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phase occurs, besides Ba Br, . 2H,0 and Ba (OH), . 8H,0, the oxy-
bromide :

3-
Ba Br, . Ba0 . 5H,0 or Ba<:;H L 2H,0

This salt has already been deseribed previously '); the other oxy-

bromide :
Ba Br(OH) . 3H,0

which has also been described *) was not found at 25°.

The system: Ba [,—BaO—H, 0.

In this syvstem also, the isotherm of 25° has been determined; in
addition to Bal,.7H,0,Bal,.2H,0 and Ba{OH), . 8H,0 the oxy-
iodide :

Bal,.BaO . 9H,0 or Ba<gﬂ .4H,0

also described previously, occurs as solid phase.?)
Besides the above systems, various other ones are now being
investigated ; the results of this research will be communicated later.

Physics. — “Accidental deviations of density in miztures”. By Dr.
L. S. OrxsteiNn {Communicated by Prof. H. A. Lorenrz).

The theory of accidental deviations of density in mixtures does
not differ, as for the principles, from that of the deviations of density
in systems containing only one kind of molecules. To calculate these
deviations 1 shall apply the canonical ensembles of Gimss?).

1. Let us suppose a mixture of L substances to be in a volume
», n, being the number of molecules of the kind 1, n, that of the
kind #, and =g that of the kind Z. Besides the coordinates and
moments of the centres of gravity, a number of internal coordinates
and moments can be used to characterize the state of the mole-
cules. Let us imagine a canonical ensemble built up of those systems.

We shall denote by oy, yy, zi. ... 21 the coordinates of the
centres of gravity for the molecules of the first kind, those of the
x-molecules will be represented by 2. ...z .

In order further to characterize the system, we shall introduce

) BrorMaxs, J. I prakt. Chem. N. F, 27 132 (1883).
) BECKMARNN. Ber. 14, 2156.
L. Tassicny, Compt, rend. 120, 1338,

3) 1 shall confine myself to a single phase, the coexistence of phases offering
no particular difficulties. 1 dealt with this question in my dissertation (comp. p. 114).
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the moments belonging to the coordinates (the internal ones and
those of the centres of gravity) mentioned above. Now, suppose di;
to represent an element of the extension in phase of the internal
coordinates and moments. Consider the integral

fe—f'/@da;“ o dzpa da;,

where & is the total energy & diminished by the energy of the
progressive motion of the centres of gravity. The integration with
respect to the coordinates of the centres of gravity must be extended
over the 3(n, + ..n. 4 n;)-dimensional space ©3Zn,, whereas all
values that are possible without dissociation of the molecules are to
be ascribed to the internal coordinates and moments.

If, in the case considered, there exists a sphere of repulsion such
as there is with rigid, perfectly elastic molecules, then the conse-
quence will be that ¢ takes an infinite value for certain contigu-
rations, and therefore the parts of the integral corresponding with
these configurations will not contribute to it. Just as in the case of
a simple substance and in that of a binary mixture®), one can show

in this case that the integral may be put into the form

k
= n,

fo(ny...n, ..ng). o}
n* . * .
where n, — —, i. e. the number of molecules of the kind % pro
v

unit of volume.

The function w may be determined if the structure of the mole-
cules is given; but for our purpose it is sufficient for us to know
that the integral can be reduced to the form mentioned above.

2. We now imagine the volaume } to be divided into a great
number of equal elements of volume |7 .. 15.. V) and we want
to know the number of systems in a canonical ensemble for which
the element V', contains respectively ny,.. n... ng of the diffe-

rent molecules. We have for the numbers 7n,;
i
= ny, ==,
1

the total number of molecules of each kind being given.
This number of systems §, which I shall call the frequency of the
systems mentioned, is represented by the formula

v 3
5 k 5 " { o (01ee 1 18) V; Nyy 1)
! 1

;!

) Comp. my dissertation and these Comm. 1908, p. 107.
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m, denoting the mass of a molecule of the kind x. We now can
ask, for which values of the numbers n, this frequency is a maxi-
mum. In this way we find for the £ conditions to which the den-
sities in the most frequently occurring system are submitted :

! dlog w,

___logn,_;‘-{—zl'(nz;) anf—+logw;='f;, B ¢4

x from 1 to % These conditions can be satisfied by means of a
homogeneous distribution of each of the » kinds over the volume
17 Further the second variation of { or of log§ has to be negative.
If we denote by n, the values in the most frequently occurring
system, then the frequency §a of the system in which these num-
bers have the values n,; 4 7, can be’represented by

Q)’::goeu(?))
The quantity € is a homogeneous quadratic function of the numbers
t,,. Taking the sum of &, with respect to all possible values of
these numbers i.e. from — ® to 4 o, we obtain & §a = N, from
which ¥ can be calculated.
Proceeding in this way we find
y- 3n,

R & _—
6 2
e = ]l;[ 2a6m,) o, .o, . 0 L 0 (H)

In calculating ¥, which is equivalent to the free energy, we
must neglect a factor of the order of unity. However, the formula
is rigorously exact, the above-mentioned being a mere verification
of the equation (3). For keeping in mind the definition of Gisss,
we have for ¥
L2 — 28 + mex )’

@ 26 .
e =Je myda,, ... de,, da;

and therefore
3 1

“bt{f £ _Z_n"f -
¢ = II (27 Om,) e dz,, . . .dzm,,
1

and we see that according to the definition of the function o, the
formula given for ¥ holds exactly ).

If we would have as a separate system of volume V', the n,, .. n,; ..
n,; molecules being now in the volume V7, then the free energy
of this system would be given by the formula

m

1) Comp. also my dissertation p. 56, 112, 126.
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¥, 3

ny;

k el
6 2 .
e = II E7rOm,) oy . .0, .0,) P o
1

The function ¥; may be used to transform the formula for the
frequence §. For, applying the theorem of StirLING, we ‘can write §
in the form '

v, 5.
=N e@ I;[ 2x 6O fma)2 nznz III 30)‘_}"(“):1““)%2"&

and therefore, introducing %, we obtain for §
L2

— ! ‘ _¥ ,
S S R
Moy

For the further discussion we shall not use the free energy W,
but a function w, '), closely connected with it, and being defined
by the equation

) We can somewhat more closely explain the introduction of the function ¢ (comp.
also my dissertalion p. 52 s.). We shall compare the free energy of the system
considered above to the free energy of the same system in gaseous state and in
a volume so great that it can be considered as an ideal gas. We now can easily
show the free energy of the mixture in the gaseous state to be equal to the sum
of free energies of the components, if each of them occupies the same volume as
their mixture. Further we can suppose that the volume of each of the substances
{which now occur as simple substances in % separale volumes), is changed in-such
a way, that the number of particles pro unit of volume which is to be taken very
great, amounis to  (arbitrarily chosen) for all k systems. The volume occupied

72 . 7y \Hxa
by the .th component now amounts to —. In this state | — will be so great
P 4

that («(v)n*t) .may be put equal to unity.
We therefore find for the free energy of each of the components, originating
from the element a

L 29} 3
— —Mi
o 2 3 \axs
6 =2 % Om,) ("—“Y‘ *
v/
And for their total free energy:
k
‘ 2 :
— — o 2
6 6 2 Ny \ 70
e = =27 Om) ! II(—)l) ’
1\

Yor the difference between the free energy in the state from which we started
and that in the zero-state considered we find
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= H ()= I )

Introducing the functlon ¥, we obtain for §

[ — ‘\,05 "1n1 e II 270 m’) ’ III , o .

The volume being given, the function w is a function of the
densities n,, for

k
———Zn, ;logw (m,..n,..0) — log 0. =

)
V3in,logw(n,..n,..n;) — logn,}
1

3. We shall use the form now given to § to put the question of
probability of deviations in such a form that the deviations of density
appear from our formulae. We then have to examine for which
values of the densities log S will be a maximum. Suppose n,; to
represent these values and g« to represent the deviations of densities
for other systems, then

i
EQVJ‘\:O
1
For dlog§ we have
1 Bq, 1! a’lp;.
dlogf = —_| 2 B D N (e PRI S
208 (')[1 T on, +2 1 aam;’u 1

-
o2 e ‘ ] T

dn,; Ong,
As conditions of equilibrium we now find

awp =f a2from1tol . . . . . . (7)
on,,
Further
- E / )2 N 2 . v O . . 8
2 zam;’(l + i)n 0 ez z> ®)

| 2.'1” e gu.
¢ _ II II )2(0(!11“11,, o n“$=e ® 1 »

the quantity y being an addntwe constant without any physical meaning; £+
however, being connected with the difference of free energy from the zero state
defined above.
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The left member of this inequality consists of [ terms, each of
whieh relates to an element of volume v,. If we take into conside-

% 1 L
ration that u’;.:Lzy’:7 ¥, then it is seen that we have
v

gy 10%y

anx)‘ P 7 anxz

and
&y, 1 P
On,;0n,; | On,0n,
The coefficients of all ! forms therefore will be the same for all
corresponding terms. In order to find the condition which is to be
fulfilled by the coéfficients in (8), we will consider the case

(9

’

QL == — Q1Y » Uu == — On' 1 U= — (h¥
all other ¢’s being 0. For this case we have for all possible values
of the ¢’s
3 2
g*[}?yu’ + 2 (ﬁdlg’;; o1 ¢+ ... >0,
only the index 2 occurring.
The conditions, necessary foi this to be true, are that 1. the

discriminant 4

0%y Oy o'y
on, On,On;, On,dny,
KR 0" 0%y
e 0. . ..
£ !anlan, dn,? On.Ony > (10)
o'y 0%y M
|0n, On. Ongony, on®

whereas the same must be f(rue for the determinants originating
from the diseriminant if we successively omit the right-hand column
and the last row. The conditions under which the system is really a
maximum and therefore stable, agree with the well-known thermody-
namical conditions of stability.

4. We are now able to determine the mean values of the squares
of deviations ¢%. and of the products @.¢0.. ).
As is easily seen we have
CHI=0 .+ - . e . . .. (1)
and
1) Mathematically speaking, our problem is one of correlate probability, my

formulae agreeing with formulae Prof. J. G. KAprewN communicated to me after
1 had selved this problem.
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o @A ==0x Ury -« + + « . (1 la)
IO deﬁne ta e g., we have
1 g

en— 3
' 1 llp a‘:l‘p

+7» +o ”é‘é‘z 3611 ’th + "25;"5!_1— L Q2.

f 'f("“e ' e dgu' d@“
- —0 0

9 2
P
+eo + ; .2 — J J
dg,, ..y dyki

Now, Z p1; =0, etc. In order to take this into account in deter-
mining ¢*,,, we introduce new variables instead of ¢,, .. ¢u .. ¢

1
¢ =¢n — 77 ¢n A from 2 to L.

Then we have
!
2y =0
io2
We also introduce for ¢, .. g new variables in a similar way.
The exponents of the integral then can be expressed by

1 0%y 1
m— llg A 1 { ———
206 ; Il 1_1> *

o'y 1 0% 1
2 S -
+ <@ Un an!an, (1 + l—-l) o Ivla . (1 l'—'l) + C t

where (' is a quadratic function in the ¢'L ¢'s (4 2 to I)..

Now, taking into account the conditions Z'¢’;; — 0, we can integrate
with respect to the variables ¢’,; i.e. with respect to the elements
2..A..1; the result in the numerator being cancelled by that in
the denominator. In this way we find

"y

® 4o 2 s

+» 4 .-—2 (l-——l) ® ;9 na + €11 On 3n,0n,
f JQ 11 d?n <+ dQit

0 =
0’ o'y
to 4 ““2 (l—-l)();(} " on T ”29“9“611,6!1;

f f d@n' d(’k‘

0B -

According to a well-known theorem (comp. Gisss El. Pr. in Stat.
Mech. p. 205) we have
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1 za*w G

o0 e -3 T T e — 3 ~ e . 2 P -
tr e — s oa Ty (o 0 T Gnan, O U

» 1 )
f~ Je d9u a(’xl . d(’kx =

k

2a(l—1)6)2 (13).

INJAN
where & is the determinant defined by (10). Differentiating the

as
logarithm of (13) with respect to a-g;, we find
— L
¢, =({—1)0O ———A“

and in general

— b,

/’x}: l—-l @ 1

¢ (-1 A (14)
whereas at the same time we find

— Do

On o =(1—1)€ A‘ (14a)

The quantities A, and A, represent in the usual way the minor
determinants in 4.
If 1 is great with respect to 1, then we can replace /—1 by /

]

V : R1
and this quantity by -, and keeping in mind that ® — ——, we have

Vi N’
'*“—‘{ R]‘ V sz
=NV A (13)
_ RT V A, R
- (i59)

CETEN T
where ¢, and ¢« are used to deuwote ¢ and gir.
We can still modify these equations by introducing the free energy
for the unit of volume filled with the given density. As ¢ = Vw,
we obtain A= V+A (A then relating to the determinant (10) for
). D= VE-L A,y ete. and we find

— 1 RTA,
C““=V%N B
and
1 RT B
USRS

Taking into account that 7., being the deviation from n,; , amounts
to Vigw, we find
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. RT D,
1, =V, — é;— .
N Fa\
For the frequency & of a deviating system we have

1 0* 0*
allq: Q’f’ + 2 g Ql/@?/ .«

[3]

=g 2007

The probability of a system is proportional to 24, and the logarithm

of thus defined probability is, as 1 formerly showed, equivalent to

the entropy '). The difference of entropy of the stationary and the
" deviating state therefore amounts' to

R \6’
T 2Nl |0, s +":
or
1 o'y s 0%y
T ey )an1 S 5(;:8};,91/\“:
The energy taken by the transition can therefore be expressed by
__vzaq oL 4. L é—r?; 01,@-),..;
The mean value of this energy is
RT
2N
the absolute value being
1 ”—a’w e 0%
Ee §91 o, TS G 22
RT 1 0y 0%
SN~ ; Doms T -‘“Auzs;;a’.s;“( =
RT
é‘j\"fl

This result agrees with that found on p. 852 of the quoted communication.

5. If y is some observable quantity depending on the densities
ny..n,;..n,; in the elements 1, then with the help of the given
formula we can easily calculate the probability of a set of values
Y+ % -- %> and the mean squares of deviations. For y, we have
(limiting ourselves for a moment to a single element and therefore
omitting the index)

0 oy . 0
xa~xo=£~101+géez+giok

and so we have

1) Comp. Entropy and probability, Proceedings 1912 p, 840,

-10 -
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2 2 ¢ x X
(M——xo‘—-s-—() +’-——n-(xy,+

From which it appears, that

s m_ VRT1 (0 oy O
-%,) L2 20 A
(XA 70) § v, f\ A (a ) 11 + 2 anl 0"2 12
which may also be written
= 1 RTV
£ — — D, . . . . . . (16
S ANV (1)
In the formula D represents the determinant
Oy, 0y oy

R S S .
0% Op O 0w
on, On* On,dn, On,Ong

1 1

o Py dw  Og

on.  On,0n, On?, 9n,0ny,
oy, R 0% oy

ong  Ondn; Ondn;  Omg

With the help of the given values of §, and of transformations
which to some degree answer to those already performed, we can
show that the probability of a system in which the deviations of
08 -8 ..8, are between § and & -+ d§, amounts to

(‘1 + 81 + gig)

& 4 + !
‘(‘/,;'ME — ‘ . 2100 dSl . d§/ s d;[-

£
70
3D §’ - §0%).
The mean value of this quantity is
W: R W L - IRT
Olog-——=--Tlog —-- = 4 - 1§ = — — .
A W, e aN
It appears from this, that @ loq = == O log W The probability
Ve, fo

of a state defined with the help of the quantity y therefore also
agrees with the entropy, at least as far as the mean values which
generally ave only of imporlance, are concerned. Instead of the &
partial densities also the function y of them can serve therefore to
define the entropy of deviating systems. In the quoted communication

-11 -
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on entropy and probability this has been shown for arbitrary
observable parameters. The mean energy of deviation did not depend
on the nature of the parameters, but on their number only; and
also in the case considered it is not the partial density in the elements
but only the number of elements discernible for observation which
plays a part.

G'roningen, April 1912,

Mathematics. — “Calculus rationum.” (2*@ Part). By Dr. G. bk
Vries. (Communicated by Prof. JAN pe Vries.)
(Communicated in the meeting of March 30, 1912).

$ 16. If in the following remarkable root

R

- == u Y
"v)|v 1 '
we put v=uwu, the left member assumes the form 1° apparently
indefinite; the right member becomes *—I(w)". Introducing the sign
R for the ratio of two values of a variable lying infinitely close

together, we can write:
Ry | Re =" Ha) for y == (2).

This is a mutual root of two ratios lying infinitely close to unity.
If it is now even obvious to introduce in agreement to the preceding
a rational radiz as measure for the field of ratio, then the signifi-
cance of a mutual root of exponential numbers is strengthened by
the fact that of the following forms

at
ltm — ;  lim ax|bz;
o bT ©
the latter. has no sense, the former has.
If for the comparison of two variables a third is introduced as
independent variable and if we then put
a2 =ef(@ = oFl2);

then from this can be deduced:
Az Az
ef B =lmvr {1+ éﬁ) v PR =lim1” (1 + éﬂ)
<) M y

When joining these we find that Az disappears when one of the
mutual roots is calculated.

ALx
eF'(2): 112 = lim, (1 + é“y’) 5 (1 + 27) — tim 1S 1A
y z y

Introdncing for the rational radix the sign v R



