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Mathematics. — “Homogeneous linear differential equations of order
two with given velation between two particular integrals.”’
By Dr. M. J. van Uven. (Communicated by Prof. W. KapTeYN).
(5% communication).

(Communicated in the meeting of April 26, 1912).

The equations (8) and (29) (see 1% comm. p. 393 and 398) show
us in the case that the equation F(z,y,z) == O represents a conic
(see for the notation: 4 comm. p. 1015):

o e2*H Az? fldr
= = =e .
(n—1) F? g
where ¢ is put equal to 1.
From this ensues

g__1
g 8
Let us further put:
g=a,8z . . . . . . . . (72
we then find:
8§ 1g 1
§ 2g 6
or
§
l=—6=. . . . . « . « . (718
| : (79)
The equation (62) (see 4t comm. p. 1015) runs now as follows:
o 0 ;
I =362 = (— 33* Ay3278" + 20,0275 — a,,D2%),

< a,,Az;Q"
or making use of the nolation (59) (4'* comm. p. 1003),

AP — A 4215, . . . .. (74)
so & is likewise an elliptic function of r. Its invariant has the same
value (68) as that of the function u=1I* (compare (67) ') (4tt comm.
p. 1006).

We can now deduce out of the equation
Ay — Ay = V—A“g’-f—ZAgZ—Aa,;—z—; = ‘/Z‘IA 2 VDB 4251 (7:5)
(see 4 comm. p. 1005 at the bottom)
Ao — Ay =2:Va,b.§. e e . (76)

) In the &b comm. in the table on p. 1014 and in the enumeration of the
cases on p. 101D %, = ¢¥ and "y = e¢—i¢ must be replaced by 3{ = e—, 3 == e-hid,




As from (73) follows
a,® 4 a,y=a,z(&*—1), . . . . . . (77
we find with the aid of (76) and (77)
(@34, 48,,4,,) 2 = (A —a,,4,,) 2 = H(1—AY) 2 =
= {2‘1::‘/@ . : + a5,4,, §*—1)} 2,
(@4 +a,d,) 1 = (B —a,d,)y =L (1-A)y =
={—2a,,Va,b .8 + a,4,, (§—1)} 2
In this way we have expressed z and y as functions of T with

the aid of the function § It is now still our task to determine &
as function of ». Let us now put in '

94® = u® — 36w’ + 324 (1—A%)u
(see 4 comm. p. 1016)

(78)

u=I"'=386v4+12,. . . . . . . (79
we then find .
1430 9i—1

3 A8 _
v — 4o 3 v 57
By applying the ordinary notation
14-8A* 9A*—1
g =8 i =4 (80)
we then find
' v=D(t:g,: ¢,
and v
1
I=i6[/p(t:g,,y.)+§-, N (18
so that

f== peinwty o 6
Before transforming the p-function of WEIERSTRASS we wish to
remind the readers that the roots of 2 =0 are
u, = 0, u, = 18 (14+4), u, = 18 (1—1),
50 that for the roots of v =0 (see (79)) we find
1 1484 184

v, == — —, v,::——e y Uy == 8

3
We shall now investigate the relative value of these roots in the
three cases: IT (+1 <A+ ), IV (+1>1>0), VI (A=1"
“(see 4% comm. p. 1014). ‘
Case 1I: +1 <2<+

1%
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1 2 1
v = oy v,>§—, vy < ~- e
The roots are all real. Let us call them in the ordinary way in
descending order ¢, ¢,, ¢,, we then find
1431 1 1—34
———_6‘..‘31:——A~§-,e.:-——————‘. . . . . II
Case IV: 4+1>1>0.
1 2 1 1 1
R R R T D |
The roots are here, too, all real and run when arranged:
1434 1—38% 1
e, == + T — - ) 4
6
Case VI: A=1ik.
The roots v, and v, are now conjugate complex. }f we follow
the notation generally assumed, we then write:

1 148k, 1—8

! !
e, = ——, 6 = —y ly = ., . . . VI
6 6

]
3
When reducing the p-functions to the elliptic functions of Jacos
we make use of the following formulae of reduction:?)

€,—¢, p(t) € p(t) &
aly) — ST — = -, dn(y) = '
sn(r) 20—, en(r) = l/p(,)_e. n(») l/p(r)____e'

91:

€—e, e, —e,
r=tVe—e, , K =— - , A= -1
ez——e, €, —€,
—e,' cn®(v)

plrielee)=e + 411:&' "sn*(v) . dn’(v)’

— 8¢, 4 2/ (e, ¢, )y~ ¢,)
41/ (e,'—e, e, —¢,')
+3e,'+ 2V (e, —¢, e, —e,) V'—9¢, -+ 4(e, —¢,)) (e,'—¢,)
41/ (e, —e, Ye,'—e.') 41 (e, —e, 'Hes' —e,)

The expression for §:8& becomes in this way:

v/ L'V(e,'—- el')(el”" ¢, ’) y k=

*

A= y Kk =

in case Il

E - dn(v)

g‘—— -+ ‘/p(t9gz?gl)_es_ -+ Vel_e!'ﬂn(v) Yo Vex—e,»

ign case IV l P00 e TS
F=F VDEigt)— e =% Ve, —e, () nTh fh

) See i, a. M. Krause: Theorie der elliptischen Funktlonen (Le;pmg, TeupNER
(p. 135, 186, 147, 148). .
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- in case VI

;__ Ve - [/e Ly en(v)
F=F VP ) == 4ikR  sn(v). dn(v)

V=00, 4o, —e, Yo, —e,),
‘/(es'—e:,)(ez’—el ')

v=1/(e, ¢ )e, —e,) s Rk =

or, after having expressed the roots e, ¢, ¢,,¢/'5¢,5¢, in 4:

in case 1I
¢ dn() L A1 a4
g—.— VA.;;:(;)S,”*—“VA'I:_W,]C _._-—ZT,
\
in case IV
g 142 1 I4h _1=d 2
§= 7 T2 Ten(r) “’[/» P D W
(83
in case VI
§ VIfA"  mfr) VIgs
g‘-—-—-:Fl/ “sn(v) ~dn(v) ’ r=r 2 ’
.1+ Vi w —14VIigar
ToVixAr T oVigam

Let us substitute these expressions in (14), we then find successively

: i ey 1
‘ln case I g} = ‘/A sn(v) 5y = 151 ’

144 cn(v)+dn(v) 1
in case IV § ==~ V ) , §,==+ R.l,
_ ALY da)
in case VI § == T " o) === — )JQ

Let us now choose

i
1=+ 6‘/1?(7; 929 + 3

and for § the expressions § with the upper sign, we find:




_ dn(®) L A1 a4
1T I=— + 6‘/).- (p) H v——f‘/l y k —-—*‘-é-i— 1 K .__'—é-r—,
c— —_}_—_1_ 1+cn(v) b i {1 +cn(v)’dn(v)
Va sn(v) T ' sn*(v)
_ 1+4 1 1424
IV I.—+6 ——2———.@,1’_1’ —‘2—",\
1—2 24
= P
c— Lth on@)+dnr) o —i(L+) on)+dn(o) (84)
=t3 l/ sn(p) ' 24 a'y)
_ VIFA®  en(v) _ V1Fa®
Vi 1——+61/ 2 'sn(v).dn(v)' v—l/———?———,
k,__1+t/i'?£'"= s R AT LI
T oavigar | eVifam
vf4(1+1") dn(v) i Vifan en(v)
'y " en(v) ¥ i)

Let us restrict ourselves to real points (z,y) of the conie, then
follows from (78) that V'a,,&.§ must always be real.
Case 1I (in which 2 is real) appears only with the hyperbola for
which holds A4,, < 0; so we have here
. ____auAn A A’A’
a,, b = A A,, A < 0.
From this ensues that in case II we shall find § always imaginary,
{1+ on(v)jdn(v) .
sn® (v) !
Case IV is found with the hyperbola as well as with the ellipse.
As here too i is real we find
IVa. with the hyperbola (4,, < 0) a,& < 0, 80 § is imaginary or
en (v) 4 dn (v)
——————— real;
sn' (v)

IVh. with the ellipse (4,,>0) a,, >0, s0 § is real and

and therefore s real ;

en(v) + dn (v)

an® (v)

is purely imaginary.

Also case V1 appears with the hyperbola as well as with the
ellipse. On account of A being purely imaginary, thus A’ negative,
holds :

Via. for the hyperbola (4,, < 0) a,, & >0, hence § real, and
on (v)

2 real;

on’ (v)
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VIb. for the ellipse (4,, > 0) a,,& < 0, thus § purely i 1ma.g1nary and
also ‘(()) purely imaginary.

From the preceding we see that » must move in ifs complex
plaue on the sides of the rectangles of the net formed by the lines
v = mK -+ purely imaginary and » — niK’ -} real.

9 __ %t 0y
Qg Cyy
that side of the polar line g =0 of O with respect to the conie
where O lies itself; on the other side §* is negative. The polar line
g =10 of O divides therefore the plane into two parts: in one (in
which O lies) § is real, in the other § is imaginary. '

~In the points of contact R, and R, of the tangents out of O to
the conic § is 0, s0 /= o. ‘

In the points at infinity S, and .S, we find that § and & are both
infinite and 7 is also equal to o .

The diameter passing through O (4,,#— 4,,y =0) intersects the
conic in two points 7, and T,, for which § =0, thus /= 0.

If we substitute the expressions (84) for § and § in the formulae
(78) we at last arrive at 2 and y as functions of .

With a view to V' A4,, being real or not, we shall deal with the cases

of IV and VI separately. Farthermore we shall express 2 everywhere
1—aA _
in d= '1—.'413’ thus 'in the anbarmonic ratio of the four points

The value of §* = 41 is evidently positive on
y p

R,R, S, 85, We shall give the formulae for = only. The expres-
sions for y we can easily find by replacing a,, in those for = by
—a,, and 4,, by 4,,.

We then find at last:

_1—d 14en(v)
1I =z = 3 ) [ (14d) —=2 V——— dn(v)

l/lmd
y—=—171 e
1+4d

1 en(v)--dn(v) a,, 4,
Va o= 55 —.—;‘T(;’-i——-[— (144} Vei + 4, {den(v) + dn(v)}],
— 1 .
r=7 m H

. 1 a A,,
IVh o= —2—3 cn(::i;{;(;(v)[ (1+49) V::f —-T '{d‘ en(v) + dn(v)}]




3 _ 2en(v) P a3 3 _‘!’_ 4,
Via z= o ) cos-2—. Vo + 2 cos . _——————A"cn(v) ’

yd=e ¥, Yp==ilogd;

A
VIb m—_2cn’(v)[cmz. a'.f,:———2cos’~q—’.«—‘-'icn(v)],
1en®(v) 2 VA" 4 A,
YU J— y d=e % p=1ilogd.

I/Zcm—‘g
2

When point (z,y) describes the conie, the variable » will describe
a certain curve in its complex plane. This curve we shall investigate
in the five cases mentioned above whilst at the same time we shall

indicate how the functions &, § and I bear themselves during that
motion.

Case I1. Point O lies in the domain of the conjugate hyperbola;
the diameter through O does not intersect the curve, i.e. the points
T, and T, are imaginary. On the contrary the points B, , R, , S, , S,
are all real.

I1:iinS$;®; on S;®R; linRy on RS,® in 5” on SR, inRzgonRgsi“ in5;®

! I
| ;
i {
]

b

». 0 purely imag. 211(" 211(' -}-real"2K+2iK’ 2K+4-p.imag; 2K real

0

:I w pos. real 0 pos imag. @ pos. real 0 ipos.imag.| @
! : pos. imag. —1— 5 ¢pos imag. @© neg. imag, ——% neg.imag.| w
@O

I o | neg. imag. ‘! ® Ineg real | « |pos.imag.| o | pos. real

Here the curves are sketched which are described by » and 7 in
their respective complex planes.

The points where [ turns its direction of motion are arrived
at by putting /=0. We then find the. values of [ corresponding
to the roots of @==0; these are uw, =0, u,=o0, u,=

18 (14-), u, =18 A—A); or [, = 0, I, = oo, I, _.sl/l‘H



IVaiin§5;®ion S;* R, {in Ry| on R\ T in T on T1R; in R; |on RpyS;® Cin Sp” i on 5°7; in T, on T3S5° lin§®

v 0 real 2K 2K+-pimag., 2K4iK | 2K+4p.imag. 2K4-2iK'| 2(K'+4real 541<+2iK’~4K ~+p.imag.; 4K+ iK' !41(' ~}-p.imag., 4 K
0 H o~ - ,._—.__~

€ w |pos.imag.; 0 pos. real _‘ﬁ;g;i’;;‘_‘ pos. real | 0 pos.imag. ® pos. real ' ﬂ’_gi"};ﬂ—' pos. real

e'; o |neg.imag. —-—é neg. imag. 0 _pos. imag. -l—-% pos. imag.f 0 neg. irnag. 0 pos. imag.

I} o | pos.real ' o | pos. imag. 0 neg. imag. ® neg. real | pos. imag. 0 neg. imag. | o
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7.« I :.. ..... { v-plane
5¢ +K R,
i
5:! &, plane of
W a1
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+ik
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e LR S
Ry — - 5
‘ik

By i S, B
Fig. 1

1—2 dn
1,=6 l/~—— = 6i l/w the quotient v )a.ssumes inthose
sn (v)

points successively the values 0, w, =*4’, =ik. The corresponding
values of v are congruent (mod. 2K and 2:K") with K+ :iK’, 0
K and iK'. (see fig. 1).

Case [Va. Point O lies in the domain between the hyperbola
and the asymptotes. The points B, , R, , S, , S,, T, and 7, are all real ;
T, and T, lie both on the same side of thejpolar line of O as O
itself. We shall assume that the polar line intersects that branch on
which 7, lies. The order of the singular pointsis then S, , R, , T, R,,
S, T, 8, . ‘

144
The values I, =0, I, = o, ,._61/ + I—-6‘/

correspond resp. to the values of 0, o, =1 and = £ for ;;—(;)’

thus to the Jvalues of » which are congruent (mod. 2K and 2iK")
resp. with iK', 0, K and K4 iK' (see fig. 2).

-

-10 -
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i Ra S,
? ;
Iy D SI— Bieeeesyeeneee{T,  v-plane
. : S,
S’ *K RI '
+im
Sy s
plane of
l l 1 I 2
m@)” 6} 142
i s .
=S 1 | BV
22— 5,
5 R,
-loo
Fig. 2.

Case I'Vbh. Point O lies inside the ellipse;',Tl and 7T, are real,
R,,R,,S, and S, are imaginary.

Ivé inTy on ) T inT on I7; in Ty

v iK iK' + real 2K+4-iK | iK ~-real 4K+ iK' |
, VI 4 Vi VIiFi—ViI—=: ViE4vis
j V8 pos. real V3 pos. real vz

g 0 neg. real 0 pos. real 0

1 0 pos. real 0 neg. real | 0

The points where the meotion of 7 cha.hges its sign are according
1
to what was found in 7Va the points for which e +k, thus
v==K+iK’ (mod. 2K and 2iK') (see fig. 3).

-11 -
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v-plane
L
T, E S 4
+iK’ i :
K ’
plane of
1 I 2
am(r) 6 142
Z
e YY)
R £
Fig. 3.

Case Vla. Point O lies on the concave side of the hyperbola:
S, S,, T, and T, are real, R, and R, are imaginary. Let 7, be
the point of intersection of the diameter through O lying on the
same side of the polar line as O itself.

v-plane
+ix
: Si i plane of ()
+ik - T sn(p) . dn(»
iKpeeaee A
: 2 e .
o K 52 i M
5 5 5
—imsz
Fig. 4.
l -A,' 1_'ll
The values J,=0, I, = oo, 1,=6 l/ *; , 14:6[/ =
1443
correspond here respectively to the values 0, oo, +l/ +:},' and
—-tl' en(v) .
il/ H_w ,g;(l’).dﬂ(l’) , thus to the values of » which are

congruent (mod. 2K and K-4iK’) with K,0, 4 (K4 3iK"), 4 (K4-iK"
(see fig. 4).

Case VIb. Point O lies outside the ellipse; R,, R,, T,, and T,
are real, S, and S, are imaginary. The point of intersection 7', may
lie on the same side of the polar line as O itself.

For the particular values of [ and the corresponding values of
v we can refer to Via. (see fig. 5).

-12 -
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Before investigating the cases of degeneration 111 and 'V we shall
occupy ourselves for a moment with the relation (53) (4*h comm. p. 1011),

existing between [ and /*,

In the case of the conic it takes the

).

—
——

shape of (65) (4" comm. p. 1018). The curve it represents is as

can be expected symmetrical with respect to the X-axis (X
To simplify the reasoning we shall translate the eurve @ (X,Y)

@ (I*,)=0 parallel to the X-axis and we shall decrease it and

that by the formulae of transformation

-13 -
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v-plane N?g, plane of nle)
sn(v) . dn(v)
. 72 2,
I ot
;r; : -c0 k; -+
; R, Ll £,
+KT - Ry 3
L 5
L e |
Fig. 6.
I — 18 = 36§,
= 61.

The equation of the curve transformed in this manner runs as

follows:
Ai

¢(§,’1)E§’—71’-—z=0;

the curve is therefore a rectangular hyperbola. In the cases II and
IV the §-axis is the real axis, in case VI the y-axis is the real axis.
Each point of the conic F(z, y) = O corresponds to one¢ point of this
rectangular hyperbola whilst to one point of ® =0 two points of
F =0 are conjugated. The points for which /=0 have as absciss
§ = — 4. The line § = — } does not intersect the curve @ in case
II, but it does in the cases IV and VI. The point at infinity on
§ + n =10 represents the points S, and S,; the point at infinity on
§ — 1 =0 represents the two points R, and R,. The points 7', and
T, are represented by the points of intersection of ® =0 with
§ = — }. The images of the points T, and T, are in case VI united
in the point of intersection of § = — } with the branch of ® =0
lying under the §-axis. The images of 7, and T, are always points
where the motion changes its sign along the curve @®.

Now we have to investigate the cases of degeneration.

Case ITI*. A=+1, d, =0, a,, and e,, not disappearing at the
same time.

The point (O lies on one of the asymptotes, without coineiding
with the centre. So this position occurs with the hyperbola only.

Here equation (71) bolds, in which is put z, =0,

6

It ., . . . . . . (1
snT (1)

Equation (62) (4" comm. p. 1015) passes, on account of the relation

-14 -
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Gy, = 4,
and thh the aid of (72), into
a (1)
( 5 28— 1)=——§-Z;4,

from which ensues, in connecnon with (71),
6 _  3i@-D

sint g
or .
[ = tz’(l:xt:coat)‘
sint
We choose for & '
. 1—cost
I +i——— =t itg—, (85)
sint

and find in this manner
'g == -} — sec z .

Now the equations (76) and (77) are incompatible. If they depended
on each other we should have A,, = 0, which has not been sup-
posed to be the case.

Equation (77) now runs:

T
a,,a:—}-a,,y:——a,,zsec’; e . . (86)

Bringing this equation into connection with F(z,y,2)=0, we find

2A1,sec’—:.z__2a a,, sec —-———a,, (23&0 -—-————l)z Q
@, (@4 S6C —;—-——a ’(Zaec ——-—l)z s

These formulae can be used unless either A,, or A4,, is zero.
Therefore we will mention also the expressions for z and y for the
case A,,=0. Then we have a,, =0 on. account of a, A4, -+
-+ a,d4,,=0. We then find immediately out of (86) the expression
for x, out of the second equation (87) in which A,, is replaced by
a,,a,, the expression for y. So the solution is:

24 —y=
118 88(! 2 y

2

T
o o— -~ 3
a2 == — @a,,z . 86c’ —

* * ' 2
2a,,a,, sec* 5 ¥ =% sec! 7 a,’ (2 sec® 7 l)z 2.

Case 1115 a,,=a,, =0.
The point O coincides with the centre,

-

-15-
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Now we have
I1=0,

The expressions for x and y are of the form:
x :(aeu: + aie-t'?) 2,
y = (8¢ + )
Inorder to have F — a,,2* 4 2a,,2y + a,,y* + a,,2* = 0, we must put :
a=06(—a,+V—A4,,) d=27d(—a,—V—A4,),
B:Ga“ ’ 3:6'011
with the condition

R Qyy
% = —4a,  A,, ’
In the case of the real ellipse we have A4,, >0 and 22 L0 We
a
then can put: "
6=0'=— i :—a"
2 a,,4,,
So we find
1 —a . , , , .
& =3 —. {—' T (ew +rw)+ ’VAu'(e" ‘—'G—ﬁ); 2=
2 a,,4,,
= l/ L (— a,; cost— V' A,, sinT) 2, (88)
al!A!

3
: . —a,a
__l/ @y, (67 ez l/—~—'—’——ig o8 T. 2,
ll 11 A3a

We can use the same expression if we have to deal with a
hyperbola not intersecting the a-axis. For then 4,,<0 and >O

s0 6—=o¢' real. We prefer to write —y/'—A,, . sk (ir) for VA,, sinv
= —iy/-A,,.sint and ch (1r) cos for . Thenxeal points of the hyperbola
correspond to purely imaginary values of .

If the hyperbola does intersect the a-axis we have 4,, <0 and
21!<O, 80 ¢ == 0 imaginary.

2

l
We then put 6= — ¢ = —2~1/ %3 and get in this manner

Gy iy,
2 1/7_ { G1a (‘eiT "e‘;r) + V"" Au (giT +e’if);z =
=1 :.;;1‘; {— @y, (i) + 1/ Ay ob(in) 88y

1 ,
y=-3 - a" ca,, (6" —e=) z = [/a“ 2 . shiiv) . =.
31

-16 -
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Here also r must describe in its eomplex plane the imaginary axis.
For a,, = 0, we get 2a,,2+a,,y) y + a;s = 0.

A solution of this is given by

—1 . .

B (a,08"" + 3¢ ),

al!

y:eif.

r =

Here also only purely imaginary values of r come in consideration,
as might be expected.

The second case of degeneration (IV) presents itself for 2 =0,
i. e. d, = - 1. Here we must distinguish three subdivisional cases, viz.

1V a,, =0: the point O lies on the conic,

IV A,,=0: the conic is a parabola,

IVe a,,=0 and A4,, =0: the point O lies on the parabola.

Case 1V . Here we have (70a) (4% comm. p. 1017); substitution
of v, = 0 furnishes

I::J,—3V2.tk—‘/—2, e e . (T0)

. 3
1=

ch*——

1/2
Now the equations (62) and (63) (4 comm. p. 1015) teach us
ZAIz 20z 1

34,, Aﬁﬁg;

9= 0,,& + a,,y =

V2
e 4N 1 40° 1
A,,x-A,,y:V—A“g’—{—zAg l/("' 3° + o ) z
. 4,, B 4,, ch’l—
|/2 V2
T
24z sh ﬁ .
Ay L, T
e
s0 we get '
2z
&= __...___.;_.( wtay V4, . sk |/2)
A, eh*—
v'2
. . . (89
2 (A VA, . h—
y= 330y 3-8
A, oh*— ‘/2
V2
2
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In the case A,, <0 we prefer to write ty — A,,.sh;«-/%:

14 4 i
e — A,y . sin — fi 4,, . sh— and cos — fi
+V —A4,,.sin g for V4, .s v R cos‘/2 or ch — 3
S0, whilst the farmulae (89) are specially suitable for the ellipse
we do better in using for the hyperbola

2z

. I ; 4
F  Jnvauny —-——-—-———-——z;—( ll+ (I"-V——A” . 8n Vé)

Ay, c08*— 2
o (89)
iZ ir
= T T a (Au"‘au V' —A,,. s 75
A, cos®— "
V2 i
Consequently the real points of the hyperbola correspond to purely

imaginary values of r.
Case IV*. Putting v, =0, (706) 4 comm. p. 1017) we find

e

k 4
= 32 . th— . . . . . < . '
RV - 0Y)
and therefore
3
I — —
hi—
Va
So the formulae (62) and (63) now give
3a,,z [+ T T
O S i
i.e. ,

A8 + Gy = Ga? (g P—é — 2)

and
Ao —-ALy = V3hgz—bayzt = Va, bz.sh—— l/2
so we find
{8y V“u “as s ¥
& — i 8h 2 oA (ch 2):
S (90)
— 0, “u ayyd,yy
— h — 2
y= ’ UV REETN ( )z
Case IVe. Here we have
Te==43 |/2 .
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The equation
F=a,,2* 4 2a,,2y +

2
a),

¥yt + 2“13‘” + 2a”y =0
all ‘
or
(@ 2 +a,) - 2a,,(a,,2 4 a,,y) =0
passes by the substitution

a,r + a,,y =2a,,§ e

Ay + gy = — 22,
into
n==¢,
a solution of which (see 2"d comm. p. 590) is

T
—T}2

E=e V2 , N=e e e e (92)
Out of (91) and (92) we deduce .

2a S — b
T = — ”(a“e V2 4oag,e 1/2)

12

(93)

T

2 s —T
y= a,, a,, e 2 +a“e Ve
Al’

These formulae are always applicable, as the supposition 4,, =0
would imply the degeneration of the parabola.

Chemistry. — “On some internal unsaturated ethers”. By J. W.
LE HEeux. (communicated by Prof. van RomBureH).

(Preliminary communication).

(Communicated in the meeting of April 26, 1912).

By the action of formic acid on mannitol FavcoNNiER obtained a
mixture of formic esters of this hexavalent aleohol, which submitted
to dry distillation, yielded among other products a liquid of the
composition C,H,0, boiling at 107°—109°.

Van Maaney (Dissertation, Utrecht 1909) who investigated this
substance and mentions it as a liquid boiling at 107° proposed as
the most probable structural formula: ’

CH,=CH—CH—CH=CH—CH,
Lo |

As the mode of formation of this substance does not give a com-

plete insight into its structural formula, Prof. vaAN RomBurcH proposed to

me to prepare the various possible oxides of hexadiene by other
. ] : Q*
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