°, @°.

So by the transformation (£,() the chord [ passes into the system
consisting of [ itself, the tangents s,,s, and a twisted cubic.

Evidently a #risecant ¢ is transformed into that line to be counted
thrice and the tangents in the three points it hasin common with ¢°.

If / touches ¢* in S,,, the 3croll ®* becomes a cone with nodal
edge /. In the osculating plane of ¢* in S, ¢ lies along /; so this
plane is common tangential plane of A° and %°, having still in
common the trisecant through S,,. The residual intersection A* touches
in .S, the tangent of o

§ 10. If / is unisecant of ¢* in S the curve A" breaks up into
the tangent s of ¢* in S and a curve +°. The polar line / of {
becomes chord of 4°, s being one of the three chords cutting / and
. The plane /S touches H* in § and is therefore polar plane of
P=8; il contains the tangeni s and the trisecant of ¢* on which
S lies. Of the three variable points @ common to 4° and a plane
through //, two coincide with .S and only one lies outside S.

Any plane through [ contains besides /S three points @ and has
therefore in S two points with A* in common. Also the plane 'S
not passing through ! bhas in S two poinls in common with A°; so
S is a node of 2°. The plane s contains beside S only one point
Q; so it passes through the nodal tangenis of the node. So to a
unisecant corresponds a twisted quintic with a node.

The curve is of rank eight, through [ passing four common
tangential planes of o* and 4°.
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Mathematics. — “On a Lne compler delermined by two twisted
cubics.” By Prof. Jaxn pi Vrins. -

(Communicated in the meeting of November 30, 1912).

§ 1. We will indicate the chords of the giver twisted cubics
o',6" by 7, s

Any plane & contains three chords r and three chords s, therefore
nine points P=rs. In the focal system (Pax) each point has in
general one focal plane, each plane nine foci (¢« =1, 3=29).

It x rolates about the line /, the points delermined on / by two
complanar chords r,s are conjugaied to each other in a correspondence
(3,3). As each point of coincidence furnishes a point £ = s, [
contains sie points £, the focal planes of which pass through I; so
the third characteristic number of (P, =) is sia (y = 6).

Let 4 represent one of the fen common chords of ¢’ and ¢*. Any
point B of ) admits o' focal planes, i.e. all the planes g through 0.
Any plane g admits four foci not Iying on 0, whilst ai the same
time any point /3 of 6 is focus. So the lines b ave loci of singular foci
and singular focal planes. ,

If P is assumed on ¢, s is'a delimte chord of o°, whilst » may
he any line connecting £2 with an other point of ¢*; then any plane
through s can figure as focal plane sr in which P counts for two
of the nine foci. So the curves o' and ¢° are sinyulur curves for
the focal system ([, x).

§ 2. - The polar planes of P with respect to the o® quadratic
surfaces through o' have a point 2 on = in common; P and R
can be said to be separated harmonically by o If P describes any
line /, the polar planes of P with respect to three gnadialic surfaces
of the net nol belonging (o the same pencil rotate abont three definite
lines and describe therefore three projective pencils. So the locus
of R is a twisted cubic 2°, inlersecting ¢* in four points; for on the
four tlangeunts r, of ¢*, vesling on / the point conjugaled (o ./ is
every fime the point of contact R, %)

We indicale by S the point on s harnonically separaled from P
hy 6¢* and consider the relationship between i and S.

To any plane X as locus of .S corresponds a cubic surface 17 of

Iy This generally known jnvolutory cubic transformation has been invesligated
thoroughly by Dr. . 1. Scuoure (Niemw Archiel voor Wiskunde, 2nd series,
volo LV, 1900, p. 90
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poinis P; as II" intersecis the twisted cubic A* described iy P when R
moves along / in nine points, the correspondence (I2,S) is of order nine.

A point of coincidence of R anhd S can only present itself when »
and s coincide, i.e. on a common chord 4. On any of the ten b the
- pairs (P,R) and (P,S) generate two involutions, of which H,, H,
may represent the common pair. By assuming R in Hj, we find
H, for P and H for S; so H, and H, are points of coincidence
of (R,S). So this correspondence admits twenty coincidencies lying in
pairs on the #en common chords b.

As a point B, of ¢" corresponds to each point P of the tangent
7, of R,. R, corresponds to each point § of the twisted cubic 6,
into which », passes by the transformation (P,S); evidently 6,* has ~
four points in common with ¢°. ‘

Consequenily the curves o' and ¢* are singular curves of the
correspondence (R,S).

It R describes the tangent r, of ¢°, P remains in the point of
contact of 1,; so ihe point S* conjugated to P is singular and corre-
sponds to all the points of r,. Evidently the locus of S* is the rational
Lwisted o' into which " passes by the transformation (P,S).

So the correspondence (R,S) admits twev singular twisted curves of
order nine, 6° and o' X

As the developable with ¢ as cuspidal curve cuts ¢® in 12 points

N

o’ and o' have twelve poinls in common; likewise ¢" rests in 12

points on ¢*. Han

§ 3. We mnow consider the lines p= RS. 1If P describes the

line /, p generates a scroll of order six; for we found above that
_the plane == £, passes through / in six positions (§ 1).

The line p generates a complex. We determine the number of
lines p belonging to a pencil with vertex £ and plane 2.

If R deseribes a vay / of pencil (L,7), S generafes a curve
intersecting A in nine poinis (§ 2); we conjugate to / the nine lines
I’ connecting these points with L. In this manner we gel in the
pencil a correspondence (9,9) each coincidence of which furnishes a
line p connecting Lwo poims 2 and S corresponding to each other. So:

The complex (p) s of ovder eighteen.

Evidently the 20 points H ave principal points of the complex;
each complex cone passes through these 20 poinfs.

§ 4. Any point R, of o* issingular, for it bears the lines p connecting
it with the points .S of the corresponding curve 6,° (§ 2) and so ifs
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complex cone degenerates. Consequently the curves ¢* and o* lie on
the singular surface of the complex.

The edges of the o' cones projecting the curves ¢,° from their ™
corresponding point 2, as vertices form a comgruence of which we
will determine order and class.

The locus of the curves 4, is the snrface ='* into which the ,
developable with ¢ as cuspidal curve 1s transformed by (2,S).

The cubie cones with an arbitrary point M as vertex and ¢®and
¢® ag director curves, intersect in 9 edges, each of which connects
a point S of ¢ with a point R’ of ¢*; if R’ coincides with the
point R, to which o,* corresponds we have to deal with a ray of
the congruence passing through . We will conjugate these 9 points
R’ "to R,. The line M/ R’ cuts the snrface X** meniioned above in
12 points S lying in general on different curves o6,°; so to R’
correspond 12 points RB. The correspondence (2, B’) has therefore
21 coincidencies, i.e. the order of the congruence is 21.

Any plane @ contains 3 points R, and each of the corresponding
curves ¢,° has 3 points S with g m common; so the class is 9.

So the lines S,R form a congruence (21,9) and an other congruence
of the same type is formed by the lines S,R. The iwo congruences
admit successively o® and «® as simgular curce.

§ 5. Any point S* of the rational ¢° (§ 2) is the vevtex of a pencil
of complex rays p the plane of which contains the corresponding
tangent 7, So the curves ¢" and o' lie also on the singular surface.

The o' pencils with yeriices S* form a congruence which we will
study more closely.

In any plane p lie 9 points S*; the tangents r, corresponding to
these points delermine 9 rays p lying in p; so the congruence is
of class nine.

To any point S* we make to correspond the 9 points S’ of 6
which can be projected out of the arbitrary point M in a pointof
the corresponding tangent »,. The line 215 cuts 4 tangents r,, s0 S’ is
conjugated to 4 points S*. .As any coincidency S = .8* is duc i0 a
ray of the pencil with vertex S*, M bears 13 lines RS*, ie. the
congruence is of order thirteen.

So the complex' contains tiwo congruences (13,9) each of which is
built up of o pencils. They admit successively 6° and o' as singulnr curve.

§ 6. To the complex (p) belongs the system of gencratrices of

the deveclopable determined by o* and ¢®. Any tangent », culs fonr
tangents s, and reversely; so the poinis of contact R, and S, of the
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tangents conjugated to cach other in this way are in correspondence
(4,4). By projecting the pairs of this correspondence out of a line
a, the pencil of planes (7) is arranged in a correspondence (12,12).
As each coincidency furnishes a line p =R, S, resting on « the
developable under discussion is of order 24; it has ¢* and o® for
Jourfold curves. )

Any chord +* of ¢® meeling ¢* belongs to the complex, for in
the common point of 7> and 4* the points I’ and S coincide. The
chords r of ¢® culling a line [ generate a scroll of order four with
¢® as nodal curve; so the locus of the chords 7 is a scroll of order 12.
On the latter surrace ¢° is a sivfold curve, for through any of its
points pass the common edges of the two cones projecting o® and ¢°.

So the complex (p) contains fwo scrolls of order twelve, the
generatrices of which are chords of one of the curves ¢°, ¢® and
secants of the other.

Let p* be a chord of ¢’ not meeting ¢*; then the tangent », in
one of the points £, common to ¢* and that chord must contain
the point P. If P moves along that tangent, S describes a curve 5,%;
the cone projecting ihe latter curve out of R, has 6 edges in common
with that of which ¢* is director curve. So any point of * bears
6 rays p*. As an arbitrary chord » can be cut by chords p* in its
points common to ¢° only, so all in all by 12, the locus of the
chords under discussion is of order 12.

So the complex contains fwo scrolls of order twelve, built up out
of chords of one of the curves o, 6°.

]

Physics. — “Determinations of the refractive indices of gases under
high pressures.”” Second communication. *On the dispersion
of air und of carbon diowide.” By Prof. L. H. Smrrsrars,
(Communicated by Prof. H. KaMmerLINGE ONNES).

(Communicated in the meeting of November 30, 1912),

4. The dispersion of azr.

This has already been repeatedly determined both for the visible
spectrum and for the ultra-red and ultra-violel rays. The results,
however, diverge considerably, and, moreover, the dispersion has
never been measured under high pressure.

Through the kindness of Prof. KamerringE ONNES compressed air
was placed at my disposal with which dispersion determinations were
made in exactly the same way as those for hydrogen described in
a former paper.

- 145 -



926

In the following Tuble are given the results of three series of
observalions. For the meaning of the symbols employed reference
may be made fo the corresponding Table for hydrogen published in
the paper just mentioned.

Air. ) -
4, ==0.546
Pressure| Tem- kb ‘0= 0.644 JC= 0.509 q= 0.472) — 0.436 )f= 0.405
in pera-
atm, ture. (mean) k_a k_" fﬂ f"’_ ff_
kb kb kb kb kb

—
—

.07697 | 1.16423 | 1.26722 | 1.37179
.26724 | 1.37176

.26718 | 1.37175

71.4 | 12.75°C.| §23.52 | 0.84350
1.4 | 12.90 821.23 q.84346 1.07702 | 1.16418
70.6 | 13.19 810.84 | 0.84352 | 1.07697 | 1.1642)
66.4 | 13.42 759.81 | 0.84350 | 1.07697 | 1.16419 | 1.26727 { 1.37183
48.7 | 13.58 559.27 | 0.84352 | 1.07698 | 1.16421 | 1.26716 | 1.37177
31.9 | 13.67 359.50 | 0.84339 | 1.07701 | 1.16417 | 1.26725 { 1.371T1

_—
— = e

—

67.7 9.25 790.70 | 0.84345 | 1.07697 | 1.16415 | 1.26723 | 1.37187
61.6 | 10.15 787.92 | 0.84349 | 1.07698 | 1.16419 | 1.26735 1\37191
66.2 | 10.35 766.84 | 0.84353 | 1.07695 | 1.16414 | 1.26724 | 1.37184
49.2 | 10.75 567.32 | 0.84351 | 1.07698 | 1.16411 | 1.26723 | 1.37178
32.2 | 10.95 367.70 { 0.84350 | 1.07695 | 1.16414 | 1.26721 | 1.37175

101.9 | 12.75 1170.71 | 0.84343 | 1.07698 | 1.16418 | 1.26729 | 1.37203
101.8 | 12.80 1168.50 | 0.84340 | 1.07699.| 1.16412 | 1.26732 | 1,37204
190.0 | 13.03 1147.43 | 0.84338 | 1.07700 | 1.16419 | 1.26732 | 1.37204
82.8 | 13.39 047.50 | 0.84337 | 1.07699 | 1.16415 | 1.26729 | 1.37207
65.5 | 13.89 745.71 | 0.84339 | 1.07704 | 1.16427 | 1.26728 | 1.37206
39.6 | 13.96 446.50 | 0.84328 | 1.07697 | 1.16415 { 1.26725 | 1.37199

—_ -

The values oblained tor the various gas densities are pretly well

constant, just as was found to be (he case wilh hydrogen. The’

deviations are not any more one way than the other, and we can
iherefore conelude thai the dispersion of air is constanl up to
pressures of about 100 atm,
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The mean values are:
b ke b R
ki ko key ks Ky
0,84345 1,07698 1,16417 1,26725 1,37183
+ 1,7 +0,6 £1,0 =12 + 3,1
Hence we get for (he dispersion constants

_ n—l1

’(vac.) Tn -1
b

a 0.64403 0.99446 + 0.000020
b 0.54623 1

c 0.508173 1.00304 £ 0.000006
d 0.47234 1.00669 -+ 0.000009
e 0.43597 1.01145 4 0.000010
J 0.40478 1.01662 + 0.000023

In order {o be able o compare these withthe results obtained
Ly other observers, dispersion constants for the wave-lengths 1 used
Lave heen obtained from the vesults given by Mascartr?), Kavsir
and Ruxen®), Purruau?), Semeer ‘), Hurnmaxx?), RENtscnrrr *), Loria7),
Kocn ®), Curmsertson 'j, and Gruscukk '), either by graphical inter-
polation or by caleulation from dlspexswn formulae given by thewm;
these results arc collected in the following Table.

Correspondence between the present results and those given by
Purrrav and by Kocn is quite good both with hydrogen and with
air. Only at 2= 0,644 does Kocur find a oxeatel dispersion for both
gases. For air, the agreement with Hrraainy and with CoTnserTsoN is

also very good.

Mascarr. Ann. de ’ée. norm. (2) 6 p. 60 (1877).

) L.
) H. Kavscr and J. Runee. Ann. d. Physik 80 p. 312 (1893).
I
K.

23

Poancav. Ann, d. Ch. et de Ph (7) 7 p. 325 (1896).
Scuger. Verll, d. D. phys. Ges. 9 p. 27 (1907).

K. Heruany. Verh. d. D. phys. Ges. 10 p. 477 (1908).
H. C. ResrscuiEr. Astrophys. J. 28 p. 857 (1908).

S. Loria Ann. d. Physik. (4) 29 p. 619 (1909).
d.
C

™~

)

and M. Curnperrson. Proe. R, S. (A) 83 p. 153 (1‘)09/10)

%)
+)
5
6
)
§)
)
1 G. Gruscuke, Ann, d. Physik, (4) 34 p. 807 (1911).

Koo, Nova acta reg. soc. Scient. Upsaliensis (4) 2 N'. 5. p. 40 (1909).
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=] 5 8 W o]
El5 e w2 |« g .2 | E
PRI =2 I~ - S - - O T - O
s ¥s3 5 |2 | 5| e | S |2 |2 2|5
= ~ T | ¥ 51O | @&
O

! I

0.644 |0.9949,0, 9952[0. 9946,0.9948 0.9946 0.9947,0.9955,0.9947,0.99460.9945

0.546 |1 1 1 1 1 1 1 1 1 1 1

0.509 {1.0029(1.0027[1.0030{1.0028 1.0024{1.0023'1.0020(1.0030(1.0034{1.0030
0.472 [1.0067}1.0060,1.0064|1 .0063 1.0054] 1.0070,1.0066|1.00711.0067
0.436 1.0103 1.0106;1.0116(1.C089 1.0116 1.0114
0.405 1.0152 1.0143 1.0166

The following interpolation formula was calculated using the method
of least squares:

—1 0,0056876  0,00005401
n l:0,98086(1+ L )

Cc =
ny—

in which % is the wave length in microns.
The degree of accuracy of this formula is evident from the following

table -

*(air) cal) | “(obs) |0 X10°

al| 0.64385 »| 0.99451] 0.09446] 5
b| 0.54608 ,{ 1 1
c| 0.50859 , | 1.00303| 1.00304] — 1
d| 0.47221 | 1.00672| 1.00660] 3
e| 0.43585, | 1.01144| 1.01145| — 1
£10.40467 | 1.01660] 1.01662] — 2

5. The dispersion of carbon dioxide.

In the following table are given results of two series of measure-
ments made with carbon dioxide. The gas used for the first series
was only dried over calcium chloride, and contained about 96°/, of
carbon dioxide. The gas ased for the second series was, in addition,
distilled several times, and it contained 98°/, of carbon dioxide. The
measurements were made in exactly the same fashion as in the case
of hydrogen and of air.
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Carbon dioxide.

’b= 0.546
Pressure| Tem- s . _ _ —
b b ‘= 0.644)/ o= 0.509/ 4= 0.472), = 0.436 Jf = 0.405
in pera-
atm. ture. (mean) _ki - k_c E k_e _kf_
kg kp Ry Ry Ry

—

.26864 | 1.37388
.26867 | 1.37397
.26867 | 1.37392
.26863 | 1.37387
.26864 | 1.37384

45.2 | 12.95°C.| 1180.44 | 0.84286 | 1.07733 | 1.16499
45.5 | 13.47 1185.20 | 0.84288 | 1.07733 | 1.16503
43.7 | 13.99 1084.33 | 0.84290 | 1.07735 | 1 16501
41.5 | 14.34 983.51 | 0.84289 | 1.07735 | 1 16505
38.6 | 14.58 882.68 | 0.84288 | 1.07735 | 1 16503

_— = s e

31.9 | 11.94 883.19 | 0.84289 | 1 07735 | 1.16503 | 1.26869 | 1.37380
35.1 | 12.33 783.79 | 0.84289 | 1 07736 | 1.16507 | 1.26861 | 1.37379
31.9 | 12.39 684.53 | 0.84284 | 1.07730 | 1 16502 | 1.26865 | 1.3738l
31.6 | 10.99 685.93 | 0.84286 | 1.07733 | 1.16504 | 1.26867 | 1.37390
28.0 | 11.09 586.93 | 0.84286 | 1 07739 | 1.16503 | 1.26870 | 1.37393
24.1 | 11.28 486.18 | 0.84284 | 1.07741 | 1.16496 | 1 26869 | 1.37390
24.1 | 11.75 487.03 | 0.84287 | 1.07737 | 1.16499 | 1.26864 | 1.37385
20.0 | 11.83 387.11 | 0.84281 | 1 07735 | 1.16496 | 1.26861 | 1 37393
46.8 | 14.00 1281.62 | 0.84276 | 1.07735 | 1 16501 | 1.26876 | 1 37395

46.9 | 14.17 1278.52 | 0.84275 | 1.07735 | 1.16497 | 1.26875 | 1.37404
46.5 | 14.25 1248.50 | 0.84276 | 1.07735 | 1.16498 | 1.26876 37405
41.4 | 145 997.38 | 0.84278 | 1.07734 | 1.16496 | 1.26872 | 1.37395
34.2 | 15.00 748.64 | 0.84280 | 1.07732 | 1.16501 | 1.26874 | 1.37397
24.8 | 15.21 498.73 | 0.84279 | 1.07732 | 1.16497 | 1 26874 | 1.37395

—

Just as with the other gases there is here no definite direction to
be recognized in the differences, so that we may again conclude that
in this case the dispersion is independent of the gas pressure up to
the saturation pressure.

The mean values are:

0,84284 1,07735 1,16501 1,26874 1,37391
+=1,2 += 0,6 = 0,8 +=1,2 + 1,7

from which follow these values for the dispersion constants:
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n—I1
nb—l

’(vac,) =

a 0.64403 0.99374 + 0.000014
b 0.54623 1 -

¢ 0.50873 1.00339 4= 0.000006
d 0.47234 1.00742 =+ 0.000007

e 0.43597 1.01259 + 0.000010
I 0.40478 1.01813 4+ 0.0000(3

In the neat {able these results are compared with values obtained
either by graphical interpolation or by calculation from wnterpolation
formulae from the observations of Purruavu '), Renrscniir*), Kocr?),
Sruchprt *), and Gruscnoke ®) Mascarr’s ®) results, which show irregu-
larities which were not confirmed by subsequent observers, are not
included.

‘ Perreau |Rentschler| Koch Stuckert | Gruschke | Siertsema
0.644 0.9936 0.9938 0.9917 0.9929 0.9937
0.5¢46 | 1 1 B! 1 ! 1

0.509 1.0033 1.0020 1.0031 1.005¢ 1.0033 1.0034
0.472 1.0072 1.0053 1.0071 1.0110 1.0082 1.0074
0.430 1.0096 1.0127 1.0173 1.0126
0.405 1.0154 1.0181

The agreement with Purriav and Kocn is good, and with GruscHR:
not quite so good. RuxrscrLER’s resulls deviate considerably, just as
with air, and so too do STUCKLRT’S.

The interpolation formula calculated as before becomes

n—1 0,0067868 0,00000614)

ny— A2 h

=

= 0,97781 (l -+

Yy F. PerrpAU Ann. de Ch. ct de Ph. (7) 7 p. 345 (1896).

2y H. ¢ ReavscHLIR Astrophys J. 28 p. 357 (]1908).

3) J. Koca Nova acla reg. soc. scient. Upsaliensis (4) 2 No. 5, p. 46 (1909).
Yy L. Svuckerr, Zeitschr [ Elcktiochemie 16 p. 67 (1910).

5) G. GruscHKE. Ann. d. Ph. (4) 34 p. 810 (1911).

6) . Mascart, Ann. de I'éc. norm. (2) 6 p. 61 (1877).
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in which 2 represents the wave-length in air. It gives the following
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differences between observed and calculated values:

’ (air) %eal) %(0bs) 1054
a | 0.64385 # | 0.99379 | 0.09374 5
b | 0.54608 , | 1 1
¢ | 0.50859 , | 1.00338 | 1.00839 | — 1
d | 047221, | 1.00M5 | 1.00742 3
e | 0.43585 ,| 1.01258 | 1.01259 | — 1
F ol o0.40467 , | 1.0181l 1.01813 | — 2

In this case, too, the theoretical dispersion formula *)

2*—1

==

Ne,*

w2

even with only ong erm in the sum, gives quite good agreement.

As with hydrogen we obtain from if:

and, taking 2 as the wave-leng(h in vacuo, we caleulate 2 = 0,07982 .
The following table gives an 1dea of the degree of correspondence:

¢ =
ny—1

n—1 . A2 - 2t

Sm, (v 2 —>%)

1

1 1
1
P

‘wac) €(cal) Cobs) | 1B L
a | 0.64403 | 0.99301 | 0.99374 | -+ 17
b | 0.54625 | 1 1
¢ | 0.50873 | 1.00834 | 1.00330 | — 5
d | 0.4723¢ | 1.00741 | 1.00142 | — 1
e | 0.43507 | 1.01258 | 1.01250 | — 1
7| 0.40478 | 1.01823 | 1.01813 | + 10

A subsequent paper will deal with the absolute values of the

refractive indices of air and of carbon dioxide.

1) These proceedings 1911—12 p 602.

——— oo
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Microbiology. — “On the composition of tyrosinase from two

' enzymes”. By Professor Dr. M. W. Buumrinck.

(Communicated in the meeting of December 28, 1912)

The product of the action of tyrosinase on tyrosin is commonly
called melanin, whose colour may be jet black, but takes all shades
between light brown, pure red, brownish red, sepia and black in expe-
rimental conditions. These pigmenis are of uncommon stability and
resist even heating with strong alkalies and sulfuric acid, whereby the
- black runs somewhat into brown but in chief remains unchanged.
Even when boiled with nitric acid the melanin remains almost un-
changed. It is accepted that the pigment of the hair and hide of
higher animals is associated with these substances and is derived from
tyrosin. .

Melanin formation by symbiose of an Actinomyces with « bacterium.

On a- culture plate of the composition : distilled water, 2 °/, agar,
0.1 °/, tyrosin (dissolved in a few drops natriumcarbonate) and
0.02°/, K,HPO,, on which some centigrams garden soil are sown and
which is kept at 30° C., hundreds or thousands of litile sods of Actino-
myces (Streptothriz) will develop after two or three days. The tyrosin
serves at the same time as sonrce of carbon and of nitrogen. But
the agar itself also is attacked by these microbes, although with
difficulty, and used as food. This is not surprising as many Actino-
myces-species can even live on cellulose as source of carbon.

The common bacteria of the soil deveiop not or hardly on the
tyrosin plate and cannoi in the given circumstances compete with
the slowly growing Actinomyces as they do on better media, e.g. on
broth agar, where Actinomyces never occurs when bacteria are
present.

As the delicate threads of this genus enter deep into the agar, the
plates may be freed by washing from the bacterial colonies and the
adhering soil; then the Actinomyces sods can be easily counted. In
humus and humus containing soil their number is amazing. When
they can freely multiply on plates which are poor in food their growth
is unlimited and they produce sods of great extension, even of one
or more decimeters in surface, commonly producing very fine
mycelial-rings, which by turns bear spores or not. These rings are
independent of light and suggest a periodicity in the nuirition not
yet fully explained.

In somewhat extensive culture experiments, similar to the above,
it may with cerlainty be expected that at some places brownish
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red or jet-black spots will originate. The brown spots are caused
by the oxidising action of some common soil bacteria, which produce
a red or brown-red pigment from {yrosin; the black ones, caused
by melanin, which will be more exactly considered here, have
quite another origin.

In or near fhe centrum of these black spots always lies a colony
of Actinomyces. Streaks on new culture plates of the said com-
position to obtain a pure cuiture, give the surprising vesult, thatthe
organism can vigorously grow on the tyrosin bat produces no pig-
ment at all. A more minute examination shows further, that the
black plants of Actinomyces lie under a thin, glassy, iransparent
layer of fine rod-bacteria. This layer covers like a crust the jet-black
sods of Actmomyces and prevents themn from produacing spores, which
does take place on that part of the mycelium, which develops out-
side the bacterial cover. If from this Jayer the bacterium is brought
into pure cultnre, which is easily done on brothgelatin- or broth-
agarplates, it proves 1o be an extremely delicate polar ciliate rodlet,
which forms no spores and strongly lquefies cullure gelatin. Streaks
of the pure culture on a tyrosin plate produces no melanin at all,
so that in this respect the bacterium resembles Actinomyces.

It is obvious that we here have a case of pigment formation
reposing on the symbiose of the {wo organisms. Experience shows
that this supposition is right: their combined streaks on a new
tyrosin plate produce beautiful black spots of any extension. As
they can both be very well grown on better media, such as broth-
agar, the experiment is, the first isolation effecled, easy and intevesting.
The experiment may be improved by providing the culture plates
with a better source of carbon beside the {yrosin, for which glucose
and peptone proved particularly useful. On the other hand. additions
of an ammoniumsall or of nitrates had no effect. :

In order to ascertain which of the twu organisms is the real cause
of the melanin production, the following experiment was made.

On an agar-tyrosinplale of the said composition, parallel streaks
of both organisms were drawn with some millimeters, distance be-
tween. The vresult was not dubions; after a few days the streaks
of Actinomyces vigorously developed and covered with snow-white
spores, but for the rest were quite colonrless. The bacterial streaks,
on the other hand. which had developed to a thin, hardly visible
transparent layer, had become jet-black wherever {hey were near
Actinomyces. The following must therefore take place: Actinomyces
decomposes the (yrosin and produces from it a colourless chromo-
gene which is converted into melanin by the bacterium and easily

61
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diffuses through the agar, evidently without spontaneously oxidising
at the air.

From the foregoing it is clear that Actinomyces, as well as the
bacterium, can only be found in garden soil when germs of both
species occur in each other’s immediate vicinity. T'o promote this
occurrence I have tried first on fit agarplates to grow Actinomyces
and later floated them with a tyrosin solution, in which the melanin
bacterium was present in so great guantity, that it could develop
anywhere on the plate, after the tyrosin had diffused.

As the various species of Actinomyces are very vigorous, polyphagous
microbes, which develop especially in dilute media at the side of
the common bacteria, the most different food may be used for the
first part of the experiment.

So, an agarplate, only containing some potassiumfosfate and ammo-
niumsuifate, was sprinkled with a little dry inulin mixed with garden
soil. The soon developing flora was washed off under the tap by
which the loosely adhering bacterial colonies together with the nou-
decomposed inulin, were removed. The agarplale was now clear
again but in the surface were hundreds of Actinomyces colonies
which had not been removed by the wasliing, as they had penetrated
too deep into the agar. After trealing with the tyrosin solution in
which the melanin bacterium was suspended and a renewed culti-
vation for some days at 30° C., black melanin spots appeared around
some six colonies of Actinomyces; this species must thus be rather
common in the soil.

The tyrosin Actinomyces can also very easily be isolated from the
roots of the elmtree (Ulmus campéstris), in whose dead periderm
cells an almost pure Actinomyces flora occurs, as [ demonstrated
. before ). For the development of this flora some of the hairroots are
carefully waslied, to remove the adhering soil and are then ground
in a mortar. The thus obtained brown paste is diluted with water,
mixed with the tyrosin bacterium (which however is also rather com-
mon on the elm roots themselves), then sown out on a tyrosinplate
of the above composition. After a few days numerous colonies of Acti-
nomyces develop at 30° C., among which some jet-black ones.

Heve it should be called to mind that the two organisms produce
no pigment on peptone or broth-containing media, neither each for
itself nmor in combination. But herefrom cannot be concluded that
at their cultivation from peptone no tyrosin originates. Nevertheless the
conclusion must be drawn, that if at the splitting of the peptone

1) Centralbl. f. Bakter. 2 Abt. Bd. 6, S. 2, 1900. Arch, Néerl. 1900, p. 327,
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tyrosin is indeed forued, it is oxidised in another way but not to
melanin.

That this Actinomyces must belong to another species than Acti-
nomyces chromogenes, so common in our environment. is obvious. The
latter namely is characterised by the production of a dark brown
pigment from peplon, (but not from tyrosin) in which, as I have
formerly *) shown, under certain circumstances chinon may be found.

Several other species of Actinomyces produce blue, red, or yellow
pigments, whereby, as to the blue and red. the simultaneous presence
of certain varieties of hay bacteria is favourable. In this case it is
not tyrosin, but glucose, malates and nitrales that form the chromo-
geneous food, so that the symbiose is then evidently associated with
other faclors than those active in the production of melanin from
tyrosin.

Hitherto I have not yet been able in liquid cultures with the help
of Actinomyces and its symbiont to produce asomewhat considerable
quantity of welanin. This could not be foreseen as this genus is as
common in the mud of moafs and canals as in garden soil. But some
experimmen(s as the above (o find our dctinomyces in mud gave no result,
so it seems that this species at least is-a veal inhabitant of the soil.

That pigment production in this case is dirficuil in liquid media,
wheveas JMicrospira tyrosinutica, which 1 described earlier ®), produces
it as readily in liquid as in solid wedia, is perhaps owing to the
general propriety of Actinomyces {o grow but slowly in solutions,
probably in consequence of the little tension of the dissolved oxygen.
Microspira, on the other hand, is as a trne water microbe, evidently
better adapted to that tension.

Theory of the melanin formation ?).

In physiological chemistry it is generally accepled that at the tyrosin
reaction from the tyrosin first originates homogentisinic acid. ammonia
and carbonic acid after the formula

C,H,,NO, + O, = C,H,0, -+ NH, + CO,
Tyrosin Homogentisinicacid
and that only afterwards by a new oxidation the homogentisinic
acid is converted into melanin. -

1) Centralbl. f. Bakter. 2 Abt. Bd 6 S 2, 1900. Avrch Néerl, 1900, p. 327.
Commonly the chinon is absent, which | did not know in 1900,
%) These Proceedings, X1iI, 1066, '
%) For the literature see Czarex, Biochemie der Pflanzen. Bd. 2, p. 462 and 478,
1905. Apprruarpen, Physiologische Chem’e, p. 862 and 865, 1909. - .
61
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This might give a good explanation of, the symbiose experiment,
supposing that Actinomyces producés homogentisinic acid from tyrosin
and that the symbiotic bacterium oxidises this acid to melanin. Taken
for granted that these two processes aredue to two separale enzymes,
this conception may be called *‘the two enzymes theory’ of the melanin
production.

In order to obtain more certainty regarding the correctness ot
this suppositon, I made some experiments with the soda salts of the
homogentisinic acid (C,H,0,) and compared the results with the
conversion of the calcium and soda salts of the gentisinic acid
(C,H,0,). Both substances I owed to the Chemical Laboratory of the
Technical University, thé homogentisinic acid as lead salt, which
I converted into the soda salt, the gentisinic acid in free state. Both
behave towards microbes in a corresponding way, but the gentisinic
acid oxidises more greater difficuliy.

I also received from Professor PunermariNG the lead salt of omo-
gentisinic acid, prepared from urine, but this could not be distinguished
from the other. -

At the preparation with these substances of neutral or feebly
alkaline agar plates, on which the oxidising microbes were to be grown,
the difficulty arose that already during the heating at the air a brown
colour appeared, which was not the case when cold. It could,
however, with certainty be stated that, as was expected, Actinomyces
produced no pigment from these acids; on the other hand, the
symbiotic bacterium gave a dark brown colour, which may finally
run into jet-black. As this bacterium produces some alkali, it
might seem doubtful whether this alkali might be the cause of the
more intense pigment production, or it any oxidising enzyme, produced
by the bacterium, were active in this case. By cautiously neuatralising
the existence of an oxidase, which diffuses in the agar to a relatively
great distance from the bacterial colony, could be ascertained. It is
clear that the thus found enzyme might be called ‘“homogentisinase”.
It will be seen by and by that it also occurs in higher plants and
perhaps corresponds to the common laccase.

The formerly described Microspira tyrosinatica (l.c.) living in the
sea and in sewagewater, oxidises tyrosin directly to melanin without
intervention of any other organism. That this is done here also by a
vigorously active tyrosinase is easily shown with the form living in
the sea, the bacterium, when killed by chloroform, being still able to
cause the melanin reaction. I think it is proved nnw, that also in this
case the tyrosinase consists of two enzymes, as it is possible with
Microspira to oxidise the homogentisinic acid to a dark pigment.
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In order to ascertain how in this respect the tyrosinase of the
higher plants behaves, I took strong tyrosinase preparations derived
from the potato, the beetroot and latex of Euphorbia Lathyris®)
which quickly colour tyrosin solutions deep black, and made them
act on homogentisinic acid salts. The latex of Euphorbia Lathyris
is extremely fit for these experiments as it can always be made to
drip from the living plant, which supports our winters very well in the
garden. A single drop on an agar-tyrosin plate at from 30° to 50° C.
forms deep black melanin spots after a few-hours already. But homo-
gentisinic acid can also be oxidised with great velocity. For this
experiment 1 used an agarplate of -this composition: water, 2°/, agar,
0,5°/, natrium homogentisinate, 0,02/, NH,Cl and 0.02°/, K,HPO,.

On this plate drops of the latex were putand besides streaks were
made of Actinomyces and the symbioti¢ bacterium. After some hours,
at 30° C., dark brownish Dblack fields appeared, evidently more
readily formed than the black fields from the tyrosin.

After about 24 hours Actinomyces also began to grow but no
pigment at all appeared, as was to Dbe expecled. The symbiotic
bacterium did not develop under these conditions. But some broth
being added to a like medium the bacterium could grow and oxidised
the homogentisinic salt to melanin. So it is certain that also
the 1iyrosinase of Huphorbia Lathyris wust be a mixiure of two
oxidising enzymes; one of these. which may preserve the name of
tyrvosinase, produces he-mogentisinic acid from {yrosin, the other,
“homogentisinase”, forms melanin from tlie acid, aud corresponds with
the oxidase of the symbiotic baclerium. This enzyme requires no
special name as “homogenlinase” and “laccase” are probably identic.

Although the “(wo enzymes theory” of the tyrosinase may be
considered as confirmed by what precedes, still it should be called
fo mind that, when a method of experimeniing is used somewhal
devialing from the described the above result with Buphorbia Latyris
is not obtained. Such is. namely, the case when the milky juice of
the plant is pul on agarplates with howmogentisinic acid salf, with
addition of vroth for the bacteria. .Then the surprising fact oceurs
that the bacterium is active but the latex is not. Wheveon 'this
difference reposes is not clear.

Finally it wmay be mentioned thal the existence of two enzymes
in the tyrosinase of the beelroot was already made probable by
P. C. van per Work (Recherches au sujet de cerlains, processes enzyma-
tiques chez Beta vulgaris, Nimégue 1912).

1) The latex of Euphorbia palusiris, E. Peplus, K. helioscopia, I Mysinitis,
contain no tyrosinase
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Mathematics. — “On Stetuerian points in connexion with systems
of mine @-fold pomts of plane curves of order 39.” By Dr. W,
vaN pER WoupkE. (Communicated by Prof. P. H. ScHouTs).

{Gommunicated in the meeting of December 28 191%).

§ 1. In a former communication') has been indicated what is
the locus of the point forming with eight given points a system of
nine nodes of a non degenerated plane sextic curve; here will be
trealed a more general problem including the preceding one as a
particular case. -

To that end we remark that by nine avbitrarily chosen points
D, D, ..., D, a curve of order 3¢ passing o times through these
points is determined: in general however this Csf is a cubic curve
counted ¢ times. So the problem we propose now is: “Right points
D,, D,, ..., D, being given, to determine the locus of tae point D,
under the condition that the nine points D, can be g-fold points

of a carve (3, not degenerating in the manner mentioned.

§ 2. As we shall find by and by this problem is very closely
velated to the following one: “Let B,, B,, ..., B, be the base poinis
of a pencil (3) of cubic curves, and u, any curve of this pencil.
On u, Tlie (0*—1) points S each of which forws with B, a Steinerian
pair*) of order o. To determine the locus of these poinis .S, if u,
describes the pencil (3)".

§ 3. We start by treating the first of the two problems.

So the cight points D,, D,..., D, are given and we lLave o
determine the locus of the ninth point D, satisfving the condiiion
stated. [n the quoted memoir the case ¢ = 2 has been treated ; for

convenience sake we repeat here the principal resulis.
Then we occupy ourselves with the case ¢ = 3 before passing to

1y W. v. . Woube, “Doudle poinis of & ¢ of genus 0 or 1 (Proceedings of
Amsterdam, vol. XI, p. 629)

Compare also Dr. V. Sxmoer, ‘' The involutorial biradional transformation of
the plane of order 17" (American Journal of Mathematics, vol XXXIII, p. 328).

%) Two points P and @ of u; form a Steinerian pair of order », if it be possible
lo inscribe in %3 one and therefore an infinity of closed polygons with 2 vertices,
the sides of which pass allernately theough P and Q. Literature: Stemer (Jour-
nal of Crelle, vol. XXX, p. 182y; Kioerer (Math, Ann, vol XX1V, p. 1); Scarorer
(Thearie der chenen Kurven dritter Ordnung. § 81). For the treatinent by means
ol elliptic functions see Cuesscu: Vorlesungen iiber Geometrie.
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the general case of an arbitrary p. But we wish fo give just now one
theorem where ¢ has already any arbitrary value :

“If D, D,, ..., D, are o-fold points of a non degenerated curve
Cs. of order 39, these points are at the same time the base points of
a pencil of curves of order 39 each of which passes o times through
D, D,,..., D,”. :

For the proof it will suffice to remark, that the nine points lie on
a cubiec curve u,; so the pencil mentioned is represented by

039 + Au,F =0.

§ 4. By D, D,,...., D, we will henceforth denote arbitrarily
chosen points; we represent by (8’) the pencil of curves ¢, passing
through them, by B, the ninth. base point of this pencil. So the
principal resuits, obtained for ¢ = 2, are the following :

I. “The locus of the point forming with D, D,,...,, D, a set
of nine nodes of a non degenerated ') ¢, is a curve j; of order nine
passing three times through D, D,,....,D,”.

II. «“This curve j, is also the locus of the points corresponding
with B, in tangential point on the curves of pencil (8')”.

III. “Let u, be any cubic of (3) and ¢, any sextic passing three
times through D, D,,...., D,. Then the line joining the last two
poinls common to u, and ¢, will meet u, for the third time in the
tangential point 7" of B, on u,”. _

Before continuing our considerations we wish to correct the pre-
ceding communication. We have indicated there that B, does not
lie on 7,; indeed this is so, but one of the proofs — the geometri-
cal one — may give rise to difficulties. Therefore we once more
prove here: B, does not lie on j,. To that end we consider j, as
the locus of the points on any curve of (3’) corresponding with B,
in tangential point. Now B, will be a point of j,, if and only if
one of these points coincides with B,, which only can happen if B,

is a node for one of the curves of (3). Of these nodes — the 12
so called “critical points” of the pencil — none however coincides
with one of the base points, if — as it is the case here — eight

of the base points have been chosen arbitrarily. So B3, does not
lie on j,.

§ 5. -We now pass (0 the case o = 3.

We still denote by D,,D,,...., D, arbitrarily chosen points,
1) Iere by mon degenerated is meant a curve not breaking up into a ¢; lo be
counted twice, In this manner is lo be interpreted henceforth the expression non

degenerated cg used now and then.

ik

———— ooty e ins
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whilst u,, (3), B, and 7' keep the signification assigned 1o them in
art. 4. Now the question is to delermine (he locus of the point
forming with D, D,,...., D, a set of threefold points of a non -
degenerated c¢,. .

In order to determine a curve ¢, passing three times through
D,D,, ...., Dy we can imply to it the condition of containing six
arbitrary points. Of these six points however no more than two?)
may lie on wu,; then the last point common to w, and ¢, is deter- -
mined inequivocally. We will show immediately how the latter point
can ' be found; provisionally we start from any ¢, with the eight
given threefold points, culting ¢, in an arbitrarily chosen fixed point
X. This ¢, cuts w, in iwo points more; the line connecting these
two points has still a third point £ with u, in common; according
to the Residual Theorem of Syuvister the latter pointisa fixed point,
i. e. independent from the chosen curve ¢, passing through X. Now
we first determine the point JZ; to that end we choose a ¢, breaking
up into a curve v, of pencil (3) and a curve ¢, passing twice
through D, D,, . ..., Dy and passing moreover through X. We have
seen that this ¢, cuts w, in one point ) more, being collinear
with X and 7" § 4, 11I); moreover u, and v, have B, in com-
mon. So the point £ is the third point of intersection of the line
YB, and u,. -

If now we fix on u, two points X, X’ and consider a curve ¢,
with threefold points in D,, D,,...., D, and cutting u, in X and
X’, then the last point of intersection of this ¢, and u, can be found
as follows: we first determine in the manner indicated the point E,
then the ihird peint of intersection of the line £X’ and u, is the
point looked out for. -

Remark. We have stated, that any ¢, with D, D,,...., D, as
threefold points meels u, in three points more; evidenily this does
not hold if this ¢, breaks up into two curves one of which coincides
with u«,. In this case the residual curve of order six must be deter-
mined in such a manner that it admits on u, nine nodes, eight of
which lie in D,, D,,...., Dy. So we fall back on the case ¢ = 2,
but se can discard this by requiring that 0D, has been determined
i such a way that the ¢, under discussion does not break up, neither
into a ¢, to be counted thrice nor in two curves c, and ¢,, the latler
of which admils a node in any of its points of intersection with
the former.

1y See c.g. Sawmon Fieprer: IIghere ebene Kurven, p. 23.
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§ 6. It is now immediately clear thal there are four poinis 1n
which any ¢, with the threefold points D,, D,, . ..., D, and passing
through X can toueh w,, 1.e. in any of the fonr points admitting
I as langential point; likewise that any ¢, with the threefold points
D,D,. .... , D, touching u, will cut this curve in X.

We now will try to determine X in such a way that it coincides
with one of the four points of which £ is the tangential point; in
that case any ¢, with threefold points in D,, D,,...., D, and
touching u, in X, will have in X a third point in common with w,.

Let us suppose thai the point .X has been delermined so as to
satisfy the condition mentioned; then we can describe in u, closed
hexagons the successive sides of which pass alternately through B,
and X. If we choose B, as first vertex and P’ is the third point of
intersection of 5, X and w,, then there is a closed hexagon with the
successive sides B,B,7T, TXY, YB,E, EXX, XB,P, PXB, (fig.1).

Fig. 1. Fig. 2.

So the points X to be determined are the eight points each of which
forms with B, on wu, a Steinerian pair of order three.?)

§ 7. We now choose one point out of these 8 and call it Xj.
If we then require that C, has threefold pointsin D,, D, ..., D, and
touches #», in X,. we can agssumec arbitrarily four more points
R, L. M. N of this curve. which as we have seen above has in X,
still a third point in common with wu, Provisionally we suppose
L, M, N to be fixed points but /K to describe a right line £ through

1) That By and the point A satisfying the imposed condition form on 2, a
Steinerian pair of order thiee can also easily be shown by representing the points
of uy by means of an elliptic parameter. I 8 is the parameler value for By and
x that for the point X taken provisionally at random, we find for the values cor-
responding to 7' Y and E respectively —23, 23— ‘and x—383. So the condition
that I be the tangential point of X is 85 =3x. Chiefly for the cases p =4, 5,..
presenting themselves Jater on the usc of this parameter proves Lo he very convenient,
Comparve Quesce: Vorlesungen iber Geometric (p. 615).
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X, different from the tangent to u, in X,; then the C, describes a
pencil, one curve of which passes- through any point of %. The coin-’
cidence of K with X, then furnishes a C, having in X, three points-
in common with u, and two points with £; so this C, has anode in
X, and one of its branches touches u,. If-now we allow L to move
along LX, to X, and aftecwards M along MX, to X, we generate
«a C, having still threefold points in D, D, ..., D,, now admitting
a ninth threefold point in X, and passing moreover through an -
arbitrarily chosen point .V (compare § 3). So the point X, is a point
of the curve j; under discussion. Therefore :

The curve jy cuts any curve of (8") besides in the base points in 8
points more. [t is at the same time the locus of the points forming
with B, on the curves of (8) a Sleinerian pair of the third order.

§ 8. In order to determine the curve j, more closely it is neces-
sary to know the order of multiplicity of the points D, D,, ..., D,
on it, i. e. how many times each of these points happens to form
with B, a Steinerian pair of order three on a curve of (8/). Let u,
(ig. 2) be once more an arbitrary curve of (3'); then we project
B, out of D, on u, (i. e. we determine the third point 4, common
to D,D, and wu,), from this point 4, we project D, on u, into -4,,
from A, we once more project 53, on u, into 4, and so on. alter-
nately projecting B, and D,. Then we allow u, to describe the
pencil (3’) and determine the loci of the points 4,, 4,,..., 4,; then
every coincidence of A, with D, points to a curve out of (3°) on.
which £, and D forin a Steinerian pair of order three.

So we find for the locus of -

A,: the line D, B,;
A,: a C; with a double point in D,, not passing through D, and
B3, but cointaining D,, D, . . ,, D
Ay: a  (; with an ordinary point in D,
a threefold point in /),
double points in D, D, . . ., D,,
a fourfold point in B, ;
A,: a (), with a sixfold point in D,
a threefold point in D,,
fourfold points in D,, D,.. . ., D,,
a double point in B ;
4,5 a C,, with a fourfold point in D,
a sevenfold point in D,,
sixfold points in D, D, . . ., D,,
a ninefold point in B, ;
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4;: a C,, with a twelvefold point in D,
an eightfold point in D,,
ninefold points in D,. D, . . ., D,
: ) a sixfold point in B,; o
Aoy i a Cye with a n(n+1)-fold point in D,
a (n*—1)-fold point in D,,
n*-fold points in D,, D, . . ., D
- an n(n— 1)-fold point in DB,;

99

Aoyt & Caeqgipr with an n*-fold point in D,
an (n® 4 n—1)-fold point in D,
(n* + n)-fold points in D,, D, . . ., D,
an (n -+ 1)-fold point in B,.

~ We prove this as follows. It goes withoul saying that the locus
of 4, is the line D,B,. Through any point 4, of this line on ecurve
u, of (3’) passes and this curve is cut by 4,0, for the third time
in A, In D, we draw the tangent {o u, and we indicate by A4,
the point common to this tangent and D,B,. Now if w, describes
the pencil (87) it will happen twice that 4, and A,’ coincide; in
each of these two cases A, coincides with D,, so thal D, is a
double point of the locus of A,. This point A, describes a rational
cubic carve, to be indicated henceforth by e,, any line through D,
having only one more point in common with this curve. It containg
the points Dy, D,,..., Dy, as D, B, cuts each of the lines D, D,,
D, D,,..., D, D, in one point.

Let us now consider the locus of 4,. It is immediately evident
that D, is an ordinary and D, a threefold point of this locus; for
a, is cut by D, D, in only one, by B, D, in three points; in the
same manner we prove D, D,...., D, to be double points. So
we have still {o investigate how many times 4, coincides with B,.
Let A4, be once more an arbitrary poini of «, and u, the curve of
(3") through A4,; then the fangent of w, in B, culs ¢, in three points
A',. So the points A4, and A’, generate a correspondence (1,3)
furnishing — e, being rational — 4 coincidences. Any coingidence
of A4, and A4, gives a coincidence of A, and B,; so A, describes
a curve of order seven, to be indicated henceforth by «,, any line
through B, confaining three points more of this locus.

We can prove that B, is a foumfold point of «, also as follows.
In case 4, coincides with one of the points 4, 4, is at the same
time the tangential point of 3, on the curve out of (3’) through 4,.
So the nnumber of points common to «, and the tangential curve of
B, — i.e. the locus of the tangential point of B, on any curve
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of (3’) — amounts to four, the common points coinciding with the
base points of (8’) disregarded; for, the tangential curve is of order
four and admits B, as threefold point whilst it passes only once through
D, D,,... D So B, is a fourfold point of «, and this curve is of
order seven. IFrom the number of the double points we deduce that
a, is rational; this is right, for it corresponds point by point with
the line D,B,. .

As to the locus of A, it is immediately clear that B, is a double
point and D, a threefold point on it, while it passes four times
through D,, D,, ..., D,.

The tangential curve of D, is cul by «, besides in the base points
in 6 points more, which implies that D, is a sixfold point on the
locus of A4, and thal this eurve is of order twelve, any line through
D, contairing six more points of it. In the same manner we deter-
mine the loci of the points 4;, 4,, 4,, elc. and then the loci of
Asy and As; 41 can be found by the Bernoullian method. Provision-
ally we only siill wish to remark, that the locus of 4, has an
eightfold point in D,, for this proves thal the points B, and D,
form two Steinerian points of order threec on 8 curves of ().

§ 9. Let us return to the point we started from. We have seen
that the curve j, under discussion — the locus of the ninth threefold
point - is at the same time the locus of the points each of which
forms with B, a Steinerian pair of the third order. On each curve
of (f) lie besides the base poinis eight points more of J; moreover
D, D,, ..., D, are eightfold points of j:

We have now to invesiigate whether J3, lies on j, or not. This
can only happeu if on a curve v, of (3) the point B, coincides with

on¢ of the eight points each of which forms with it a Steinevian .

pair of the third order. However it is easy {o prove that asuchlike
coincidence of two Steinerian poinis can only present itself in a
node; for the group of the nine inflexions this is immediately evident
and for the other groups of Steinerian points of the third order it
can be deduced from this by projection. Now B, is nol a node of
a curve out of (8); so it does not lie on j,.

As the number of poinis common to j; and wu, amounts to 72
we find:

“The curve jy 18 of order twenty-four; it has D,, D,,..., Dy as
elghtfold points.”

§ 10. We will enumerate some points of j,, which curve will
be denoted furthermore by j,,. It is eut by the line D, D, in eight
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more points; any point P of these eight determines with D,,D,,..., D,

a pencil of curves ¢, with threefold points in these nine poinis.

Any other point Q of D,D, determmes a curve ¢, of this pencil

having ten points in common with that line and breaking up there-

fore into that line and a curve ¢, with double points in D,, D,, P

and threefold ‘points in Dy, D,, ..., D,. So any poini of infersection N
P of D, D, and j,, is at the same time a node of a ¢, forming |
with "D, P, a ¢, with nine threefold points. At first this resnlt may
seem astonishing; for we can indicale eleven points on D, D, each !
of which forms with D, D,,..., D, a set of nine threefold points
of a ¢, and of these eleven points we find hack eight only. But,
the three other ones prove to determine a ¢, (and therefore a pencil
of curves ¢,) excluded from the beginning.

To prove this we consider the net [d] of curves ¢, determined
by the six threefold points D, D,,..., D, and the double points
D,, D,; the curve of Jacosr of this [#] is of order twenty-one and,
as it passes five times through D, D,, it is cut by the line D D,
in 11 points more. So D, D, contains 11 points each of which is a
node of a ¢, belonging to [d].

Now let us consider the curve ¢, passing through D,, D, and
admitting D,, D, , ..., D, as nodes; this completely determined curve
cuts D, D, in three points X, F, G more. Fach of these points lies
on the curve of Jacosr of [d], for ¢, forms with the curve ¢, of
(8) passing through I a ¢, of [d], of which the point Z is a node;
likewise these .two curves form with the line D, D, a curve ¢, of
which D, D,,..., D, and E are threefold points. However E does
not lie on j,,, for this ¢, can be considered as the combination of a ¢,

of (8) anda ¢, and this combination has been excluded beforehand (§ 5).
But it is evident that /, £, G' do lie on the curve j, quoted in §4.

The eight remaining points of intersection of line D, D, and the
curve of Jacost of [d] do lie on 7, ; so on each of the 28 lines
D; Dy can be indicated eight points of j,,.

Moreover j,, is cut by the conic D,, D,,..., D, in eight more
points. These lie at the same time on the curve of Jacosr of the
net ] of curves of order seven passing twice through D,,D,,...,D,
and thrice through D,, D,, D,. This curve of Jacosr of order eighteen 4
is cut by the conic D,, D,, ..., D, in eleven more points; of these |
however once more three do not lie on j,,, i.e. the points common !
to this conic and the curve ¢, passing once through D,, D,,..., D,
and twicc through D, O., D,.

So on each of the 56 conics D; Dy D, D, D, can be indicated |
eight points of j,,.

ey e Sty o e smess S
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§ 11. We now freat in a summary way the general case:
¢ is an arbitrary numbenr.

Once morve the arbitramly chosen points Dy, D,, ..., D, are given
and the quesiion is to determine the locus of the point forming with
these given points a set of nine g¢-fold poinls of a non degenerated
curve of order 3¢9. In the same way as we have used the results
obtained for ¢ =2 in the solution of the problem for ¢ =3, we
can solve the successive cases ¢ = 4,5,... by using every time the
results obtained in the immediately preceding case. So we consider
for o =4 at first a variable ¢,, with fourfold points in D,,D,,...,D,
- and touching a curve u, of pencil (3) in a point A’; then we
determine the third point of inlersection of u, with the line connecting
the last two points of intersection of ¢,, and w%,, which point is
independent of the choice of ¢,,, etc.

But before we state our results more in detail we wish to make
a remark. We find, that any point D, which can present itself as
ninth g-fold poinl of a non degeneraled ¢;, must coincide with one
of the points forming with B, a Steinerian point of order o. The
locus of the latter points is a curve ¢z -1y with (p’—I)-fold points in
D, D,,....D;. Now however il is evideni that this curve degene-
rates in several cases. So, if e.g. we consider the case 9 = 6, we
shall find among the points forming with 3, on a curve of (3"
Steinerian pairs of order six also the points which form with B,
Steinerian pairs of order two and of order three. So the curve
Cye2-1), here of order 105, must.break up into j,, j,, and a curve
of order 72 passing 24 times through D, D, ..., D,. Now the latter
curve forms tae locus proper of the ninth sixfold point of a non
degenerated curve ¢, . So the two covves of which the fiest is the
locus of the ninth ¢-fold point, the second that of the point forming
with B, a Sieinerian pair of order g, coincide completely if o is a
prime number; if ¢ is no prime number the first curve is a part
of the second. So we have found:

“The locus of the ninth o-fold point coincides completely or par-
tially with that of the points forming with B, on the curves of (8
Steingrian pairs of order o. The lxtter curve cuts any curve of (8"
besides tn the base points in (9* — 1) more points, has the points
D, D, ...,D, for (¢'— 1):-fold pownts and is therefore of order
3(0*—1). The former comeides completely with this curve, if ¢ is
a prime; in the opposite case s order and the multiplicity of the
base points on it can be easily deduced from the corresponding
numbers of the second curve.” '
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Physics. — “On the chdnge induced by pressure in electrical resis-
tance at low temperature.” 1. Lead. By H. Kamerrineu Onnis
and Bexer Brekman. Communication N'. 132¢ from the Phy-
sical Laboratory at Leiden. (Communicated by Prof. H. Kamzr-
1INGH ONNES).

(Communicated in the meeting of November 30, 1912.)

§ 1. Introduction. The difficulties which encompass the explanation
of the variation of resistance with temperature on the lines of the
theory of electrons as developed by Rieckg, Drubg and LorkNTz, and
which are of particnlar import within the region of low temperatures,
render it desirable to undertake an investigation of the behaviour of
resistance at these temperatnres under modification of various external
conditions. With that end in view we have already developed in
certain directions an investigation of the behaviour of resistance in
a magnetic field (and of the closely allied Hann phenomenon). In
the present paper we commuuicate the result of a first investigation
of the change of resictance under tbe influence of uniform hydrosta-
tical pressure. Qur first aim had been to trace the connection between
pressure coefficient and temperature coefficient. Our data, however,
are as yet too few to serve as a basis for deductions — however
obvious these may be — affording an explanation by means of
vibrators, electrons, dissociation or variation of the mean speed').

The dependence of specific vesistance (ws,) upon pressure (p) can,
in general, be represented by the formula *)

Wy == Wigp €~ W0
in which @ and 4 ave constants, and w,,, is the specific resistance
for p = 1. When p is not very great, this gives

1
w=w, (1 — ap) (1 + _ij—ﬂp) =w, (1 4+ yp)
for the resistance of a wire which is subjected to uniform hydro-
statical pressure, in which
1
—Y=a— 3 g8
and B is the compressibility. Hence the variation 2w = w—w,, is

given by
Aw

w
In the following only y lLas been measured.

=yp

1) B. Becrman, Upsala Univ. Avsskrift 1911, p. 107.
%) B. Becrmax, l¢. p. 16.

e e e i o s b
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" The measurement of y at very low temperatures is one of ex(reme
difficulty. For, at these temperatures, the temperature coefficient is
so great thai even the smallest {luctuations of temperatare can greatly
affect the resistance; in this way a slight distnrbance of the te'mpe-
rature equilibrium can occasion a variation of the resistance .which
completely obscures the whole phenomenon of variation with pressure.
With the wire we used, for instance, al 7=20°3 K. a pressure
‘of 100 atm. brought aboul a change in the resistance of only about
0.001 £2, while a change of 0.0003 £ was the result of a variation
of 0.01 degree in the temperatare. And it is pretty obvious that it is a
matier of exireme difficulty to re-adjust the temperature to within
0.01 degrec of ils former value after it has been altered by the heating or
cooling of the liquid occasioned by fluctuations in the pressure.

There is a second factor operating which renders the measurement
difficall. When the compression bas been continued for a long time, -
elaslic afier-effects occur which can also atlain a value that is a
considerable fraction of the inagnitude to be observed. Should, the-
refove, the variation of pressure be distributed over a long period of
time in ovder to disturb the temperature equilibrium as little as
possible, this after-action will give rise to a source of error.

§ 2. The lead to be subjected to pressure consisted
of a turning about 2 melres long and about 0.2 m.m.
. in diameter. After some practice these long thin
=7y turnings could- be successfully prepared. Attempts
fgg to draw wires of this small cross-section did not
. § meet with success. The wire, @, was wound upon
£ an ebonite cylinder (see fig. 1). To either end was
- soldered a band, ¢,, ¢,, rolled from a wire of elec-
trolytic copper; to these bands were soldered the
-1-  two paivs of leads, d,, d,, d,, d,. To enable one to
—A, subject the lead to pressure it was enclosed in a
thick-walled copper ‘cylinder, 4,, closed below by
a lieavy cap, 4,, (screwed and soldered), and above
04 by a cap 4, through which two copper capillaries
A,, A4, pass. One of these capillaries, A,, is used
A 5 v for filling the cylinder with liquefied gas and for

) “1 exerling pressure upon the liquid, while the other,

f @*ﬁ 4, 1s connecled to a manometer and, at the same
time, acts as a safety valve, in allowing the liquefied

L gas to escape in the event of the supply tube getting
frozen. This second tube also admits the wires required

a’b}"b1
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for the resistance measurements. Al the upper end of 4, these wires
pass through a perforated cylinder of ebonite in which they are
cemented with marine glue, and this cylinder is held fight against
the tube by a screw cap. Resistances were measured by the method

of overlapping shunts.
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The evlinder was immersed in a cryostal, (), consisting of a {rans-
parent vacuuni glass provided with a pump stirrer (sec fig. 2). Fig.
1 shows the latler in aspect and cress seclion, ¢, is the c¢ylinder
and ¢, the piston. The temperature of the bath was vegulated and
measured by means of the gold resistance thermometer £, also shown
in fig. 1. We may refer {o earlier diagrams (Comm. No. 83, Pl 1V,
and Comm. No. 127. p. 23) in which the same letters have been
used, for details of the arvangement 15, Vi, Xoo Xi X0 Xoo,
Y?,, for regulating the pressuve under which the liquid in the cryosial
vaporises.

When the temperature of the cryostat has been adjusted (he same
kind of gas as has been liquefied in it is admitled into the experi-
mental cylinder by the tap X, through 4, from the reservoir R,
which has previously been filled at high pressure. A second reservoir
R,y is coupled in parallel with £,, so that gas need be taken from
[\, only in sufficient quantity to complete the fiiling of the cylinder.
In this way the reservoir [,, is much longer available for raising”
the pressure in the experimertal eylinder {o the highest values. An
other reservoir 2, setved as a regulator, and, as gas was added, the
pressure wag read on the manometer M. The tap K, was used for
the evacuation of the apparains and connections before the experi-
ments began. The supply of gas was regulated by K,. Belind K, a
cylinder B3 is coupled in pavallel. with the experimental tube to serve
as a buffer; to the inlet tube of this cylinder is coupled ot only the
experimental cylinder but also the differential manometer. A/, io
which we shall retarn presently. Through the tap X, gas can be allowed
to escape from the experimental cylinder and from the buffer. The
pressure of the gas they contain can thus be kept at any desired
consfant value by means of K, and K,. Regulation of the pressure
is made according fo the indications of the differential manometer,
A, one side of which is attached 10 the experimenial apparatus and
the other {o a reservoir f, which is maintained al the required con-
stant pressure and is, for that purpose. immersed in ice. To adjust
{0 the desired pressure he differential manowmeter is first rendered
inoperative by opening the tap /(;. Care must be faken in admitting
pressure {o the manowmeler thai friction does not give rise to dilfe-
rence of pressure between the parts of the apparatus il conneets suf-
ficient {o cause the mercury of ihe differentiai manometer o be
blown over. Two steel overflow vessels A/,,, M,,, scrve as a salely
device. The pressure in the experimenial eylinder is read froni the
manomeler A, which is connected to A,. K, is asafely valve which
comes into operation when 4, must be used for exhausling.
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§ 8 An idea of the degree of purity of the lead is obtained from
the values which we give here for the resistance at various temperatures.

TABLE L

Resistance of the lead wire
Pb; at low temperatures.

T w
289° K 12,75 0
90° 3.7
20°.3 0.725
17°.8 | 0.626
’ 14°.5 0.520

Cowparison of these values with those given by Kamsrrixen Oxxes
and Cray, Comm. No. 99¢, shows thal the lead now used musthold
in solid solution a fairly considerable amount of foreign matler, for
the great change in the temperature coefficient exhibited by metals
in the presence of small amounis of impurity may generally be
attribufed to the transition of this admix(ure to a state of solid solution.

Ouwr measurements were made witlh liquid oxygen and liquid bydro-
gen as compressing liquids. The results are contained in Table 11
The pressure (p) is given in atmospheres.

TABLE II
Change induced in the resistance of lead
Pb I by compression at low temperatures.
T =90° K T = 20°.3 K
1 A l 1 Aw
w S 0 B AT
P A 7w ? ( A 7w
49.4 |~ 0.0043 ql— 2.35 X 105 49.7 {— 0.00062 — 1.TX10-5
97.8 |— 0.,0080 |— 2.2 97.5 |— 0.00114 — 1.6
102.5 |~ 0.0085 |— 2.2 97.5 |— 0.00132 — 1.8
48.5 |— 0.0040 |— 2.3 98 |— 0.00115 — 1.6
91 |~ 0.0079 |[— 2.2 97.5 {— 0.00131 | — 1.8
97.5 |— 0.00114 — 1.6
62+

-171 -



952

For the pressure coefficient B. TisuL?) gives
y=—1,44.10-% at T'=273° K.
From our measurements we find
y=—225.10-% at I'= 90° K.
and y=—17 .10-5 at I'= 20°3 K.
so that the pressure coefficient has become somewhat greater at the
lower temperatures. The increase obtained between 273° K. and 90° K.
changes again to a diminution. The accuracy of the measurements
is still too small to allow us lo aitribute any significance to this
diminution at the lowest lemperatures.
If we consider the decrease — Aw in the resistance for p = 100 atm.,
we find thal it approximates to zero at the lower temperatures. Thus
we find for Pby:

273° K. for p=100atm. — A w=0,017 .
20° K. ,, .., . -— A w==0,008
2003 K. ,, ,, . — A w=20,001.
Physics. — “Isotherms of monatomic substances and of their binary

muctures. XIV. Calcwlation of some thermal quantities for
argon”. By H. Kameruven Onngs and C. A, CroMmrniv.
Comm. N°. 133¢ from the Physical Laboratory at Leiden.

(Communicated in the meeting of November 30, 1912).

The empivical reduced equation of state for argon, VIL. A. 3,
published some time ago *), enables us to calculate a number of ther-
mal quantities which are essential to a knowledge of monatomic
substances in general and of argon in particular. These quantities
may also be obtained graphically. Calculation by means of an equa-
tion whbich fits the experimental resulls over the whole region of
observation allows, however, a much greater accuracy to be attained.

| tl l lt [)e .) ¢ i ve vaiues Of e ”'
n 1e hresel p o (a]’) ’ (a ,ryg) >

dy, 04 0 0 L
(%)2’_—: r (é%l’ (525)1; T (5-)7/— P, (AMAGAT’S pression inie-

1) E. Lisewn: Upsala Univ. Avsskrift 1903.
9 H. KamerLizgE Oxnes and (. A, CRrROMMELIN, Proc. June 1912, Comm.
Nu, 198,

%) Alveady indicaled in Sappl N°. 28, note 492, p. 146, Preliminary values
obtained by C. A, CrommeLiv for some of the quantities here discussed have
already been published by E, H. Awacar. G. R 9 April, 1912,
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. 9
risure 1)), and of ReiNngaNuM’s ¢, ap = [’I’ (ajj) — p] »*, calculated
v

as functions of the temperalure and of the density from equation
VII. A. 3%). The temperature is expressed in Krnvin degrees and
is calculated from 0°C.; the pressure is expressed in international
atmospheres *).

The importance of a knowledge of these quantities especially as
fonctions of the tfemperature has already been repeatedly insisted
upon ‘) so that we need say nothing further here upon that point.
We shall only say that according (o the chief vax DER WaALS equation
with constant ay, by and R\, (ai) . (§E> and ay should be inde-

07/, \0v/7
2

0
pendent of the temperature, and consequently (6_1]%) should vanish,

so that the deviations which they all show may be taken as a
measure of the degree fo which argon deviates from the simple
assumptions regarding molecules accepted by Vax pEr WaaLs in deve-
loping his principal equation.

Agreement, al least approximate, with the chief vaN DER WaALs
equation wonld first be expected in the monatomic substances, and
therefore the investigation of these guantities for argon as well asa
comparison of the results with those for substances of more complex
molecular structure is of the greatest importance.

Consideration of the quantity introduced by RuiNeaxum ®).

— | 629 . Oou
= 7(z), 2 == (&),

enables us to see that, as far as the mutual actions of the molecules
is concerned, the assumptions upon which van pErR Waars founded
his chief equation with constant a, , by ,and R, must undergo some
modification such as has recently been introduced by vaN pEr WaALS in
the various developments of the consideration of apparent association. If
we retain for the moment the most immediate assumption suitable for
monatomic sabstances sach as argou, that the atoms are incompressible,
then changes in ar would be wholly due to deviations of the molecular

1) E. H. Awmaear, numerous papers in ithe C. R. collected in “Noles sur la
physique et la thermodynamique”. Paris 1912,

%) For the nolalions used in this paper see Enc. math. Wiss. V. 10. Suppl, Nv, 23,

3) Enc. math, Wiss. V. 10. Einheiten. a.

Y M. RuNearuy, Diss. Géttingen 1899, Ann. d. Phys. (4), 18 (1905) p. 1008,
Suppl. Nv. 23, p. 140 sqq.

§ M ReiveaxuM. Diss. Gittingen 1899,

L

!
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TABLE L

1240

5136

ol +200 | 00 200 | —a00 | —6o0 | —700 | —soe | —a00 | — 1000 - 110° | — 118° | — 116° | — 1190 | — 1220
20| +0.0764 | --0.0766 | -4-0.0768 | 4-0.0770 | 4-0.0773 —+0.0775 | 4-0.0777 | 40.0779 | 4-0.0781.| +0.0784 | +0.0785 | --0.0786 | +0.0787 | +-0.0788
40 1589 1595 1603 1612 1624 1630 1638 | - 1646 1655 1665 . 1669 1672 1676 1680
60 2471 2485 | 2501 2521 2545 2559 2575 2503 2614 2637 2644|2652 2660 2668
80 34000 3431 3457 3490 3531 - 3556 3584 3615 3650 3690 3703 3711 3731 3745
100 4517 4578 4615 4657 4704 4759 4821 | 4841 4861 4883 4904
120 5700 5857 5034. 6022 | 6051 6080 6110 6141
140 7113 7202 1331 7371 1411 453
1160 ‘ 8473 8627 8678 8730 8783 8837
180 ’ " 1.0030 1.0093 1.0159 ©1.0227 1.0296
200 | 1580 1662 1741 1833
220 3142 3243 3348 3453
4913 5041 5172 |
260 6683 - 6839 6998
280 8568 8757 8951
300 2.0580 | 2.0817] 2.1053
320 2760 | 3044 3329
340 5 5467 5810
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T.ABLE IL

—60°°

—T70°

—113°

oy | 200 00 | —200 | —a00 —80° | —90°- | —1000 | —1100- —116° | —119° | —1220"

£ 20 |—0.90001—0.00001—0.00002|—0. 00001 |— 0. 00002/ 0. 00001 0. 00003 —0. 00002|— 0 00002|—0. 00003|—0- 00002| - 0 00003—0.00003—0. 00003
40 o 3 6 6 8 o 10 - 11 12 12 13
60 6 1 9 0 - 14 5 17 19| 21/ 24l © 28 26 27 28
30 10 12 15). X DY) R 30| 3 87 43l a3l 6 a7 48
100 ' ' 27 35 39 44 510 58 66| 68 69 2 M
120 . 63 3. 82, 93 o1 . 100 102, 106
140 ' 1 126/ 130 135 138 141
160 144 165 11 175 179! 182
180 210 216 223 225 232
200 271 279 2851 288
220 334 344 353 358
{240 ' 4200 . 432 438
260 ) 512 | 526 536
280 620 640 653
{300 748 . 75 195
320 899 935 963
340 170 11280 1165,
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TABLE III

-9LT -

ouw " Op
55)17_ 5T)u—-P
On | + 100 0° —20° | — 400 | —60° | —70° | —80° | — 60° | — 100° | — 110° | — 113° | — 116° | — 119° | — 1220
20|+ 1.150 |4 1.198 | 4 1.254 |4 1.314 |+ 1.381 |4 1.417 |4 1.454 |- 1.494 |4 1.533 | 1.579 |4 1.593|4 1.604|4 1.620|- 1.635
40| 4.525] 4.703| 4.905! 5.134| 5.388| 5.523| 5.670{ 5.826] 5.990 6.163 6.218 6.273 6.331 6.387
60, 9996 10.37 | 10.79 | 11.27 | 11.82 | 12.12 | 12.43 | 12.77 | 13.14 13.52 13.64 13.76 13.89 14.01
80! 17.44 | 18.05 | 18.75 | 19.55 | 20.46 | 2098 | 21.53 | 22,11 | 2274 23.42 23.63 24.84 24.06 24.217
100 20.79 | 31.15 | 31.92 | 32,75 | 33.65 | 34.62 35.65 35.98 36.31 36.64 36.97
120 45,91 | 47.18 | 48.55 50.03 50.49 50 95 51.42 51.90
140 64.38 66.38 67.00 67.63 68.27 68.90
160 81.94 84.54 85.35 86.18 87.00 87.83
1180 104.4 105.4 106.5 107.6 108.6
200 127 2 128 5 129.8 131.1
220 150.5 152.2 153.8 155.4
240 177.4 179.4 181.4
260 « 204.4 206.9 209.3
280 233.2 236.1 239.1
300 T | 263.8 267.4 270.9
320 296.5 300.7 305.1
340 ’ 331.3 336.4 341.7
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f TABLE IV.
o (O ,
aRN = 3 1 (a'/"),_ PN

ox| + 200 0° | —200 | —40° | —60° | —70° | —80° |'— 900 | — 100° | — 110° | — 1130 | — 1160 | — 1190 | — 1220
20/-4-0.002875/+-0.002906{+ 0. 003134+ 0.003285( 4 0 003453--0.003541|+0.003636/+0. 003735|+ 0003833\ 0. 003046 1-0.003083|+-0.004011| 4 0. 004050/-1-0.. 004088
40 2828 2940 3066 3208 3367 3452 3543 3641 3743 3852 3886 3921 3957 3092
60 2171 2880 2997 3131 5262 3366 sas4| 358l 3640|3756 3180 3823|3857, 3803
80 2125 2821 2030 3054 3197 3278 3363| 5485  sss4] 3650 3692 3125 3150 3793
100 i 2070|3115 3192 3275 3365 3462 ss6s| o508 8631 8664l 3697
120, 3188 3276 3372 3474 3506 3539 3571 \ 3604
140 3285| 3387 3418 3451 48 516!
160 3201 3302 3334 3366 as00 3431,
180 3223 3255 30871 3319, 3352
200 3180 3212 3245 32718
220 3110 3144 3177 3211
240 3081 3115 8150
260 3024] 3060 3006
280 2074 3012 3050
+1300 2931 2971 3011
320 2895 2037 2079
340 2866 2010 2056
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TABLE V.
0/, 0%
(a—‘:k) T: ! (W) v l
on| +20° 00 —20° | —40° | —60° | —700 | —s0o | —ooo | —1000 | —1100 | —pig> | —i160 | —1100 | —1220

20 | ~0.09293|—0.00273/—0. 00506|—0. 00233| —0. 00426|—0. 00203|—0.00579|—0. 00366|—0. 00346|—0. 00480|—0 00320/ —0 100471| - 0. 00462|— 0. 00453
40 879 819 1012 699 1279 1219 1543 1648 1731 1704 1761 1885 1849 1964
60 1759 1912 227 2331 2083 3046] 3283 3479 3635  3014] 41620 4084 4160 4231
80 2931 3277 3796 4190 5114 5077 5793 6408  6404]  T013] 6884l 7226 7242 7252
100 6203 458 7921 8496 9338 0.10039] 0.10764) 0.10836 0.10839) 0.11094 0.11181
1120 0.12165 0.13366, 14193  15167] 15520,  15700] 15717 16016
140 " 19213 20540 208120 21207 21264 21304
160 24025 26010 27375! o1401] 27582 27408
180 . 34249 34570, 35031 35133 35053
200 43384|  43828] 43016 43514
220 53470, 54039  54394] 54090
240 65078| 66567, 66171
260 80430 81051 80984
280 | 91306 os618l  ose62

300 1.1750 | 1.1942 | 1.2012

320 1.4122 | 1.4407 | 1.4550

1.6950 | 1.7335 | 1.7602
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forces from the simple initial asswioptions made by vax DEr Waals.
Such changes in ay might originate from three causes: change in’the
ftw, in the by or in the R, of the chief equation, as a rvesull of the
radins of the sphere of action being but slightly greater than that
of the molecule, a circumstance ') revealed in apparent association.

Since
ik 3
p (2 — (%
012 ), Oov Jop )

: opYN . . .
the guestion as to whetber (Oﬁj) is independent of the temperature

2

01,2) =0, i> most inlimalely connected with the
v

0%p
and therefore (—7

0 .
question as {o whether (g—v) =0 or not. For a long time this
v /)1

m

question remained undecided on account of the lack of experimental
data. We mnow know that, at least for a nuniber of substances,

~

op

(é) i in general a function of the temperature, and thal therefore
v

PP does not vanisl

S i .

577 ), oes not vanish

If we now compare the behavionr of argon with respect to

01
Youne *)*) deduced from his observations upon isopentane that

opY . . :
(L,) with that of isopentane we find correspondence in many respects.
v .

op o e .
(E—)Zj) decreases with falling temperature forvr < 4.6 c.c. ; at greater
v

volumes up {o vy=400c.c. it increases with falling temperature,
while it remains practically constant at still greater volumes. For
argon, for whicl the volumes are expressed in terms of the normal
volume as unit, il the law of corresponding slates were accurately
obeyed these volumes would correspond to vy =0.00377 and
vy =0.328 or gy =265 and ox=3.05.

The argon observations embraced by VII. A. 3 lie entirely within
these limits, and from Table I we see that argon agrees witl
isopentane within the region of observation. Over the entire region

op -
(aij‘) falls with increasing temperature. At the lowest argon density
v

1) This civeumstance causes a change in by also, cf. H. Kamrruwves Oxnos and
W. H. Kceson, Suppl. NO 23, Nr. 47,

?) M. Rurseanum, Diss. Gitlungen. 1899, pg. 42.

%) S. Youxna, Proe. phys. soc. Londen 13 (1895), p. 602.
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oy =20 the diminution becomes exiremely small, pointing to con-
stancy at still lower densities. Argon differs from isopentane, how-
ever, in this respect thal with argon at higher densities far above
on = 265, the increase becomes still more rapid, while the behaviour
of isopeniane would lead one to expect a diminufion in the rafe of
increase. -

From his observations nupon isopentane Youne') deduced the following

i . 0%p
rule for the behaviour of [ = |:
1%/,

0%*p )
0
(aTﬂ>u<i‘vk > ’
0%*p g
— 0
(OT")u > i N <

This rnle has already been condrmed for a variety of substances,
and is, as far as-its second part is concerned, also obeyed by argon.
For carbon dioxide, ethylene and isopentane, Ruiveéanum found

: o (OP . . :
that the quantity ar == — |— p | v* is a minimum for v about

071" Jo
3 o .
7 and at femperatures about 10° above #. If the law of corre-

sponding states were strictly true this minimum for argon should be
at gn = 380, and therefore outside the region of experiment. Nothing
can be done consequently beyond trying to judge from’extrapolation,
if, and where, the minimum exists. If for this purpose we graph
ag as a function of oy at —122° and —116°, then extrapolation
towards higher densities shows that it is probable that these curves

would also exhibit a minimum for argon at » = vk

Physics. ~— «“On the rectilinear diameler for argon.” By E. Maraias,
H. Kamuruinen Oxnwnes, and C. A. Crommeriy. Comm. 131a
from the physical Laboratory at Leiden. (Continued).

(Communicaled in the meeling of November 1019),

§ 5. Results. The results obtained are given in the following
table ) (p. 961):
The calculated values of the ordinates of the diameter given 'in
this table have been obtained from the equalion
])pp = ().20956 — 0.00 26235 {ag)-

H 1l e
?) Por the notations, see Suppl. No. 23.
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The diameter has been drawn through the points —175°.39 C,, Kgr
and — 131°.54 C,, g.degr.-

bath [Ilé(élvi: dezgzgé. Quigr | Quapr |Ppr (0) | Dp(O) 0—C

Oy — 183.15 1.37396 | 0.00801 ‘ 0.69099 | 0.69006 | 4+ 0.00093

CH, — 175.39 1.32482 | 0.01457 | 0.66970 | 0.66970

CHy — 161.23 1.22414 | 0.03723 | 0.63069 | 0.63255 | — 0.00186

CoHy — 150.76 1.13851 | 0.06785 | 0.60318 | 0.60508 | — 0.00190

C,H, — 140.20 1.03456 | 0.12552 | 0.58004 | 0.57738 | 4 0.00266

CoHy — 135.51 0.97385 | 0.15994 | 0.56690 | 0.56507 | -}- 0.00183

CoHy -— 131.54 0.91499 | 0.19432 | 0.55466 | 0.55466

CgH, — 125.17 0.77289 | 0.29534 | 0.53412 | 0.53794 | — 0.00382 f
| ;

14
\\ {

T
T~

08

|

—
Ty
N
i

Ot
[A) / J
¢ %
T / {\ w i

RN g |
@ -1 - -4 -5 ~h0' -u ~0"

Fig. 2.
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§ 6. Discussion. The slope of the diameter is given by
bar = — 0.0026235.

This coefficient is very large, larger than has been found for any
other subslance yet investigated with the exception of xenon, for
which Parrerson, Crirps and WayTLAW-GrAY Y have found —0.003055.
Comparison of the values of this constant for the two monatomic
substances argon and xenon again reveals the influence exerted upon
it be the values of the critical temperature.

With respect to the critical density the following remarks must
be made. If we assume that the diameler remains rectilinear right
up to the critical point, we then tind

vra = 0.53078.

op\_ dp)
oT v;- dr k(;ex.k.

Oks. =— 0.509.

was previously found from the argon isotherms.?) The difference
Letween thesc (wo values is of the same order of magnifude and
is in the same direction as the diflerences found for other subsiances,
carbon dioxide®), methyl chloride”), sulphur dioxide *) amongst others.
The fairly large deviation from rectilinearity of the experimental
diameter apparent in the neighbourhood of — 125°17 Gy, . agrees
well with this behaviour.
3.283 was lhe value previously *) oblained for the critical coeffi-
cienl on taking Kyq = Ky, : we now find
Ky =3.424
which is tLerefore slightly grealer than thal for oxygen 7} (3.346)
It, therefore, we leave K,q == 3.13 for helium out of account, oxygen,

and not'argon, 15 the substance for which Ky lies nearest the theo-
retical value, 2.67, deduced from van prr Waars’s equation.

Using the equation

the value

1) Parrerson, Cripps und WHYTLAW-GRAY, Proc. R.S. tA) 86 (1912), p. 579.

3) G. A. Cromummriy. Proe. Dec. 1910, Comm. No. 118@, and Thesis for tlie
doctlorale, Leiden 1910. /

%) W. H. Kupsom. Proc. Jan. 1904, Comm. No 88; M. KamerLixen OnNES
and W, 1. Kzesox, Proc. Febr. 1908. Comm No. [04a

9 (. H. Bringwyaw, Thesis for the doclorate, Amslerdam 1904.

5 K. CArpOso, Arch, sc. pbys et Nat Geneve. (4). 34, (31912) p, 127,

6 H. Kamuprrinan Osngs and C. A, Croauuniy. Proe. March 1911 Comm
No. 121a. :

N E. Marmas and . Kemeruises Qswes. Proe. Febr, 1911, Comm. No., 117.
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The density of the liquid at-— 183°.15 agrees well with the figures
given by Bary and Doxxan?). The difference is less than 1 °/,.

Although {he deviations of the diameter from rectilinearity are
sufficiently small lo enable one to say that argon obeys the law of
the diameler, they are still tov_large, and especially too systematic,
fo be due {o experimental errors. As is easily seen from the table
and from the accompanying figure, the experimental diameter in the
ncighbourhood of the critical point exhibils a curvature concave
fowards the axis of temperature, while at higher temperatures it is
convex towards the same axis. The same behaviour has already
been observed in other subsiances, e. g. carbon dioxide *).

In fig. 3 are given the reduced density curves and diameters for
ether (Ramsay and Youne?)), isopentane (Youxe '), oxygen (Marmias and
Kamerniver ONNES ¥)), xenon (PA’I"I‘Ef%SON,UliIPl’S and WHYTLAW-GRAY %)),
argon and lelinm (Kaymruiver Oxxps 7)), the reduction from the
experimental data has been made by means of the critical density
obtained from the diameter.

On a previous oceasion it was shown by Kamprunen Oxxes and
Kuusom *) how the equations of stale for different substances deviate
oue from another, and how these differences may find expression in
deviation functions. On doing this, it appears that substances may
be arranged in orvder so that the deviations of successive substances
gradually increase, while 1t also appears that subslances of widely
divergent critical temperatures are then found to be in the order of
their critical temperatures. The exemplificalion of this general pro-
perty alforded by the behaviour of the diameter was noticed by one
of us some lime ago ) and is brought to light in fig. 3 in which ihe
density curves are seen to enclose one another. '

If the law of corresponding states were sirictly obeyed, then these
curves ought to coincide exactly. IFrom the diugram, however, it is
seen that this iz nol the case. The curves enclose one another ') in
—-1) E C. C. Bavy and I'. G. Doxxax, Journ. Chem. Soc. Trans. 81. (1912). p.911.

% M. Kamerune Osses and W. H. Ksmsom. Proe. Febr. 1908, Comm.
NO, 104a. 4. P. Kusney and W, G. Rosson, Phil. Mag. (6). 3. 1002. p. 624.

3 W. Rausay and S. Youne, Phil. Trans. 178, (1887) p. 57.

1y 8. Youwsa. Proc. phys soc. London 1894/1895 p.’ 602.

8 le. ~

6) l.e.

7y H. Kameruinaiz Onyes, Proe. Dee. 1911, Comm. N 124d.

8) Ene. Math. Wiss. V. 10. Suppl. N%. 23,

% B Marmas G RL 139, (1904), p. 839,

¥) In the diagram ol N. 36 of Enc. Math. Wiss. V. 10, Suppl. NO. 23, is
clearly shown the surrounding of the boundary curve for helium by that for iso-
pentane.
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such a way that a complex molecular structure and a high eritical
temperature (circumstances which are nsnally coexistent) cause diver-
gence between the branches of the curve, while simple molecular
structure and a low critical lemperature appear to cause them to
contract.

Looked at from this point of view, il is of importance io note that
the curves for xenon and oxygen so closely correspond that there
appears no appreciable difference between the density curves in the
diagram, and they have accordingly been represenied by a single
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curvé. (The observations for xenon, however, extend only to t = 0.7).
The cause of this cortespondence can well be explained on the as-
sumption ') that the contracting influence of the simpler molecule
and the diverging influence of the comparalively high critical tem-
perature ( 4 16°.6 C) have, at least in part, cancelled each other.

Physics. — Maynetic researches, VII. On paramagnetism at low
temperatures  (confinued). By H. Kamesuinen OsNgs and
E. Oosrtruuis. Communication N°. 132¢ from the Physical
Laboralory at Leiden. Communicated by Prof. H. KamerLinen
" Onwus.

(Communicated in the meeting of December 28, 19123.

§ 9. Crystallized manganese sulphate. The salt was procured from
Merck as puriss. pro analysi. The results were *):

_ TABLE VIL
Crystallized manganese sulphéte MnS0,.4H,0. (I). \' -
T | 7.10° | #T10° | Limits of # |  Bath
2880.7 K. | - 66.3 | 19140 | 10000—17000 | Air. .
169.6 111.5 | 18910 | 8000—17000 | Liquid ethylene.
7.4 247 19120 é '
70.5 270 19030 ‘ 6000—16000 | Liquid nitrogen.
64.9 - 202 18950
201 ot4 18370 ‘
17.8 1021 “18170 |} 4000—16000 | Liquid hydrogen.
14.4 1233 17760 s '

\

Down to and at nitrogen (emperatuves, this substance follows
pretty much the law of Curim.

) See N 34 ol Enc. Math. Wiss. V. 10, Suppl. No. 23.

%) .Prof. Wriss bas kindly informed us that in the determinalion of standards
of susceptilility in Zirich, for this substance » = 66.77.10—6 at 14°2 C. was
found. h : .

. 63

Proceedings Royal Acad. Amsterdam. Vol, XV,
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§ 10. Anhydrous manganese sulphate. All the waler was driven
out of the sali by heating.
The results are given in Table VIII
With anhydrous manganese sulphate another divergence from the
law of Curie over the whole field of low temperatures was found.
Down to nittogen temperatures, however, it is only a disturbance
of the first kind. At hydrogen temperatures a further disturbance
shows itself which is not unlike the disturbances with solid oxygen,
and at any rate belongs to a kind of disturbances that we have not-
yet been able to reduce to a definite type. It is remarkable thaf
just as with crystallized ferrous sulphate the presence of molecules of
water of crystallization causes a diminution of the quantity A' to a
very small value in comparison with that of the anhydrous sub-

TABLE VIIL s
Anhydrous manganese sulphate MnSO,. (I). A'= 240,
7 2,108 |2(T40"105 Limits of H Bath
293°,9 K. 87.8 27910 6—17 kilog. | Air.
169.6 144.2 27920 5—17 Liquid ethylene.
1.4 274.8 27870 .
5—16 Liquid nitrogen.
64.9 314.5 27960
20.1 603 26590
17.8 627 26210 g 4—16 Liquid hydrogen.
14.4 636 24420

stance, here too A’ becomes less by the addition of molecules of
water of crystallization, and to such a degree, that, if one does not
go below nitrogen temperatures A’ appears to have become =0,
whereas with anhydrous salt £’ =24°.

If we calculate the number of magnetons for the crystallized
salt with C=yT(A'=0) and for the anhydrous with ' =y (T}-4")
and with A’ = 24°, we find the same number of magnetons in both
cages, viz. 29. This is one less than is found in the solution ?).

1) P. Werss, Journal de physique, 1911, p. 976.
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§ 11. Further observations upon ferrous sulphate and ferric sul-
phate. After the conclusion of the investigation ireated in Commn.
N°. 129, we turned io the determination of the water contained in
the preparations ferrous sulphate I and ferrous sulphate TIL

Prof. van Iraune kindly investigated the preparations and found
that they confained ferric as well as ferrous sulphate. They cannot
therefore be {aken as a reliable basis for calculations of tne number
of magnetons, and to make these possible the measurements will
be repeated with purer preparations.

The quantitative resull arrived at in Comm:. N°. 1295 concerning
the appearance uf disturbances of the first kind in Curir’s law and
the possibility of finding the constant of Curie for these substances
by means of a correction. still retains its value.

As regards the fervic sulphate, which the measurements in § 4 of
Comm. N°. 1296 referred to, the admixture of water may be put at
about !/, in first approximation. The molecular susceptibility of ferrous
sulphate is thervefore '/, smaller than thal of ferric sulphate, so that
valency shows its influence in this iron salt also; all this in conira-
diction to what was observed in § 4. N

We must also remark, that the sign and the order of magnitude
of the corrections which would be necessary to deduce the number
of magnetons for the pure malerials from the measurements of the
terrous sulphate I of our Comn. N°. 129) and those of the crystal-
lized fervous sulphate of Kamurrinew Oxnes and Prrrnir in Comnm.
Ne. 1224, make it seem possible that there is a double analogy betiwveen
ferrous sulphate and manganese sulphate. Just as in manganese sul-
phate the number of magnetons in the crystallized and in the anhy-
drous snbstance is equal, the same would be found for crystallized
and anhydrous ferrous sulphate (viz. 26) (if for the anhydrous sub-
stance Curiw’s constant is caleulated with the help of the correction
by A’ = 31°), and in further analogy with manganese sulphate, this
number with ferrous sulphate is also one less than in the solution,
it for the latter one may take the number, that has been found by
WiLrs %).

Should the disappearance of A’ with the inlroduction of waler
wolecules be ascribable to the increase of distance between the iron
atoms which is cansed thereby, then it would be possible that with
different contents of waler of crystallization A’ decreases with the
increase of the number of molecules of water of crystallization. We
intend therefore, {0 examine a salt in this respect, that crystallizes *)

1) P. Wass. Jowrn. de physique 1911, p. 977.

%) Compare the investigalion of Mlle Frvms, C. R. 158, p. 668. 1911 on the
63*

-
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with a series of different numbers of molecules of water of crystal-
lization, and from that to deduce a possible dependence of A’ upon
the density.

§ 12. Platinwm. A small cylinder of pure platinum from HErAEUS was
examined. The susceptibility changes very little with the temperature.
On account of its small value it is ditfienlt to determine y accurately.
The results are contained in Table 1X.

TABLE IX.

Platinum 1.

Limit value
T 7.108 of H
) in Kilogauss.

200.2 K 0.973 }

77.4 1.061

11—17
20.1 1.080
14.4 1.087

The value at ordinary temperature lies about the middle of those
of Owen, 0.80 resp. 0.89, Hoxpa 1.097, KornigsBererr 1.35, Finke
1.06 (all at 18° C.). If one wished to go so far with the application
of the rule (' =1y (74 A’) that one applied it to platinum also,
then it would follow from this that A’ = 2440°, and for the number
of magnetons n calculated from (' the value n=10. ’

§ 13. Dysprosium oaide Referving to the data of § 7, we observe
that, as will also appear from a further communication of Kamxr-
1iNeH Oxnus and Purrisr, all the values of ¥ which occur there
must be increased in the ratio of1:1.065. By applying this correction
also the difference from the value at ordinary temperature found by
Mlle Feymis which was stated upon in § 2 of Comm. N°. 1220 and which
was due to an error of calculation, is reduced to a divergence within the
limits of accuracy; hence the dysprosium oxide appears to have been
about in the same condition as the sample used by her. Our conclusions
undergo no change by the correction.

influence of the successive molecules of water of crystallization upon y. This might
be the consequence of u change in A’ wilh an unchanged number of magnetons.

- 188 -



869

§ 14. Oaygen. The susceptibility of liquid oxygen has been deter-
mined by Kameruinem Oxnxks and Prrrier by two methods. It has
now also been investigated by the attraction method in about the
same way as the susceptibility of liquid hydrogen in Comm. N°. 122a.
An evacnated cylindrical glass tube was hung in the magnetic field
and then the repulsion measured that the tube underwent when the
surrounding space was filled with lignid oxygen. The value found
at T == 90° 1 K. agrees well with that in Comm. N°. 116; the
small difference at the other temperatures is explained by the fact
that the temperatures could nol be very accurately ascertained.

In the following table the values found stand beside those of
KamuruiseE Onses  and  Prrrizk  according to  their formula
1V 1= 2.284.10—3, ‘

The question naturally arises whether the behaviour of liquid
oxygen can also be represented by the formula C' =y (I'4 A"). If
we assume that A’ = 71° this comes out pretty well, as appears from
Table XT in which the values of y are taken from KaMerrINGH
Onnes and Perrier Comm. N° 116, Table I1I.

TABLE X.
Liquid oxygen.

7106 £.100
d K.0. and O./(K.O.and P)
90°1 K 241.1 240.6 .
79.1 258.1 256.8
. 70.2 270.7 272.6

When the atoms are assumed to be free in the molecule ('
gives for the nnmber of magnetons 11 per atom (calculated 11.04),

TABLE XI.

Representation of the susceptibility of
liquid oxygen by the formula
(TH oNy=C, a'="11°,

T. 2108 | x(T+1T1) 106,
90°.1 K. 240.6 38760
71.35 269.9 38420
64.9 284.2 38620
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and on the hypothesis that i the liquid two gas molecnles arve
rigidly connected it gives 11 per mclecule of two atoms.

From y (1'+ A’) = 38600 (the mean of the numbers in the table)
with A’ = 71° one finds for 7'=293°"K

Yooz 1. = 106.0 XX L0,

This is very close to the value for gaseous oxygen at 20° C found
by Wuiss and Piccarp ), from which follows 7 magnetons for each-
of the oxygen atom assumed to be rigidly connected. -

Seeing that above 20° C gaseous oxygen follows Curiy’s law ) it seems
to be by some chance that our formula with A' = 71° gives (hat figure.

The graphic representation of /y as a function of 7, if our for--
mula actually remained true up to 20° C. would consist of two
intersecting lines that have themr point of interseclion just at the
temperature at which the value quoted is determined, which cer-
tainly would be a curious coincidencs.

Another possibility which Prof. Weiss suggested,in a kind private
communication, is that there might be discontinuity in the region
between 0° C. and —183° C. which has not been investigated, by
which it remains accidenial that the continuation of the line for
liquid oxygen cuts that for gaseous oxygen just at 20° C. There
is much to be said for this explanation. It is quite possible that ihe
change of density between lignid oxygen and gaseous oxygen
makes A’ into 0. This would be in accordance wilth what was
deduced in § 10 for the influence of the water molecules upon the
value of A’ for manganese sulphate, and moreover uite in accor-
dance with Wuss’s idea that the molecular field essentially depends
upon the density.

We can further observe, thal the change of density, which takes
place discontinuously with evaporation, can take place continuously
by an indirect transition. In the above line of thought, 1f we assume
that the divergence for lignid oxygen from Cumik’s law may be
defined by a A’ and pay allention to the change of the naumber of
magnetons which must be assumed in that case, the graph which
represenis '/, for oxygen of a given density as a function of the
temperature would be as in wmagnetite a succession of straight lines
perhaps connected by rounded off picces. The magnelic equation of
state  which expresses the susceptibility as a function of density and

1) P. Wrss ct A, Prccarn. C. R. 155, p. 1284, 1912.

2) Prof. WEIss who has particularly investigated this question, kindly tells us
that the experimental results of Corie agree so well with Curix’s law wilkin the
limits of observalion ervors that A’ could not be more than 4- 8° or—8°,
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teinperatnre (with a view to determining which the experiments of
Kamrruinesn Onnes and Perrizr were undertaken (see Comm. N°. 116
§ 1) would be given by a series of similav lines, differing for the
different densities.

We must not forget that it is by no means established that in
the case of oxygen the divergence from Curm’s law is determined
by a A‘ which changes with the density, and that it obviously may
be due to an association of molecules into complexes with a dimi-
nution of the number of magnetons.

However this may be, our attention is again drawn to the im-
porant question whether the divergences from Curiz’s law depend
upon a peculiarity of the atom within the single molecule or from
the approach of the molecules up to a very small distance.

In § 3 of Comm. N°. 122¢ by Kamerrines Onnes and PErrisg,
it is said that preliminary experiments with mixtures of liquid oxygen
and nitrogen, which will soon be replaced by better final ones and
which were based on the above mentioned association hypothesis,
seemed to indicate that bringing the molecules to a greater distance
by dilution in the Jiquid state bas no influence of importance upon the
divergences from Curie’s law. Here the question is raised in
this form: whether A’ is a quantily which as peculiar to the atom
in the single molecule can also be found in the gaseous sfate or
whether it can only be developed by bringing the molecules into
immediate vicinity of each other. Further experiments ) with oxygen,
already planned, must decide this.

(To be continued).

3

22

Physics. — “The law of corresponding states for different substances.
By Prof. J. D. va~n per WaaLs.

{(Communicated in the meeting of December 28, 1912).

In the following pages I shall give an account of the result of
the researches which I have made of late about the properties of
the equations of state for different substances. And I shall commu-
nicale in them the simple conclusion at which [ have arrived for
all the substances for, which a chemical combination.does not take
place, and the molecules continue to move separately, either really
isolated, or perhaps joined to groups, if this aggregation (quasi
association) behaves in the same way. '

1) As this communication is going to press, these experimenf’s liave advanced
$o far, that we may accept with great probabilily as the result of them, that
gaseous oxygen of 90 limes the notmal density pbeys Curie’s law down to — 1309 G,
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When I discovered the law of corresponding states, I could state
the result in two way — and in {he beginning I, therefore, hesitated
before making a choice between these iworways of expression: 1.

. . ° v .
if for the different substances & and m are equal, » = — is also

- Vk
n

equal, 2. if for the different substances = and m are equal, the
volume for all is the same number of times the volume of the
molecules. For so far as I saw then these two expressions were both -
true, and it was after all immaterial whether I chose one form or
the other. But the first form was more suilable for experimen., and
the second form would only be of theoretical value — and so 1
chose the first form. In order not to getinio greal difficulties at once,
we shall disregard quasi-association for the present, and nur result -
will therefore, at least for the preseni, be valid only for higher
temperatures and not great density.

It we write p=apy, RT= RTym and v =vv;, and if we put
RT

PEVL

==, we derive:

b
(ﬂ + ) (v — «—) = ms
L) Y

—1
and as we found a,, :f . or ¢ = f—1, (These.Proc. XIII
v BRI s PEL’

p. 118) we may also write:

f__l N P

——— b 3 ‘ a5
P — | =ms .
»? v
In our latest investigations we have shown that
64

s=gm (f—1)

gither quite accurately, or with a high degree of approximation.
Substituting this, we find: ’

: f—1

_%_) . F—1

(:r 'S (v—— by [/

or

f—1
R 3w

(" T3 ) ( /f_1 VT) = 8m

L7
It we put &, », m=1, we find: - .
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f( 8 b 3 ):8.
' f 1 rb f—1
Ve e

by
With f=4 and corresponding » = 3, we find ZL—:_-], and with

Y
f;’? we find:
b_k_3_=_3’—-_§:0,978.
bory2 V2 T

b 3
As - has been found only little smaller than 1. Y will also
»

q
differ bul little from 1; from s <8 follows in the case that

64
st =27 (f —1) is assomed as perfectly accurate, with 7s < 8:
8
rl —
&
or
8

P
ey
r< 5

l/f—l .
3
Hence
3
‘/f——1>1
N r e
- 3

3
Bat it is to be expecled that the value of —— will be

F—1
N

P

only litle greater than 1. For f=4 with r= 3 we find it exacily
equal to 1 and with f=7 we find a value of » little smaller than
would follow from 712 =3, namely r=2,1218. We accordingly
determined this value at about 2,09. But then we conclude at the
same time that if f should have risen to 10, the value of r would

3
descend to below 7-5:: 1,73. Al all events in the equalion:

i
()T
3

R R R e s
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the factor ¢ will indeed be somewhat greater than 1, but differ
only little from 1.
If we confine ourselves to that pari of the whole region where
no quasi-association worth mentioning is to be expected, to which
part the critical point also belongs, the_last equation will hardly
b

change. if we pul unily in it instead of ¢ —. And then a rule
’ k

follows from this holding for all normal substances, so for notreally

- . , v
associating substances. viz. for given = and n, ———-7—1 has the
. . 3
same value. For substances with the same value of f—1, v is

therefore also the same and with different value of f—1 we have

v . v
l/f——l_— C f—-1
3 3 i

or according to results obtained in These Proc. p. 903.

AN

v v

b(/ —I/( Z)g )! .
b[l'n: "blim

Not rigorously vahd for the whole region, however. To equal
reduced pressure and temperature corresponds a volume which in

. . b
reduced measure is different for the different substances, when -2
) - lim
. . . : ”
differs. But if we write the value 3 for », and the value
i 2
biim

v )
- — for »', we obtain:
pf

bl e

v v

by be \
byr — by l/(.i
v b[{m g blnn

And as we have concluded to the approximate equalily of 3,

y o

b by Y . .

r—~—, o[ ) etc. we find as approximate rule: At the same
biim biim B - .

reduced temperature and pressure the same _volumes, are for all

substances the same nnmber of times the molecular volume viz. b,.

If, therefore, we had expressed the law of corresponding states in
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the second way, it might have been maintained unchanged for all
normal substances. at léast over a large parl of the whole region.

vl

- . . v 13 »
The meaning of equation = T8 of course this
i} q
biim l/ ( bam )

that e,g. for the reduced volume. which in the system in which
T

. b, -
J=4is put equalito »,, », — must be taken in the system,
lim
-1 b, L . .
where S = Thus the crifical volume is equal 1o 3b,, if f=4
tom

and the reduced volume is then equal to 1. But in the system in
which f=7 this volume would have the value of 12 in critical
measure. That the reduced volume is found V2 times larger is due
to this that we have divided by a V2 times smaller factor. 2

Hence the different sr, m, v surfaces for substances, for which

b
—L might differ, do not cover each other, but they can be made
lim

to overlap for the greater part, almost entirely, if we divide the
b, ‘
value of » by L
biim
Then, however, the border lines, the loci of the coexisting vapour
and liguid phases have not been made to cover each other. Not

even by approximation, for this locus. which is determined hy

(]

pv,—w, ::fpdﬁ,"
also requires the knowledge of the properties for smaller volumes,
and will, therefore, also demand the knowledge of presence or
absence of quasi-association, but especially the knowledge of the

b
course of e But this will be discussed later.
q ‘
The cause of the circumstance thal the above mentioned properties

only hold by approximation is clearly to be seen, if it is_borne in

b . . : .
mind that the quantity 7 in the form found for the eqnation of siate:
)g - - -

bg 30
bim 3 — 8m

13 3» b
7T e
‘D'J l/ b, bg l)//
. —_— 7 —— — -
m biim i , .. -
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is not constant as soon as > 1. If very large volumes are con-

lim

cerned, we may put 1 for it, and even in the critical volume, viz.
r by, the difference with 1 is still slight and we find from:
by

L b[
L=y 1 . 1771

1 3 —
+ blzm

b b

for — =2 the value of;}—lc to be equal to 0,97 or 0,96.
hun 7

We conclude from this that for the vapour volumes of the border

line the rules given ahove hold with a high degree of approximation.

But for the liquid volumes S is smaller than would be calcu-

q

biim

b
lated if we had retained ™ =— 1, and the density of the liquid
q

greater. The limiting liquid volume is even not by, but dsn, and so

b by
9 times smaller, and the limiting liquid density —- times greater.
am lim

This must b11ng about a change in the value of the factor y.
And we can calculate the value of this change.
Let us put

Qqas -+ Qvl
—1 1—m
o + 7( )
and for & constant
] i
. ol
g{%ﬂ—ol :1-}—%(1—7/&). ' N
"Q fer o . 4

{raction of the two equations we find:
Oul 9111
— = (y—13%) (1—m).
2o 201 = =3 ( )

For m = 0 we must introduce the limiting liquid density, and we get:

)

S Y- @y—1)

lim

or
b
rol = 2r+1)’)
lim

-,
N

1} These Proc. p. 903,
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)
As p —_ is somewhat smaller than 3, we get:

~ {n
— > 1).
2 Vblim - (Y+ )

Hence the variability of & is the cause that the law of corresponding
states does not hold perfectly for all volumes. If this variability was

b
governed by one law, and if accordingly —— was the same for all

lun
»

substances, it would hold perfectly. For then the value of 7
q

b tun
and so also of » would be the same for given m and m. If the law
b
of the variability of 0, hence I/ZIL, is different, then » isindeed
im

not equal for given @ and m, but the law of correspondence, as we
have stated it here, holds with a high degree of approximation, at
least for volumes > wv;. Then for given @& and m the value of

d is almost th n , Y = Y =
I is almost the same or by = l/ = 3—6,,
et 'gk —_— r bg —_—
blim bi blim

As the volume decreases, the law begins to fail. For v > v; it
holds almost good, below this the deviation becomes greater and
greater. The value of b, b,., however, does not seem to differ much
for the different substances. It is not equal to 1 for any substance,
not even for monatomic ones. So substances for svhich 4 is constant,
are only fictions. When, therefore, in my continuity [ calculated the
critical circumstances keeping & constant, this did not take place
because [ thought that 6 would be invariable, but in the expec-
tation {hat in the critical volume the quantity ) would have chan-
ged so little that the influence of the change would be inapprecia-
ble. And as we have found now, the quantity

bk_ 3 8
by by by
24 1489
biim + bivm

is, indeed, not much smaller than 1 for » and m = 1. And even

a value so excessively high as would be

if we should assign to
lim
the case if we put it at 3 — and substances for which this value

would occur will, no doubt, have to be looked upon as fictions —

- 197 -

[




978

. b ‘
we should still find z~6>0.93. The reason, therefore, that even for
y
great densities the law of correspondence is fulfilled by approximation

. . br/ ! .
will be owing to this that —— does not differ much for the different
Olim
substances. Moreover the region in which the deviations would
become of importance, is inaccessible {o experiment; e.g. for the
liquid volumes which could coexist with vapour volumes at values

1 . . .
of m< X or for volumes under an excessively high pressure.
We shall add a few more remarks.
i
— = f(x,m) for great
blim
values of v entirely disappears for » very small and near vy, will

. by
be clear if we pay attention to the fact-that for l/ =1

lim

That the coincidence of the surfaces

. r .
the surface has no points below = for then v/ = b, and

. 5, ‘
vy = 3b,. For — equal to a value greater than 1, vy, = 0y, an
lim N

V= )“bg, or
biim
Plhim : bq 1 bpm
- — —— an - = — .
T bg by by 3 b,

? —,
b m blim

b . o ' )
If e.g. =~ =2, we have obtained new points for the v surface, and
lim

y 1
the surface begins at ——l—b—: re It will be obvious that in such
7

blim

b
circumstances with difference of the value of —- there can be no

tim
question of coincidence. There is only perfect coincidence with equality

of —. If this value differs, the surfaces almost coincide, indeed, for .
lim

v
large value of », but for very small value of » the —
: q
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. . b :
ordinates will contract and approach {o zero as —- becomes larger
lim y

in a region, however, which is hardly accessible to experiment.
Another remark.

. v " . !
From the circumstance that the ———— surfaces may be considered
[ ‘

biin
to coincide, especially for large value of », it should, however, not
be concluded that the border lines coincide. The top differs already.

The top lies at «, m, and » equal to 1, and so—%diﬁ”ers ;and

it/
R biim
great differences are even derived for the gas-branch at low tempe-
. . j N 1—
ratures from the relation which holds approximatively, — 2= f =
Pk m

Thus we find in the region where the law of the ravefied gases

would hold:
. [/ b,
blim b\ 1—
8. b’“:(1+3_l) -,
v blim) m

Hence in a region where correspondence would perfectly prevail
the border lines differ exceedingly much. This is of course the con-
I o bg

sequence of the liquid volumes no longer corresponding when —-
lim

differs, and the constraction of the border line also requires the

knowledge of these volumes. Where the gas-laws hold, %:1, or

7Y k .
FOPR % 1, and now we have come to the conclusion that
m RT},
RTy, . 8 b
* for the different substances is equal to — —2. Then
Pl V& 3 blim
av 8 by
m 3 biim
or 7 » _ 8
i m by B
blim
. »
A confirmation of the thesis, that the a, m, — surfaces
9
blim

‘coincide for great value of ».
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Now ihe important question is still left undecided, in how far
by B

does the value of differ for the different substances. We have

him

already stated that it is not probable that there are substances for
which this quantity = 1. These substances have sometimes been
called perfectly hard substances, but thén it should be borne in mind

8
that since it has appeared that />4 and s> gformonatomic sub-

stances, even monaformic substances would not be perfectly hard.
For all substances, with our present knowledge we may say without

b
exception, — >1, and probably not very different from 2. Now

lon
we might account for about 2 by assuming quasi-association. In large
volume b, is the fourfold of the volume of the molecules; hence if
the  spherical shape is assumed and the diameter is put = 4,

JT
b,,:46— o’. The limiting volume of the substance 1s present when

the pressure is infinite at temperatures 7'>> 0. Then the nolecules
must touch, and the volume is only little smaller than ¢® or b, £ 6.
Hence :

or b, 2 2,09 by -
But on the other hand we should consider that often
by
, Blin
If not the spherical shape was assumed, but as extreme case, a

v b(
rectangular shape, b, would be = 46", and by, = ¢°, and =4,

AT
This -will, probably, not be expected by anybody. For ellipsoidal
shape we should again find a little more than 2. In this way it

. . . by
seems impossible to me to explain the value of — <C 2. But we
tim

shall possibly discuss this later.
The original theorem of the corresponding states pronounced the
equality of the a, u, » surface. In the.form given here it states the

v i i
-— surfaces. These {wo forms would
S
. b(z'm
coincide, if there was only one single law for the course of 4. In

superposition of the &, m
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. . by .
the form given here the » ovdinates are only —’- times smaller. But
lim

the advantage of the form given here is obvious, when there are
different kinds of substances from the point of view of the law of
correspondence. First of all il poinls out the cause for the exisience
of these different kinds, about which cause the form given originally
does not reveal anything. Secondly it appears that attempts to find
perfect correspondence belween these different kinds must fail, and
have certainly no chance of success by variations in the = and m
ordinates. And thirdly it shows that the deviation between the
different kinds of substances is a gradual one, and the coincidence
in the rarefed gas-state is restored.

Physics. — “On the Hatx-gffect, and on the change in resistance in
a magnetic field at low temperatures. V1. The Hatveffect
Jor nickel, and the magnetic change in the resistance of nickel,
mercury and iron at low temperatures down to the melting
point of hydrogen”. By H. Kamuruinem Ovnus and Buner
Brckyay. Communication N°. 132« from the Physical Laboratory
at Leiden. (Communicated by Prof. H. Kamerrinen ONNES).

(Communicated in the meeting of November 30, 1912).

§ 17.Y)  Magnetic change in the resistance of solid mercury. The
resistance was measured of mercury contained in a glass capillary
9 cms. long, and of 0.12 mm. diameter. The capillary was U-shaped,
and to either end were fused two glass leading tubes which were filled
with mercury. The resistances were measured by the KonLratsch
method of overlapping shunts, in which the main current was
1 =0.006 amp. The mercury was frozen by blowing cooled hydrogen
vapour into the cryoslat through a glass tube whose lower extremity
reached below the resistance. The resistance was found to be

797 & at  1'=287°3 K.
0,1014 T= 20°3
0,0618 7= 14°5

1) The sections of this paper are numbered in continvation of those of Comm,
No, 130¢ (Oct. 26, 1912).
64

Proceedings Royal Acad. Amsterdam. Vol. XV,
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TABLE XIX.
Magnetic change in the resistance of meicury.
T=20°3K. T=14°5K.
H JAY?) Jax7)
in gauss, | 3~ X108 H w X103
|

9760 -+ 1.3 10270 -+ 5.5
10270 -+ 1.5 10270 -+ 6.5
10270 + 1.6

The measurements therefore show an increase of the resistance
in the magnetic field. At

Aw
H—=10000 and 7T=20°83K — =+ 1,5 X 103
w

Aw

T =14°5 = 16 X10-8

w

were obtained as mean values.

At these temperatures the temperature coefficient of the resistance
is very great, and this lessens the accuracy of the above measurements,
especially at 7'=14°5 K. The large increase occasioned by lowering
the temperature from 20° to 14° K. is very striking.

§ 18. The Havveffect for, and the magnetic change in the resistance
of, nickel. The material in the form of a plate of 0.053 mm. thick-

TABLE XX
HavLvreffect for nickel Nz'pl.

T=290°5K T=90°K. T=20°03K. T=14°5K.

H |RH | —Rx104] H |RH|—Rx104| H |RH|—Rxt04{ H |RH|—Rx104

3010[18.8| 62.4 | 2080|2.93 9.83 || 2970(1.48| 4.98 || 4040/2.50| 5.06
517031.2| 60.3 || 49504.58/ 9.25 || 564012.86| 5.08 | 82504.25| 5.15
7260139.3| 54.1 72906.31| 8.65 || 72603.53] 4.86 [|10270/5.19| 5.05
906543.1| 47.6 || 9110/7.62| 8.36 || 825014.08/ 4.95
10270(44.9) 43.7 (]10400/8.29| 7.98 {|10270/4.81| 4.68
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ness was pure Scuwneri nickel. H and £H are given in C. G. 5.
units. / was 0.7 to 09 amp.

The results given mn Table XX are shown graphically in Figs.
1 and 2.

The HaLneffect for nickel decreases as the temperature falls from
ordinary room lemperature; this has already been found by AW
Smita!) to be the case down fo lignid air temperatures. According
to A. Kunpr?®) the Haureffect for ferro-magnetic substances 1s
proportional to the magnetisation and not to the field. Hence, when
the magnetisation altains iis maximum value, the Havreffect must
also exhibit a state of saturation, that is to say, the curves giving
the Hatneffect as a function of the field must show a bend. SsurH’s

vg 9 CB Q)
50 l 1 2
S Tra00kr = A
-2 (‘,.a o 4:1 -
whTt // 7;]¢190£ /’5{;42{
#
6 / _
0 ‘-:)":'1&,’5@‘}4
ST
o Tragd N

{ < !

20 / , /
AT AT

1
X
| ] o B [

° . 0 0w  kow & G

02000 voo) G0 8000 40000 Gy, o Qv Seqr 10000 GKtina

— 36 T

Fig. 1. Fig. 2.

curves, covering a region of temperaturc from —193° C. to

4+ 546° C., show snch a bend, which, as the temperature increases
right up fo the critical temperature for nickel, 15 displaced towards
the weaker fields, thus corresponding {o a diminution of the saturation
magnetisation as the {emperature rises. At 290° K. our present
measurements show this bend clearly al about 5000 to 6000 gauss.
At the lower temperatures there 18 no decided bend visible within
the region of fields covercd by our observaiions (H < 10400), thus
tf there are any bends at these temperatures. they mwust occur at
still stronger fields.

1) A. W. Smrra. Phys. Rev. 80, 1, 1910.

) A Kuxpr. Wied. Ann. 49, 257, 1893
64*
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At 14°.5 K. the Hanreffect is strictly proportional to the field,
as is also the case at 20°3 K. as far as H=9060. At 90° K.
the Harvrcoefficient is a linear function of the field, climinishiné as
the field increases.

"Tor the Haricoefficient in very weak fields the relation
R, = cetT
holds.

B
The Lepuc quantity £z = —, the tangent of the angle of rotation
w

of the equipotential lines in unit field, is here a linear function of
the temperature. )
The following Table shows the extent io which those relations hold.

TABLE XXL
Ry and D ;. as functions of the temperature.

) T Rogps, Rocate,  ||Preate.| Plobs.

290°K. || 66.0x10—4 | 67.5x10~-4| 5.37 5.37

90 11.2 10.5 3.07 3.10
20.8 5.0 5.3 2.22 2.30
4.5 5.1 5.0 2.28 2.22)

For the nickel plate the magnetic change of resistance was also
measured. / was 0.2 to 0.3 amp.

As the resistance of the plate is very small, and the changes
were, at the most, 1.5°/,, it was not possible to evaluate them with
any greater accuracy.

As has also been observed by ¥. C. BLake?®), G. BarLow ) and
C. W. Hzar?®), there is an increase in the resistance of nickel in the
weaker fields (H<C 3000); in stronger fields the resistance diminishes,
and, in the region 5600<CH<(10270, it does so approsimately linearly
with the field. This behaviour is, to a large extent, the same throughout
the region 290°K. >T">14°.5 K.

In strong flelds the diminution in the resistance is somewhat greater
at low temperatures than at ordinary temperature.

1) i, ¢\, BLaKE. Ann, d. Phys. 28, 449, 1909.
. 2 G. Barnow. Proc. Roy. Soc. 71, 30, 1903.
% G. W. Hzap. Phil. Mag. (6) 22, 900, 1911,
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§ 19. Change in the resistance of pure iron in a magnetic field.
As experimental material an iron wire from Komrswa, Sweden, was
used for which we are indebted to the kindness of Prof. C. BaNupIcks.
Stockholm. On analysis the following impurities were found present

C 010 -,
S 0,007

P 0028

S 0,014

Mn 0,03

thus giving a total impurity of abouy 0,187/,. After analysis the
wire was drawn by Hurarvs to a diameter of 01 mm.
Wg0o

Before it was drawn the lemperature coefficient was = 0.14;

9840

logoo - .

=0.17.

afterwards it was
2890

The iron wire was wound non-inductively upon an ebonite cylinder,
and was so placed in the magnetic field as to be perpendicular {o
the lines of force throughout. The method of overlapping shunts was
used for determining the resistance. Resistances withont field are
given in Table XXIII.

TABLE XXIIIL

Resistance of pure iron as a function 4
of the temperature, ‘

T ] i
28870 K. 11.18 o
90 2,225
1.5 1.859
20.3 1.129
14.5 1.124

The temperature coefficient of the resistance is very swall in the
Liquid hydrogen region; in liquid oxygen and nitrogen it is large.
Resistances were measured al 288° K., 77°K., 20°3 K. and 14°,5 K. 4
The measurements al 77°K. are not quile trustworthy, and we
communicaie them only because they are sufficiently accurate to
determine {he orientation of the temperature curve.
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Fig. 4 shows the resistance as a function of the field. The obser-
vations at 77° K. are indicated by a broken line.

TABLE XXIV
Magnetic change in the resistance of iron.
7 =288°K. T=20°3K T=14°5K.
H Lw 4 ‘1w H AW 4
=10 H — X 104 | 2 X10
990 + 2.8 1500 — 2.0 990 — 1.7
1500 4 3.8 2520 — 2.9 2500 — 2.6
2520 -+ 5.7 3750 — 2.7 3750 — 3.1
3750 4+ 6.0 4940 — 2.2 4940 — 2.4
4940 + 5.4 6110 — 0.9 6110 — 1.4
6110 + 3.2 7260 -+ 0.7 7260 + 0.3
7260 + 0.3 8250 -+ 2.6 8250 + 2.6
8260 -~ 2.1 4065 + 3.6 9065 -+ 3.6
9065 — 4.7 9750 + 4.6 9750 + 4.7 }
10270 — 9.1 10270 -+ 52 | 10270 + 5.4
2 :f’ |FF2s° K
33 L, - ~ 10
- ’\\ Nl
T O R —iw —;u;fa; ‘&1000 800 Gss
:f’ —e N\ 0
Iy 17505 3% RN
__5 —— A
- [ ¥
Fig. 4.

At 288° K the resisiance increases in weak fields, and decreases
in fields greater than 7000. This is in agreement witli resulls obtained ‘
by L. Grunmace and F. Wrmzrr ), C. W. Hear®) and others. At
liquid hydrogen temperatures (his behaviour is reversed, for the
rvesistance diminishes in weaker fields and increases when > 7000.
There is a neutral zone at about H = 7000.

) L. Grunmacr and F. Wemerr ;, Verh. d. Deutsch. Physik. Ges. 1906, 359.
% C. W. Hear: Le.

T
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Physics. — “On the Hat effect, and on the change in resistance in
n magnetic field at low temperatures. VII. The HatL effect for
gold-silver alloys at temperatures down to the melting point of
hydrogen”. By Brnet Brckmax. Communication No. 132¢ from
the Physical Laboratory at Leiden. (Communicated by Prof.
H. Kameruiven ONNgs). i

(Communicated in the meeting of December 28, 1912),

This communication is a continuation of Comm. N° 1305.
IV.  Gold-silver alloys.

$ 10. Measurements at temperatures of 290°K., 20°.3K. and

14°.5 K. of the Hawy effect for three Au-dg alloys (I, II, III) con-

taining a large percentage of gold were published by KAMERLINGH
Oxxps and myself in Comm. N°. 129, § 12, and in Comm. N°. 130c,
§ 16. The results of my measuremenls made on one (I) of these
alloys at 90° K. were given in § 9 of Comm. N°. 130. I have since
investigated three other alloys containing a greater percentage of
silver. and in the present paper the results of these new measure-
ments on the HaiL effect for Au-4g alloys are given and are dis-
cussed in connection with the former results.

The observational method was the same as was formerly used,
viz. the form of the compensation method developed by LzrBrEer ')
as used by vax Evermineny *). An iron-clad TmoMsox galvanometer
was used, with a period of abont 4 secs, and a sensitivity of about
1 mm. deflection at 2.5 m. distance for 5 X 10-8 volts. In this
method distnrbances produced by the thermo-currents arising from
the thermo-magnetic effect of voN ETTINGSHAUSEN are completely
eliminated only in the case of instantaneous closing of the main
cacrent circuit. On account of the comparatively large period of the
galvanometer this was not possible in the present experiments; but
still, these disturbances were too small in the present case {o be
observed. -

The main current was 0.5 to 1 amp. The plates were circular
(11 mm. diam.) with point electrodes. The resistance of the plates
was measured as well as the Haupn effect.

The alloys were obtained by fusing pure gold and silver in a
porcelain crucible, and then volling them out. They were all sub-
milted to analysis. I am greatly indebted for these analyses to

1) Leprer, Diss. Leiden 1895. Comm. Leiden NO, 19, 18965,

2) E. vay EverpINaeN, Comm. Leiden. Suppl. NO. 2, Cf. also H. KAMERLINGH
Oxnes and B. Brogmaw, Comm. N9, 129a, 1912 '
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Dr. C. Horrsema, Master of the Royal Mint, Utrecht, and to Fil.
Lie. G. Karn Anmstrom, Upsala.

In the Tables, H 1epresents the field strength in gauss, R the Harw
coefficient in c¢. g. s. vnits, wy the resistance in ohms at the absolute
temperature 7', and w, the resistance at 0° C.

Alloy II contained 10.7 atomic percentages of silver. The thick-
ness of the plate was 0.049 mm.

TABLE XVI.
T - HavL effect for (du—Ag).;
T=290° K. T=090° K.
H - -
RH — Rx104 RH —Rx104
8250 5.25 6.36 4.26 5.16
9360 — — 4.96 5.31
9750 6.25 6.41 5.08 5.21
10270 6.51 6.34 5.45 5.31
w=28.06%10— o w=5,43x10—40
0 B o108 ¥ 0.69
Uy Wy

Alloy III contained 30 atomic percentages of Ag. The plate was
0.078 mm. thick.

TABLE XVIIL
Haul effect for (Au—Ag) .
T=290°K, T=090°K.

H RH — Rx 104 H RH ~—Rx10¢
8250 5.03 65.10 9065 - 4.26 4.770
9360 5.70 6.09 9750 4.55 4,67

10270 6.18 6.02 10270 4.83 4.70
w=9.4Tx10~ n w="7"T71x1040n
0 o 0 W _ooe0n
wu ZU()
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Alloy IV contained 69.4 atomic percentages of Ag. The plate was
0.083 mm. thick. .

TABLE XVIIL
HaLL effect for (Au—?!g) we

T=281°K T=90°K T=20°.3K T=14°.5K

RH |—RX16%| RH |—RX104|| RH |—RX104]| RH |—RX104

9220 || 5.55 6.02 4.71 5.11 4.12 4.47 | 4.08 4.43
9760 || 5.76 5.90 5.12 5.25 4.40 4.51 4.26 4.37
10270 || 6.20 6.04 5.41 5.27 4.66 4.54 4.55 4.43

w=9.83{10—40) ||w=8.43X10—40 || w=T7.92)10—40 || w=T7.90310—4

0 12 _ 101 Y —0.875 Y —o0.8 Y _0.82
Wy Wy w, Wy

Alloy V contained 90.9 atomic percentages of Ag. The plate was
0,082 mm. thick.

l TABLE XIX.
HavL effect for (Au—A4g) v

T =290°K. T=090°K. T=20.93K. T'=14.95K.

RH |[—RXI104! RH |—RX104{ RH |- RX104| RH |- R>10¢

9065 || 6.62 1.31 5.88 6.49 5.22 5.776 5.16 5.69
9760 || 7.23 7.42 6.30 6 45 5.59 5.713 5.66 5.80

10270 || 7.52 7.32 6 58 6.40 5.98 5.82 5.86 5.71
l

w = 5.20¢10-40lw = 3.813¢10 ~t1| w = 3.40X10~40 [w = 3.40X10—40Q

Y —1.025 Y —=0.13 Y _0.66 ¥ —0.66
Wy Wo Wy Wy

Alloy VI contained 97.8 atomic percentages of Ag. The plate was
0.093 mm. thick.
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TABLE XX.
HavL effect for (du—Ag)y;

7 =290° K. T=090°K. T=20.93K. T=14.95K.

RH |— R} 104] RH |—RX104| RH |—RX104] RH |— R 104

%

9220 || 7.10 7.70 6.79 7317 6.41 6 95 6.38 6.92
9500 | — — — — — — 6.59 6.94
9760 || 7.56 17 1.22 1.41 6.82 6.99 6.73 6.90
10270 || 7.95 7.74 1.1 7._51 1.13 6.94 7.09 6.90

= )

w = 25.2510-50||w = 12.7X10-50 jw = 8.7 X 10~50||w = 8.7 X 10~50

Y _1.04 Y o 0.5% Y _0.36 Y —0.36
Wy g Wy Wy

In Table XXI are collected my results for alloys of gold and silver.
In it are given results for the Hati coefficient R, and its temperature

Ry

R
, for the Lepuvc constant Dj==—, and for the tempe-

an
w

coefficient
390
rature coefficient of the resistance without a magnetic field. Al arc

expressed in c.g.s. unils.

Fig. 1 is a diagram of the electrical conductivity (o) at 7'=290° K.
and at 7’=190°K. as a function of the atomic percentage of Ag.
The wunit in which the conduetivity is expressed is the reciprocal
of the resistance in ohms of a 1 em. edged cube. The conductivity
was calculated from the analyses. (See a previous paper ).

At lower temperatures the characteristic curves become steeper.
This is strongly marked at hydrogen temperatures as is shown by
the measurements of Kamerringe OxnNes and Cray *) on a gold-silver
alloy containing about 0.4°/; Ag, and by Cray’s®) measurements
on Au-Ag alloys with various compositions. The latter measurements
have been confirmed by mine, and have been furiher extended to
embrace cases of average and of small content of 4u. For these
cases, somewhat similar results were obtained as with small content
of Ag: the addition of a small quantity of gold to pure silver
causes such an enormous decrease in the conduclivity that, for

') Bener BeckMaN. Upsala Univ. Avsskrift 1911.
9 1. Kamernisair OnNgs and J. Cray, Comm, n". 99, 1907,
% 1. Cray, Comm. n% 107d, 1908,
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TABLE XXL

R R
Substance &E}g&g | Roggo Ryqo Ry 3 I Rigo s R—::é 13;)900.: wiolo w21(z)}°0.3 [D L]T=290° [0 L]T= - P1] 2003
Au 0 ‘ T.2x10—4] 7.6x10—4 9.8x10—4 9.8x 10—4¢|]| 1.05 136 0.285 ¢ 0.135 3 2x10--1 12.6 x10—7 | 133x 101
:(/lu—Ag)I 2.0 6.8 66 6.7 , 6.5 0.97 0 98 0.49 0.30 2.3 4.8 8.03
(Au——Ag)H 0.7 [{5.6 5.25 3.7 3.7 0.82 0 66 0.69 0.585 1.05 1.12 1.23
| (Au—Ag)IH 30.0 5.6 4.1 3.6 3.7 0.77 0.64 0.825 | 0.755 0.61 0.57 0.52
=(Au—Ag)1V 69.7 6.0 5.2 4.5 4.4 0.87 0.75 0.875 | 0.82 0 64 0.64 " 0.60
‘(A"‘Ag)V 90.9 |7.35 6.45 5.75 5.75 0.88 079 C 735 0 66 1.45 1.79 1.80
(Au_Ag)VI 97.8 ||7.7 7.4 6.95 6.9 0 96 0.91 0 5251 0.36 3.2 6.1 8.5
Ag 100 8.0 8.2 10.15 9.9 1.02 127 0.23 | 0.0091 4 95 23.1 720
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instance, an admixture of 2 atomic percentages of gold reduces the
conductivity (expressed in the above measure) from 71.10 X< 10° to

30%10° —
25
20 dm— .
15
10
. |
b |
5 t
/! ,
W\ J]- 90°K //
0 E"";’?‘\Q:ﬁ N

o w,

6, wr
0

as a function of the atomc percentage follow a similar course. The

researches of Kamertinen Onnes and Cray!) on various gold wires

have shown that the degree of purity of a metal can be very

1.35 X 10°. The curves expressing the temperature quotient

L T 10 m"TC §9
FopE 41| ﬁ /A
5 :j:/ s \ . grok LA
‘% F 7-‘2 3X R B
0 1, ]

0 10 10 3 40 50 e 2 B0 % we L0 10020 % W S & W 8 % 0
— CThant 7l —t Ltom 4 Ug
Fig. 2 and 3,

1) See note 3 p. 991,
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accurately gauged from a determination of the temperature coefficient
of its resistances at hydrogen temperatures. i

Figs. 2 and 3 show the Harrcoefficient Ry at temperatures of
290°K., 90’ K. and 20°.3 K. as a function of the alomic percentage
of Ag. The curves resemble those which give the electrical con-
ductivity and the femperature quotient of the resistance as functions
of the alomic percentage. (Cf. Kamurrinen Oxxus and Bryer BeckmAN,
Comm. N°. 130c). When silver is gradually added to pure gold, the
Harvrcoefficient at low temperatures diminishes, at first rapidly, and
then more slowly, until, with a mixture of about equal quantities
of Au and A4g, a large change in the composition occasions only a
very small change in the Harreffect. The lower the temperature
the steeper is the descent of the curve. For instance, when a
2°/, admixture of silver is added to pure gold the Harrcoefficient
dintinishes

at I'=20°3K from 9.8 10—+ to 6.7 X 10—,
at T'= 90°K from 7.6 XX 10-*to 6.6 X 104,
at I'= 290°K from 7.2 X 10— to 6.8 X 10—+,

Hence a small 4g impurity in gold occasions only a small varia-
tion of the Harreffeet at 7 = 290> K. which, however, becomes
more appreciable at lower temperatures. On the other hand, as is
evident from the measurements of A. voN- Errinesnavsey and W.
Nirnst '), HE. van Auvsen®) and A. W. Smirn ?), the addition of a
small guantity of Sn or Sb to Bi, which exhibits an unusuvally large
Harr-effect, occasions even al ordinary room temperature a great
change in the Hawni-effect.

‘In Fig. 4 are shown ihe curves

By
‘{RZ?D’ . ) 0
g of the temperature quotients
T Lagoo
.Rt_)();;n . . , ,
iy and as functions of the atomic
Iy _R‘)()(Jo -
5| eth) \LP_, = -
| ____E;,’JWF percentage of Ay. These curves
of g=4p,8 have the same general fealures as
o 1 % 30 40 S s 0 8 fo o0 T T - -
— w2 Oy those of Iigs. 1,2, and 3.
Fig. 4. In Fig 5 is shown the relation

between R and 7' for some du-Ay alloys. The course of the curves
between 20°K. and 90°K. is not quite certain, as no observations could

A, v. BroinesgAaUSEN und W, Nugysy: Wied, Ann. 38, p. 474, 1888,
% E. vaw Ausrrn: C. R. 135, p. 786, 1902.
%) A, W. Smrre: Phys. Rev, 32, p. 178, 1911,
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be made between hydrogen and oxygen temperatures. These portions
of the curves are therefore indicated by dotted lines. With Ag and

1

7 AN K] 00 500
? ’ .

fi Jﬁ ““":\ CRu

D e 1 S
R0 s =
t I
I

08 |—er

06 L%

Fig. 5.

Au the Harwrcoefficient increases as the temperature falls. This
increase takes place chiefly in the temperature region 20° < T'< 77°K.
In the hydrogen region, 20°.3 > 7'>14°5, R is constant within
the limits of accuracy. A very small diminution of the Harrcoeffi-
cient is exhibited by the alloy {dwu-Ag); with 2°/, Ay at low tem-
peratures. At low temperatures alloys with more than 2°/, of dg
show a distinet diminution in the Hail effect, which is greatest for
alloys of medium concentrations. Thus alloy III with 30°/, Ag gives

Lago
2 —0.64. With Au and Ag the ratio

2900 2900
from 1, while with alloys of medium concentration it differs consi-
derably from 1. Of the alloys with a large percentage of Adu, a
distinct diminution of the Harvreffect at low temperatures is alveady
exhibited by alloy VI, with 2°/, of Au.

In tig. 6 is shown the relation between the Lupu¢ constant

.RQ(_,O

differs but very little

R
Dy = — and the atomic percentage of g at 7'=290° K. and

w

T =90° K. This constant is the tangent of the angle of rotation of
the equipotential lines in unit field. The curves are of the same
nature as the conductivity-silver percentage diagrams; at lower tem-
peratures they become sieeper. When two per cent of Aw is dis-
solved in dg. Dy, at 7=20° 3 K. sinks from 720 > 1077 t0 8 5 X 1077,
It is worth noting that with alloys of medium concentration Dy is
approximately constant throughout the whole tfemperature region
290° > 7'>>14°. 5; this holds for 10.7 £ £90.9 thal is to say, for
alloys in which the percentage of neither componeat is less than 10.

With alloys which may be regardéd as dilute solutions, hence for
0<2<11and 90 <2 <100, as a rule R is, 1o a first approximation, a

”m

linear funclion of the {emperature quotient 2 (I'=290°K, 90° K.,

w 1‘00
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20°3 K.). Only the alloys with a large percentage of Ag at
T=120°3 K. are an exception to this rule.

5%~ -
(=]
I
2 ’)
15
1
1
%
t
5 i N
=90
I
0 79X

e 0 26 4y o) a0 100
-p  Lbom 2 %
Fig. 6. -

At T'=290°K. the Haurcoefficient for dilute solutions is pro-
portional to the conductivity 6, .

Tt would undoubtedly be of the greatest importance to systema-
tically extend these investigations of the Harveffect in alloys at low
tetnperatures, which 1 have, 10 my regret been obliged to confine
to a single series of alloys, and to further investigate alloys of dif-
fevent types. I hope to continue this research as soon as I can find
a suitable opportunity.

I gratefully acknowledge my indebtedness to Prof. KaMmErLiNGH
Onnes who invited me to undertake these investigations of the Havly
effect at low temperatures. '

IS
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Physics. — ~On i Ly effect, and on the change i electrical
resistance in a miynetic field at low temperatures. VI The
Hattefiect in Tellurivin and Bismuth at low temperatures
down o the wmelting point of Lydrogen”. By H. KaMurLNen
Onzes and Buser Beckman., Communication N°. 1324 from
the Physical Laboratory al Leiden. Communicated by Prof.
H. Kamernmon ONNGs.

~ (Communicated in the meeling of December 28, 1919).

§ 20). The Harneffect wn Jellurium. The measurements were
made with a short period Wikpryany galvanometer. The- primary
current was /= 0.2 amp. Two plates were investigated, both con-
structed from the purest Murcx tellurium. The first plate Z¢,; was
compressed in a steel mould. and the second plate 7%¢,;; was cast
in a steel mould. The first plale was very brittle. Both plales were
circular with a diameter of 1 cm. The electrodes were platinum
wires '/, mm. in diameter, and were fused into the plates. To these
platinnm wires the leads were then soldered. The specific resistance
and its temperature coefficient were different for the two plates; al
7= 289°K.w,, was twice as great for the first as for the second.
The resistance temperature coefficient for 7e,; was always negative
over the whole temperature region 289° > 7' > 20°.3 K. 1%,z cn the
other hand exhibited a minimum in the resistance below 7'= 70°K.

The thickness of the plate Te,,; was 1.175 mm., its resistance

at 7'=290°.K was w=10.8 &
20°.3 w=3.0
and again at 1= 290°. w=1.0;
at low temperatures therefore the resistance is considerably increased;
cooling, moreover, caused an increasc in the resisiance at ordinary
temperature, which is probably due to the production of small fissures.

At 7'=290° the specific resistance was 1.95 X 10° ¢. g. s. We
obtained the following vesults (RH and R given in ¢. g. s. units):
(see table XXV p. 998).

At 7'=1290° the specific resistance of 7%,;; was 1.01 X 10% c. g. s.

The plate was 1.88 mun. thick. The cliange in the vesistance with

temperature is shown in Table XXVI and in fig. 5°%).

Bence. as has already been mentioned, the resistance of the plate
Tepp; attains a minimum at about 40° to 60° K. This behaviour is
somewhat similar to that found by Duwisr to be characteristic of

1) The sections of this Communication ate numbered as continuations of CGomm.
No. 132¢.
Y The diagrams are unumbered as conlinualions of those in Comm. No, 13%a.
65
Proceedings Royal Acad. Amsterdam. Vol. XV,
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TABLE XXV.
HavLveffect for Tep 7

T==290°K. T'=20°.3K
H K -

in gauss RH R RH R

3750 14.65 3< 104 39.1 16.1 > 104 43.1

5640 22.4 39.7 I+ — —
7260 29.0 - 40.6 31.9 44.2
9065 35.4 39.1 41 4 44.5
10270 40.2 39.1 46 6 45.3

bismuth containing only a slight amount of impurity, and by
J. KOENIGSBERGER, O. Reicrrnaem, K. ScsiLune ') for a kind of pyri-

TABLE XXVI.
Variation of the resistance of
Tellurium, Tep”, with temperature.
T w
289° K 0.212¢0
170.8 0.146
162.3 0.144
153.1 0.141
141.8 0.136
90 0.119
80 0.117
69.5 0.113
20.3 0.122
17.7 0.124
14.5 0.126

1) J. Koemeseerger. Jahrb. d. Rad. u. Elektr. 4, p. 158, 1907.
O. Reicusnaem. Inaug.-Diss. Freiburg i. Br. 1906.
J. KorniespeEreER und K. Scmnune. Ann, d. Phys. 82, p. 179, 1910,
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tes, for magnetite, melallic titanium and metallic zirconium, a phe-

nomenon explained by J. Kounessererr by the dissociation of elec-
trons from the atoms.

03 —
2 . P
'/’//
.| W/
04
w
$
[ I

0 50 100 159 we WY 30
Fig,

With this plate, too, an increase of the resistance was observed
on returning to ordinary temperature "= 290° K after having cooled
it to hydrogen temperatures. In this case, however, 1t was much

smaller than with Z%,;, and was, at the most, 5'/,. We obtained
the following results:

TABLE XXVIL

HaLreffect for 7e

. 517
H T=29]°K l T=89°K T=20.3K “ T=14.95K
in —_—
gauss RH R RH R RH R !l RH R
3720 || 6.90x105) 185.5 7.85%105) 210.5 7.98x105) 214.5 '7.85)(105 211 I
5680 i 10.55 186 11.95 210 12.1 213 ! 11.85 208.5
7260 13.6 187 - 15.4 212 15.0 206.5
9065 16.75 185 18.75 201 19.05 210 18.65 205.5

10270 || 18.85 ! 183.5 || 21.25 207 21.4 208.5 21.0 204.5
I l

I'4

At any definitc temperature £ is practically constant for various
fields; at lower temperatures there 1s an indication that X diminishes
somewhat in the stronger fields; this is most marked at hydro-

65
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gen temperatures at which R, (R for H=0) is about 5°/, greater
than R for H = 10000.
For both plates the Harreffect increases at lower lemperatures,

Bagogg | . . .
is the same. This is very remarkable, for the
2900/

plates are completely different with regard to their specific resistance,
resistance temperature coefficient and absolute magnitude of the
Havreffect. For both plates the value of the Harreffec! is small
compared with that obtained by A.v. ErrinenauseN and W. Nurnst!), 530,
and also by H. Zanx?*), and the electrical conductivity is also small.
According to the researches of A. Marrausen®), F. Exnur*), W, HAxken®), J.
F. Kroner®) and others, various modifications of tellurium occur; accord-
ing to Kroxer it exhibits dynamical allotropy. The two moditica-
tions have very different conductivities. The specific gravity of the
plate Te,;; was 6.138; this is perhaps connected with the circum-
stance that it cooled slowly after casting, and that it was subjected
to local heating when fusing in the electrodes. For a preparation
very quickly cooled KrOnEr gives a specific gravity as low as 5.8.
The modification with the lowest specific gravity seems to have. the
smallest electrical conductivity.

while the ratio

§ 21. The Havreffest in Bismuth crystals. In Table XIII, Comm. -
N°. 1294, we gave results of measurements of the Harveffect in
bismuth crystals for the case in which the crystalline axis is per-
pendicular to the field, and the main current runs in the direction
of the axis. To these we are now in a position to add results for
the case in which the field is parallel, and the main current perpen-
dicular, to the axis. For these measurements we used one of the
crystal prisms which had been used by Van Everpixsen (Suppl. No. 2)
in his measurements, choosing the most regular of the three (2, 3
and 5 1. ¢.) which bad been found suitable for this purpose (cf. p. 82 1. ¢.).

In the following Table are given R, H and RH in c.g.s.

At ovdinary temperalure and in weak fields RH is negative, as
was first discovered by VAN EverRDINGEN and subsequently confirmed
by J. BECQUERELF).

) A, voN ErrineHAUSEN und W. NERNST. Silz. Ber. Akad. d. Wiss. Wien, 94,
p. 560, 1886.

?) H. Zaux. Amn. d. Phys, 28, p. 146, 1907.

%) A. MarruigseN und M. voy Bosk. Pogg. Ann. 115, 385, 1862.

4) F. ExNER. Sitz. Ber. Akad. d. Wiss. Wien. 78, 285, 1876.

& W. HAgEeN. Inaug. diss. Berlin 1910.

6) J. I'. KRGNER. Inaug. diss. Utrecht 1912.
% J. Becquerer, G. R. 164, p. 1795. June 24, 1912
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In sironger filelds RH becomes positive, as was also found to
be the case by Vax EvespiveeN and BrcQuerern. We. may, however,
incidentally remark that the initial negative values found by BECQUEREL
are much greater than ours, and that with him zero is reached in
much stronger fields than with us. This leads us to suspect that the
initial negative values we have obtaired are to be ascribed tosome
cause which occasioned their occurrence to a much higher degree in
BucqQuereL’s experiments; this would be the case, for instance, if our
bismuth were purer than bhis, but still not yet quite free from
impurity. If that were the case, then with absolutely pure bismuth
we should, perhaps, at ordinary temperature, obtain nothing but
increase of RH with the field, the rate of increase being slower in
the initial stages.
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But one can slill quite well imagine, however, that at higher
tempelatuleb negative values can be obtained in weaker fields in
the course of the change which RH as a function of H undergoes
with the tempelatme The part played by admixture would then be
1est| icled 10 a dlsplacement of the temperature at which a negative
value could still just appear, and this temperature would be, highey
for bismuth of gleatet purity than for impure bismuth. Tlns_would
be analogous {o the diminution of the negative effect at lower
temperatures in the case discussed in § 14 of Comm. No. 129¢ in
which the axis stands perpendicular to the field.

At lower temperatures we found the Harvreffect positive in all
fields, which 1s not whal BrcQuerkL found to be still the case at
liqmd air temperatures. It is further worth noting that RH shows,
no further change with temperature below the temperature of liquid
air. This makes it important to amplify the measurements given in
Table XIII for the axis_ perpendicular to the field by others at the
temperature of liquid air.

It is seen from Fig. 6 that for fields greater than 2000 gauss at

+iox10® € G

i
|
25 =

20 ; ;c,(
15 . /

AN
[&
I\J

N

i

B

Q2 7000 4003 (d0c 8000 40003 C;afw;

Fig. 6.
low temperature, and in fields greater than 6000 gauss at ordinary
temperature, R/ is clearly a strictly linear function of the field. If
we write
RH=d«H-+,

in this region, we obtain ‘

7'=290 'K 7'=90"K 7’=20.3°K

=417 - a'=-42.56 a = - 2.56

0'=—5600 = 4'=+-1300 V' = - 1100

—
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§ 22. Remark upon the increase in the resistance of bismuth in a
magnetic field. A friendly remark by Prof. H. pu Bors leads us to
a further development of our ideas concerning the occurrence of a
maximum in the isopedals for the increase in the resistance of
bismuth. ~

Our measurements make it probable that the maximum found
by BLskE at the temperature of lignid air must be ascribed to the
presence of impurity or {o some modification occasioned, for
instance, by mechanical treatment, and that this maximum is not
obtained with pure normal bismuth at these temperatures. The
values which we obtained at the boiling point of hydrogen make
it also certain that neither is a maximuom to be found between
the temperatures of liquid air and of liquid hydrogen. In the region
of hydrogen temperatnres a falling off in the rate of increase of the
resistance of the bismuth wires is clearly appavent. The existence
of this diminution has been proved twice, and on each occasion for
different currents (and, as is evident from the table, for various
fields). But a maximum, that is to say, a return to smaller values,
we have not obtained. From the course of the curves given by
Benet Brckman in Comm. N°. 130q, it still remains possible that the
phenomenon vreaches a Iimiting value. From various analogous
phenomena we might quite Wwell expect something of this kind to
happen at extremely low temperatures. In Comm. N°. 1294 we
commented under [, § 2, upon the uncertainty as to whether a
maximum is reached at these temperatures, or rather an asymptotic
approach would be found to be made to a limiting value, staiing
that “Perhaps as the purity increases the maximum in the isopedals
is displaced towards lower temperatures”. The measurements we
have made with the plates Bi lay further emphasis upon the “per-
haps.” As the temperature falls to 20°K the plates Bi,1, B,
which were not so pure as the wire, exhibit no diminution in the
rate of increase. And yet, on account of the greater impurity sus-
pected in these plates, they should be expected to exhibil a maxi-
mum between 14.°5 and 73°K, if there were a maximum for pure
bistnuth at temperatures lower than 14°5 K and if this maximum
were digplaced towards lower temperatures only by an increase in
the purity of the material. In contrast with this we here find that
only the diminution in the rate of increase remains between' 20° K
and 14°5 K. Further experiments upon different bismuth prepara-
tions are of course highly desirable.
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Botany. — “Some corvelationphenomena . hybrids”. By Miss
T. Tammzs. (Communicated by Prof. Morw).

4

(Communicated in the meeting of November 30, 1912).

In vecent years there have been observed also in hybridisation
phenomena which show a certain” relation between different’
characters of a plant. Alveady in 1900 Correns') pointed out
this relation and called it “Fakiorenkoppelung”. Some years
later Barmson*) put forward a theory fo explain the phenomena
observed. According to Barmsox, in the formation of gameies in the
case of a plant heterozygous for more than one factor, the various
possible combinations of faclors or genes do not arise in equal
numbers. There may be {wo reasons for this. In the fiest place some
factors may show a certain fendency to remain connected whilst
they are however not so completely coupled as to preclude occasional
separation. In the second place there can be between different factors
a tendency (o repulsion. '

Some examples of such ‘“gamefic-coupling” and ‘“repulsion” or
“spurious allelomorphism”, as Daruson calls these phenomena, are
already known. I 100 made observalions in the course of my in-
vestigation on by bridisation that could best be explained by such a
genctic correlation. Whilst however the cases known up (o the
present relate to characters whose presence or absence in the plants
investigated is easily delermined, this is not so in my inquiry. I
have studied characters whose fluctuating variability is very marked.
while morcover the distinciion between the parental forms for one
and the same characier already amonnis lo several genes. The
characters arc, as LaNG®) expresses it, polymeric. On this account
the phenomena become so complicated that a complete anglysis is
impossible or only possible by most laborious investigation. I have
so far therefore taken a shovier course and shall only show in this
preliminary paper that the phenomena point to a correlation not
only between two but indeed between a greater number of characters.

My observations have been made on the cross already ') earlier
described, belween Linum angustifolium Huds. and a variely from
" 1) G. Coknens, Ueber Levkoyoubastarde. Bot Centr. Bl. 84, 1900, p. 11 of the
reprint.

%) V. Bareson, Mendel’s Principles of Heredily., 1909, p. 148.

8) Arwowp Lang, Fortgesetzte Vererhungsstudien. Zeitschr, [. indukl. Abst. ind
Veverbungsichre, Bd. V, 1911, p. 113.

4} Das Verbulten fluktuicrend variierender Merkmale bel der Baslardierung, Ree,
d. Trav, bot. Néerl, Vol, 8, 1911, p. 201.

EEIN
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Begypt of Linum usitatissimum 1. which I have called Egyptian flaz.
The chief points of difference between these plants are the following:
the flower. the fruit and the seed of /. angustifolium ave smaller
than those of Lyyptian flax, and morveover the colour of the flower
is lighfer. B

The following mean values show this.

RN

L. angustifoliwm. Egyptian flax.
Length of petal 8.08 mm 16.20 mm
Breadth ,, 445 13.05 ,,
Length of seed 2.40 ,, 6.08
Breadth |, 1.54 294

By analysis of the second generation I was able to show that the
difference in length of ihe petal of the two forms is caused by at
least four factors. This holds good also for the breadih of the
petal, while the difference for the lenglh of the seed amounts to at
least four and for the colour of the flower to at least three
factors. The difference in breadth of the seed is also caused by
several factors.')

I have attempted to trace the behaviour of the above characters
on hybridisation. The first generation was uniform and intermediate
in the case of all characters; in the second generation a considerable
segretation had occurred. This generation consisted for each of the
reciprocal crosses of fully 100 planis. Both groups were separately
investigated. Since these however gave exactly the same resulis, I
will only deal with the crossing in which L. angustifolium was the
father. Of this I have observations of all characters in exactly
100 plants. ’

The length and breadth of the petal were determined by taking
the average values of several flowers; for the determination of the
length and breadih of the seed a grealer number of seeds were
measured, mostly 50 tv 100, and the average was taken. The colour
of ihe llower was estimaled in the manncr described before*) and
expressed numerically. The light colour of the llower of L. angus-

) Since the appearance of my above menlioned paper 1 have succeeded in
sliowing that the factors which cause the difference in the colour of the flower
are distributed over both forms and thal thesc forms have no commen factors The
proof of this was obtained by the appearance of white flowers. The plant was
found in much larger culture than the one previously grown. In this case the
hybrid thus oversteps the limits of the characters in the parents.

Wilh respect lo the faclors for the other characters my invesligalions are not
yet complete.

Y L ¢ p. 260,
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|

e

Length Breadth Length Breadth

of seed of seed of petat of petal Colour

. . . . of petal

in mm in mm in mm in mm
3.144 1.880 9.7 6.3 3
3.186 1.961 10.8 8.0 5
3.186 2,006 10.0 8.3 4
3.224 1.920 9.4 7.0 1
3.242 1.976 9.5 6.4 2
3.281 2.007 10.6 8.0 3
3.305 1 960 9.4 8.5 6
3.321 1.895 10.5 1.8 5
3.383 2.054 11.4 9.4 6
3.3817 1.916 10.1 1.5 5
3.405 1.983 9.5 71 5
3.449 1.960 10.0 8.0 2
3.450 2.006 11.0 7.0 6
3.451 2.016~ 10.9 8.3 6
3.458 2.095 9.6 7.0 4
3.413 2.057 11.1 9.2 8

‘ 3.482 2.023 11.0 8.3 1
3.495 1.928 11.0 8.5 1 o
3.501 2.104 10.8 8.9 8
3.511 2.038 10.0 8.0 6
3.529 2.022 11.5 80 6
3.530 2.042 9.2 1.3 4
3.552 2.067 10.6 8.0 4
3 557 2.086 11.3 1.5 5
3.562 2,239 10.5 1.0 6
85.064 50.241 259.4 195.9 124
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—— - —
Length Breadth Length Breadth
Colour

of seed of seed of petal of petal

. . . . of petal
in mm in mm in mm in mm
3.564 2.130 10.8 8.8 7
3.570 1.993 10.3 8.5 7
3.575 2.149 10.8 1.5 5
3.600 2.126 10.8 8.4 8
3.606 2.071 9.4 6.9 5
3.610 2.224 11.8 8.6 7
3.615 2.088 10.8 8.8 6
3.617 2.080 10.4 8.0. 5
3.619 2.150 10.8 1.5 6
3.620 2.112 10.5 7.8 5
3.624 2.137 10.7 8.6 1
3.628 2,246 11.5 9.0. 1
3.629 2.333 11.2 1.4 4
3.629 2.157 10.6 8.4 8
3.648 2.013 10.7 8.9 2
3.650 2,145 10.5 8.4 3
3.662 2.226 12.1 8.6 3
3.670 2.081 10.6 7.8 6
3.671 2.050 11.2 7.0 5
3.672 2.036 10.0 6.3 5
3.682 2.193 10,7 6.9 9
3.716 2.267 11.4 8.2 6
3.1117 2.321 12.4 9.2 8
3.723 2,183 10.3 1.5 6
3.741 2.141 11.2 8.0 5
91.058 53.668 271.5 201.0 145
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. _____]

Length Breadth Length Breadth
Colour

of seed of seed of petal of petal

. . . . of petal

in mm in mm in mm in mm

3.759 2,200 10.8 } 1.0 4
3,761 2.075 11.0 8.2 5
3.7766 2.027 11.5 7.6 5
3.7617 2.067 11.2 8.4 6
3.7 2.209 10.4 8.0 9
3.773 2.075 10.0 1.5 4
3.781 2.250 11.2 8.5 6
3.786 2.198 10.1 8.7 10
3.791 2.181 10.2 8.2 1
3.798 2.227 11.0 9.5 1
3.803 2.147 11.8 9.6 6
3.821 2.149 11.3 8.0 8
3.829 2.213 13.0 8.6 4
3.829 2,228 10.0 1.4 7
3.830 2.170 11.0 9.2 8
3 830 2.224 11.2 9.5 6
3 831 2.268 10.5 1.8 1
3.835 2,135 11.5 8.5 5
3.841 2.204 9.5 6.5 5
3.843 2.1M 10.6 8.0 4
3.861 2.249 11.77 8.5 5
3.890 2.180 9.8 7.0 6
3.906 2.320 11.5 8.2 8
3.908 2.175 11.3 . 8.5 4
3.910 2.202 i0.0 8.6 4
95,520 54.544 272.1 205.5 150
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Length Breadth Length Breadth
Colour
of seed of seed of petal of petal
, ) of petal
in mm m mm in mm m mm
3.915 2.260 10.7 9.0 8
3.922 2.413 10.0 8.4 4
3.922 2.313 11.0 8.5 8
3.923 2.270 10.0 9.1 5
3.926 2 287 10.6 8.2 g
3.933 2.21 11.0 9.5 8
3.940 2.351 11.7 9.8 8
3.948 2.361 12.0 9.2 7
3.949 2.150 11.0 8.8 9
3.968 2.298 10.5 8.0 6
3.988 2.196 10.6 9.5 8
4.016 2.218 9.5 8.2 4
4.031 2.225 11.5 8.2 8
4.139 2.295 11.3 9.7 6
4.140 2.317 11.0 8.0 5
4.154 2,350 12.0 9.5 7
4.167 2.389 11.3 8.0 6
4.188 2.345 11.3 8.6 7
4.238 2,348 11.2 9.3 9
4.244 2,456 11.0 9.4 5
4.274 2.446 11.8 9.8 10
4.335 2,452 13.2 10.7 8
4.350 2,311 11,2 1.5 6
4.381 2.461 12.2 10.0 1
4.420 2.469 11.5 9.9 7
102.411 58,252 279.1 224.8 175
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Fifoliuni, was Topresented by 1, the much darker colour of Egyptian
Slax by 10. ’ .

I have arranged the observalions according to the ascending values
of the length of the seed in order io obtamn a survey of the mutqal
relationship of the various characters.

In the preceding table the figures placed in a hmuontal row refer
to the various characters of the same plant, in the vertical columns
those for different plants are given. The whole table is divided
into four parts, each containing 25 plants.

From these tables it must now be clear whether there is or 1s
not an inter-relation belween the length of the seed and the other
characters. If the latler are wholly independent of the former then
for each character the values m a vertical direction must follow
each other without any regulanty; the lowest average, and highest
values for each characler must be distributed equally over the four
tables and the totals of the 4 successive series must be equal or
nearly equal or must at least be arranged without any regularity.

On the other hand should there exist an mtimate relation between
the length of the seed and the other characters such that they be-
have as a single whole, then these other characters \ ill also be
arranged in the tables according to ascending or descending values,
except for small deviations due to the influence of external circum-
stances.

A superficial inspection already shows thal for none of the cha-
racters are the values i the vertical columns in a sequence; be-
tween successive fignres a good many irregularities occur. If how-
ever the tables are compared with one another, 1t is seen that in
general in the first lower values, in the last higher values are
found.

In order to make a comparison easier, I have added the values
for the 25 plants of each table. Below are given the totals obtained
for the different characters.

Length | Breadth | Length | Breadth | Colour
of seed | of seed | of petal | of petal | of petal
85.064 50,241 259.4 195.9 124
01.058 53.668 271.5 201.0 145
95.520 54,544 272.1 205.5 150
102.411 58,252 279.1 22%.8 175
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We see the values for all four characters increase in successive
series. It follows therefore that, on the whole, in the plants which have
the smallest length of seed, the breadth of the seed and the length
and breadth of the petal are small, whilst moreover the flower
shows the lighter shades, and conversely a greater length of seed
is generally coupled with greater breadth and a larger, more deeply-
coloured flower. .

In the.same way as proceeding from the length of the seed, I
have also determined the inter-relations of the other characters.
From the above {able I have arranged the values in ascending order
according to the breadth of the seed and compared the others with
it. The same was done starting from the other characters. It is
unnecessary to give here the complete tables. Below are set out the
totals obtained each time for 25 successive plants.

inAgggx%g?ng Length | Breadth | Colour
order of breadth of petal f petal £ netal .
of seed petal | of petal | of peta
Plant 1— 25 261.3 195.8 121
, 26— 50 269.0 204.5 148
y HB1—15 270.0 205.0 154
, 16—100| 282.8 221.9 17

A;;igfg& gin Breadth | Colour Azg gélngdeic]il gin Colour
°’degf°pf oJength | of petal | of petal Ord"ng;gtgeladt“ of petal
Plant 1— 25 190.8 121 plant 1— 25 124
, 26— 50| 201.3 148 , 26—50 141
. 51— 5| 211.1 160 . 51— 5| 150
. 16—100 | 223.4 165 , 76—100| 178

As is seen the values for successive series of 25 plants in all the
above cases increase. There exisis therefore a relation not only
between the length of the seed and the otlher characters but the five
characters together form a complex of which each part in its
development depends somewhat upon all the rest.

Now the nature of the inter-relation of the characters of the
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flower and seed which lave been studied is, as the figures show,
such that in general the developmenti of all characiers in one plani
is in the 'same direction, since, for example, a long petal shows a
distinct tendency to be coupled with a broad petal, with darker
shade of flower and with a grealer length and breadth of fhe seed.

From this it might be deduced that here it is only a question of
ordinary consequences of slight differences in external conditions in
consequence of which the best nourished plants deyelop more strongly
and form larger deeper-coloured flowers and larger seeds, in otler
words that the relation observed may only be the usual correlation
phenomenon of fluctuating varying characlers, just as met will in
homogeneous material that is in pure forms.

There indeed cccurs, as the observations showed, a correlation
between the characters in the pareni forms and also in the first gene-
ration, of the same kind as the relation lere described.

In F, also this correlation will play a more certain part, but
only in a subsidiary way and the phenomenon is chiefly due to
another cause. This is already clear from my earlier investigations.
Moreover I have also traced the relationships in the offspring.’
When the relation observed is a phenomenon of correlative variability,
then the offspring of each individual of the second generation must
exhibit again the same correlationfigure as the whole second generation
or at least the offspring of a plant which is extreme for one or more
characters must in general deviale much less from the average type
than this plant iiself. Now this was notl the case, for it was found
that the relationships as they appeared in the Fj-plant were in the
main handed on to the offspring. Some examples having reference
fo the length, Lreadth, and colour of the petal will make this clear.
The values for four different /7,-plants and their offspring are’ given
in the following table. The first /;-plant possesses the three characters
in an extreme degree, the fourth has extremely small values for
them all, the two others show different combination. ‘

¥ I,
Length of petal | 13.2 mm | 12.1—14.8 mm
Breadth |, 107 ,, | 10.3—12.2
i Colour " 8 7—9
Length of petal 13.0 mm | 12.1—14.0° mm
Breadth ) 86 7.7—9.2 .
Colour . 3 2—5
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I, r,
Length of petal | 10.0 mm 8.5—112 mm
Breadth  ,, 91 8.3—101 ,,
Colour . 5 3—17 :
Length of petal 95 mm 8.2—10.0 mm
Breadth  ,, 6.e 6.0— 72
Colour ,, 2 1—2

The above proves thai there is slill another relation between
the characlers in the plants studied in addition {o ordinary
correlation. The whole phenomenon is only superficially like such
a correlation.

Just as any single character which is based on several genes, gives
in the »second generation a pseado-curve which shows isell us a
curve of fluetualing variability but in which the fluctaating vaviability
plays only a more or less subordinate role, so also here in F, an
inter-relation of different characiers may appear that simulates ordinary
correlation, but that is in realily a completely different phenomenon
which is only slightly affected by this correlation. I point this out
because it seems {o me that in studying correlative variability it is
of the highest imporiance (o investigaie only pure homogeneous
malerial.” Since Jomaxnsiy has made known to us the “‘pure lines”,
it has become clear that much that was formerly thoaght to be pure
material, is a mixture of several forms perhaps also of hybrids. I
is possible that the correlation found in such material is not a pure
correlation between the fluctuating variability of ihe characters bug
is wholly or in part a different correlation phenomenon. This is also
the case here. We must assume that here a genetic relation exisis
between the groups of factors for the diffevent characters. This relation
is such thal in the formation of gametes in Z, definite combinations
of ‘factors occar prefeventially. In general a tiendency exisls to
make the proportion in the number of factors for the various
characters such as it was in the original forms or ai least to ap-
proximate to these. This explains that in [, more forms arise
in which the characters all deviate in the samec divection from
the average than should be the casc according to the laws of
probability. -

In the crossing mentioned above the groups of factors for the
various characters behave with respect fo one another differently
from the way in which the factors for one single character behave
mutually; for my earlier investigations have shown, that for each of

66

Proccedings Royal Acad. ‘Amslerdam. Vol XV.
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the characters under discussion the genes are mutually quite independent
of one another. It is most noteworthy that there exists between the
factorgroups for different characters a closer relation than befween
the factors for the same. Further investigations must show to what
exten{ this phenomenon ocears in other cases and whether it is
always coupled with a tendency {o preserve the complete image of
the parent forms.

In the case here described the genetic correlation is incomplete.
As is clear from the tables plants are found, which for some characters
more nearly approach the one parental form and for others are nearer
to the second. The number in which the different combinations occur,
cannot be determmined as is done by other investigators for their
crossings, also because ordinary corrclation plays through it and still
further obliterates the separation hetween the groups. If at all, the
ratios could only be found by much more detailed investigation ;
but it is clear from the foregoing that by this means some insight
into the phenomena may be obtained.

The characters mentioned all belong to flower or seed, the fruit
might be added since a very close relation exists between the size
of the fruit and that of the sced. I am also engaged in tracing the
relation of the characters mentionéd to those of the vegetative organs.
I am. however, prevenled by circumstances from completing this
investigafion in the near future.

The vesults of {he invesligation may be summaused as follows:

In hybrids of Linum usitatissemum and L. angustifolium an in-
complete genetic correlation exists between ihe groups of factors or
genes for length, breadth. and colour of the peial and length and
breadth of the seed; whereas on the other hand the factors for the
same character are completely independent of one another.

The inter-relation is snch that there exists a tendency to approxi-
mate lo the combination of characters as it ocenvs in the pavent forms.

The genelic correlation expresses 1itself apparently as a phenomenon
of the ordmary correlation of fluctuatingly varying characters;
the latter correlation which also occurs, plays only through the
former.

Botanical Laboraiory.

Uroningen, 3 Oct. 1912,
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Botany. — Jou. H. van Bugrnon: “On the connection between phyl-
lotazxis and the distribution of the rate of growth in the stem”.
(Communicated by Professor Wexm).

{Communicated in the meeting of November 30, 1912.)

Various investigators have-studied the longitudinal growth of the
stem. They have for the most part paid attention {o the total
increase in length of the siem and only a few investigated the dis-
tribution of the rate of growth in one or several internodes. Com-
plete investigations. on widely different plants with regard {o the
distribution of the rate of growth over the whole growing region
have so far not appearved. There occur indeed in -the literature two
important utterances which are based on preliminary observations.
The first is the opinion expressed by Sacms?) that the growth of
stems with distinet nodes differs from those with indistinct nodes.
It the stem is sharply articulated then according to SacHs each
internode shows its own curve of rate of growth. This rale increases
from the base of the stem towards the apex, reaches a wmaximum
and decreases again towards the upper node. If the stem has indis-
tinct nodes then the whole growing region yields a single curve of
rate of growth of this type. ’ :

Roraert *) has further described this. He speaks of individualised
internodes when each internode grows as a separate unit and passes
through the great period of growth, whilst in other cases the whole
stem passes through this growing-period as one internode. Notwith-
slanding that {hese two authors have clearly distinguished two
methods of growth, the growih of the whole stem in one growing-
period has had most allention paid to il. so that in most text books
it is given chief consideration.

This is the circumsiance which led me in 1907 to make measure-

‘ments on varvious plants in the Botanic Gardens at Utrecht.

With vegard to the results of this inquiry which will be shortly
communicated in my Dissertation, I wish here 10 make a brief
preliminary statement. ’

With the aid of a little stamp made for this purpose or of a
brush and India ink, linear marks were made on the stem, so
that it was divided inlo zones.

1) Sacus Jul. 1878. Ueher Wachsthum und Geotiopismus aufrechter Stengel. Flora
56 Jahrgang. Regenshurg.
%) Roruerr W, 1896. Ueber Heliolropismus., Conn's Beilrige zur Biologie der
Pflanzen Bd VIL
86*
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Immediately on the completion of inilervals of time which were
as far as possible eqnal, the length of the zones was measured
accurately to '/, mm.