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be possible to characterize anthropologically the different races of men
by indicating the differences in the character and the intensity of
the processes of transformation.

And if the vertebral column should be chosen for such an inves-
tigation, an opinion about the degree of organisation attained would
certainly not rest on too narrow a basis, as the vertebral column is
in contact with many organs that surround it, and actively or
passively participate in its transformation.

Physics. — “On vapour-pressuie lines of hinary systems with widely
divergent values of the vapour-pressures of the components.”
(In connection with experiments of Mr. Katz). By Prof. Pn.
KonnstamM. (Communicated by Prof. vax pek Waals).

§ 1. Geweral character of the vapowr-pressure lines derived Srom
the difierential quotients. The theory of the p.e-lines of binary mixtures
was developed by vax prr Waars in Verslagen Kon. Ak, v. Wet,
3) 8 p. 409 and These Proc. 111 p. 163 (See also Cont. 1 p. 120

et seq.) on the supposition that the quantity o', oceurring there may
« i = %

+

a
d2
2o . .
be represented by — , and s0 is only dependent on the critical
ax

temperature of the mixture taken as homogencous. Vax pkr WaaLs
showed later on that a further approximation may be obtained by
the introduction of the quantity p., the vapour-pressure of the
mixture taken as homogeneous. Then:
dip,
o

v, T
P ___',-(,,{s_, 1)‘
Pk 7

In a recently published paper') 1 showed that a number of
particularities of the vapour-pressure lines follow from these equations.
Since then Mr. Katz’s investigations *) and the results communicated

‘ g j

1
g, =

while :

obtained was */, R. It was mentioned during the discussion al the Conseil SoLvay,
Nov. 1911 that Professor Kamerunen Oxses and myself had undertaken an inves-
tigation of 7, by Kuxpr’s method for hydrogen at temperatures down to that of
liquid hydrogen, but this investigation has not yet been completed.

Y Zschr. f phys. Ch. 75 p. 527.

%) These Proc. Vol. X1l p. 958,
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in a paper by Mr. Timmermans and myself ?) have drawn my
attention to seme other conclusions from the formulae derived
l. c. particularly with regard to systems the components of which
differ much in vapour pressure. I shall deal with this in the following
pages.

Let us first give the formulas which we shall want. A p,z -line

. o . dpc .
will ascend or descend with increase of a, according as _&{’ﬁ is
20

positive or negative. Let us call the substance with the larger value
of & the second component (z = 1), and put:

R — e [ J— ) ]
by—=mnb, a,=—Fk%, a,=1"aa,

blz"—bx bs"'bu r T
=g =k m = my = ——
bl l)’ 7’(1 jkg
then
dl 2f
( p”) =T —i—g+2H—1—29 . . , ()
dx =0 m, -

() —L(-)e(-a) - o

The question whether the p,2,-line is concave or convex downward
2

d?

at the border, depends on the sign of »dizf in this way that
) x L

d*lp,
will have the same sign as e for a line that ascends from the

@?
border, or if it descends so long as #, >/, @, resp. l—r, >4 (1—a).
If 2,<'/,x, resp. 1—z,<'/,(1—x,), the vapour-pressure line is convex

dl d'l

when Eg is’ negative, and concave when ° is positive. Also the

&£
stability or unstability of the liquid phases depends on this quantity.
We are, namely, on the verge of stability when:

dlp.
1, (1—a) 5 Pe=

S0 we are certain to be in the stable region everywhere where
d*lp, d*lp.

_j;;_ is posmve, if on the other hand Thasalarge negative value,
&

then (for not 00 small value of 2(1—a)) we shall be in the unstable

region, i.e. unmixing will take place. Expressed in the quantities

defined just now we find for the required value at the two borders:

3 These Proc. Vol. XIII p. 865.

Proceedings Royal Acad. Amsterdam, Vol, XV.
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b
Plp, dx?
ik ) R A 2~:- Sy 4 89— 1 + 26—k (44 B){ +
dl’ r==0 mx bl :
&
i
+ 4k — 4Pk -8 4-28* 22— . . . . . (3)
)l
\ d*b
Py, T da? 2 {
(‘ e ) R 24 84" —Bh— i.-_ +-a—-«—(4 8h) | +
da? ) m,
b
41 4 2 de’
T Y E T S e
+ 2 + L L 5 4)

3

Now we arrive at a sm‘prising result when we apply this formula
to systems whose molecales differ much in size. Ife.g. b, is =100,
then by becomes = 22.4 according to the well-known formula of
LORENle; so g = 21,4 and h=0.576. If we further suppose i = 20,
so that 73, =47, [u-,‘—‘%px—n and m,:i—mt, equations (1) and

{(2) become:

(lec) _ ‘)f (U__gg 4 +2(—438) . . . . (la)

Cl.‘l? r==0

Ip, 2 !
(‘fﬁ = ]( 2>4-—~)—~2(055’+ ) (24)
de ) m k

. dlp,
So we find /= 1.04 for the value of [ which makes (,J’,_)
=0

equal to O for a temperature m, = } and the supposition f=7;

dip,
for smaller values of { (—— P ) is then posmve at this temperature,
L Jr=0

for larger values negative. Equation (22) shows further that for
values of /<4 the p,z-line ends descending for the second com-

d
ponent. So f has the same sign on both sides for /= 1.05. But
&£

between a region of non-miscibility will be found. For with the
values mentioned equation (3) passes into:
' d*l
(--!E) — — 1445253504 1} 4 80 [—16001* + 4237 . (34
=0

With a value of / in the nerghbouxhood of 1 the lefthand membe1
becomes of the order 10—!; so the curve is at first concave d(_)wn-



99

ward, but already for a value of a of the order 0.0001 unstable
states are reached. On the other hand equation (4) passes into:

(flj{)i) = — 56— 0.507 -}- 0.1104 [} -} 0.27 — 0.01[* 4 0.581 (4a)
da® )r=1 _
and so this value becomes (with / about 1) of the order -+ 20. So
on the righthand side the p,r-line will be concave downward, and
we shall have to get very far from the border before meeting with
a region of unmixing. :

If we put b,=100006 instead of &, =1005, we get the equations:

Ip. 2 ,
(-flf’.;):—l(kz_loo)+2(kz_331.) N 1))
de Jz=0 m,
Ilp, 27 ! !
dpeN o ¥ 0.166———)——2 0.668 - m). R - 10)
dz )= m, k k
([’l’)c Jc )
) = — L (217800 4+ 26— 18241k) L 41k — 41 + 24"+ 215000, (3b)
‘fz' =0 n"]

4

(d”lpc _

da® Ji=1 m,

2 l l 2 2
0.49 4 — 4 2.67 — 4 ——4— 4 — 0.89.{46
o+ o+ k(+ 7 k’+k’+ {40)
and if we now suppose £ =63, so that again 7}, =47}, , all our
conclusions remain of force, and the peculiarities which we pointed
out (insolubility on the side of the small molecule etc.) are still more

: b .
pronounced. And also values of b—’ considerably smaller than 100 still
1
yield the same results.

Summarising them we must say that for the systems considered
with a value of about /=1 the p,z,-line begins at the side of the
small molecules slightly ascending concave downward, that, however,
already with exceedingly small concentration a region of unmixing
is reached, which lies very asymmetrically in the lefthand side of
" the figure, and ‘that the p.,-line after having left this region of
unmixing, continually descending and finally convex downward reaches
the line for the second component.

§ 2. The experimental results of Mr. Karz.

Now it is very remarkable, that this course entirely agrees with
that of the vapour-pressure lines determined by Mr. Karz for the
majority of “swelling” bodies, those with limited imbibition power.
Here too on the side of water an exceedingly small line (generally
s0 small that it cannot even be determined experimentally) is found
for the solution of the swelling substance in water, and on the other

7*
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side of this very asymmetrically situated region of unmixing just
such a line as was described just now.

No doubt we are not justified in concluding from this agreement
that the substances to which Mr. Kartz’s figures refer, satisfy all the
conditions that we had to put in order to be able to arrive at our
conclusions ; to apply the law of corresponding states to casein and
haemoglobin must certainly be called a very bold generalisation,
even apart from the other suppositions on which our formulae are
founded. Still 1 thought this agreement striking enough to justify a
closer investigation for the solution of the question in how far the
experimental particularities found by Mr. Karz would have to be
expected in virtue of the simplest theory for a mixture of two per-
fectly normal components, when the ratio between the size of the
molecules, ¢/, , becomes very great. Mr. Karz was so kind as to
summarize the results of his measurements for me as follows:

1. If we draw the water-vapour tension of the swelling substance
as function of the molecular percentage (vaN DER Waals's p, a-curve,
we get a line which {cf. fig. 1, which represents the line for inulin
in proper proportions ')):

a. lies for not very small values of & {pure water) under the
value which the vapour tension would have if van 't Horr's law
p=p, (1 —a) held for all concentrations.

“h. begins almost horizontally for & about 1, and does not begin
to rise abruptly until past ¢ ="/,.

¢. turns its convex side downward for a about 1, then gels a
point of inflection (for smaller 2), and finally turns its concave side
downward for very small value of =z

d. presents an excentrically situated region of unmixing for very
small x, so excentrically as has not been observed anywhere else as
yet. Pretty well pure water x == 0.00001 coexists with 2 = 0.002 or
0.006. The lines for casein (albumen) and inulin (polysaccharide) may
serve as an example. For both substances the minimum molecular
weights have been taken (casein = 4000, inulin = 1800) in all these
calculations. If higher values are used, the above-mentioned properties
are even more pronounced. ‘

1) In this figure of Mr. Katz the component with the smaller molecule (water),
has, however, been thought on the right hand, whereas in the text it has been
assumed, where the contrary has not been expressly stated, that the molecular
weight increases from left to right.
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X=1 =g
" " - ) y "y T
0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10
Inulin Casein
z P/ & P/
0.007 1 0.004 1
0.024 0.962 0.014 0.962
0.034 0.914 0.018 0.917
0.041¢ 0.853 0.021 0.853
0.049 0.788 0.024 0.788
0.063 0.596 0.031 0.596
0.079 0.410 0.041 0.410
0.100 . (0.176 0.062 0.176
0.125 0.022 - 0178 0.022
0.45 10.01 0.29 0.01
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2. The heat of mixing (generation of heat when 1 gr. of dry
substance absorbs ¢ gr. of water) is strongly positive, and is very
well rendered by a hyperbola:

Ai

W= .
B4

3. The volume contraction ¢ by the mixing (in em®. when 1 gr.
of dry substance absorbs ¢ gr. of water) is strongly positive, and fol-
lows a line which closely resembles a hyvperbola.

. [ e Ly . . .
4. If we compute W for small 's (lim. t =0), we flind that this

qnotiemg is of the same order of magnitude for the most different
swelling substances viz. between 10 and 25 > 10~4, and that this
quotient is of the same order of magnitude as for mixtures of sul-
phuric acid, phesphoric acid, and glyeerin with water.

The analogy of the latter substances with the swelling substances
is the more striking, because they present all the properties described
under 1 (a, 5, and ¢), under 2 and under 3 exactly as for the swelling
substances, There is only one difference: they are miscible in all
proportions, whereas some swelling bodies exhibit the characteristically
excentric region of unmixing described under 1d. Other swelling
substances have an unlimited power of Imbibition, but behave for
the rest as described above. So this difference will not be essential.

Limited or unlimited miscibility, it seems, may depend on small
factors, as elosely allied substances may belong to different types. Further
quantitatively there exists this difference that for the swelling sub-
stances the vapour pressure line begins to ascend much less steeply,
the lines for the volume contraction and for the heat of mixing on
the other hand much more steeply than in the usual case. We may
express the latter also in this way that for swelling substances the
quantity & in the equation of the hyperbola for the volume contrac-

at . f
tion ¢ = T is remarkably small, just as the quantity B in the for-
l «
i

mula of the heat of mixing.

§ 3. The integral equation of the vapour pressure line. Let us
begin our investigation with the vapour pressure lines. To'investigate
whether they agree with the experimentally determined ones also
with respect to the peculiarities not yet treated in § 1, it is easier
to use the integral relation between p and x instead of the differential
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relation used there. We find for this?), when the vapour pressure
of the second component may be neglected which is certainly the
case here:

p:pl(l——w)e _—_:])1(1—-.z)3/

So everywhere, where the exponent of ¢ is positive, the vapour
pressure line lies below the straight line which would represent the
vapour pressure when the law of van ’r Horr held for all concen-
irations. When this exponent is negative the real vapour pressure
lies below this straight line. If we now apply van per Waars’s formula
for p., and if we assume as above b, =1006,, b,, =224,
a, =100 a,, a,, = 20 a, we get: y=10-* forz = 0.5 and y = 0.25
for 2 = 0.2. So we really see the same course as given under a, b,
and ¢?). But on these suppositions the region of unmixing is not so
narrow as is required in d. For y becomes — 2.5 for x = 0.1,
and as for absolutely stable states the vapour pressure in the mixture
cannot be greater than the sum of the vapour pressures of the com-
ponents *), we must bhe in the region of unmixing already here.

If, however, we take aq,=1000a, and a,, = 25a,, we get

bg . .

y=01 for a=0.1 and y =1.22 for 2 =0.01. If ;1 still greater
)l

than 100, we may even find much narrower regions of unmixing.

b
y=0.95 for + = 0.01 with 2*=1000 and the correspond-

Thus e.g,
)1
. 61: ' . . -
ing == 166, while a,is pul = 10000 a, and «a,, = 105 a,. That
. )

there exists still a region of unmixing, however, appears from the-
value y =1,04 for # =0.001. If a,, is taken somewhat greater still,
the region of unmixing disappears.

1) Compare the second volume of the Lehrbuch der Thermodynamik, which will
shortly appear, p. 178. .
" 2) That a point of inflection must occur follows from the fact that the vapour-
pressure line is turned convex downward at first, and then concave downward in
the region of unmixing, as it has a maximum there. No general rule can, however,
be derived as to whether this point of inflection will still lie in the absolutely
stable, or in the metastable region. In virtue of the very slight breadth of the
plait, bowever, which leads us to expect that we are already quite close 1o the
maximum. of the vapour-pressure line on the verge of unmixing it may be consi-
dered as exceedingly probable that the point of inflection still falls in the absolutely
stable regibn. '
8) Cf. the footnote p. 111,
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We shall presently return io these results, but we may now
already state that with suitable values of a@,, and a, really vapour
pressure lines are obtained which perfectly agree in type with the
experimentally determined ones. It deserves notice that this result is

: d*b
iu the first place the consequence of the great value which o
&

. - b
assumes according to our suppositions (great value of I, and validity

8

of Lorextz’s formula for 5,)). If we take & as linear function of a,

b
as is often permissible for small values of - nothing remains of these

£

results. The obtained vapour-pressure lines are namely characterised
by this that p"; is strongly positive for values of « near 1, which
leads to the strongly convex pur-line, whereas near 2 =10 p"; is
strongly negative, which circumstance gives rise to the region of
unmixing. If, however, we take & as linearly dependent on z, change
of sign of p"; becomes impossible'). This quantity must have the same
sign throughout the whole breadth of the figure; then we can have
unmixing with negative value of p",, but then the vapour pressure
line ends also concave downwards on the side of the slight vapour
pressures. This is accompanied by an extension of the region of
unmixing over the full width of the figure as in the case of mercury-
water. When the vapour-pressure line ends concave downward,
however, on the side of the small vapour pressures, u’; must be
positive, and then unmixing is impossible. And this holds whatever
values one may choose for a, and a,,. Only for very large values of
3

d;[; as they follow from the formula of Lorextz. for great values of
b, . - . . Ly

- a region of unmixing can occur in a pa-line which is convex on

1
the other side. Whether this region of unmixing then occurs, and how

wide it will be, will depend on the a’s, and more particularly on
a . i . .

the ratio of —*. We have seen this already in the foregoing discus-
a,

sion, and we shall find confirmed in what follows that only a very

small change of this quantity is required to make a mixture with

an exceedingly narrow region of unmixing on the side of the small

molecule pass intn a system that is miscible over its full breadth.

This is in accordance with Mr. Karz’s remark “limited or unlimited

miscibility, it seems, may depend on small factors, as closely allied

1y Cont. I, p. 152,

-10 -
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substances may belong to different types”. Of course it would be
entirely premature now that we are still altogether ignorant about

the causes that govern the value of the quantity %l— even for the
. ,
best known systems, to pronounce an opinion about the question why
for some systems the value is such that a very narrow region of
unmixing appears, whereas for others there exists complete miscibility.
Even quite apart from the fact that it does indeed follow from what
precedes and what follows that the experimental peculiarities found
by Mr. Karz can all appear for perfectly normal substances, bat
that it does not follow by any means, of course, that not all kinds
of other circumstances might be found for the systems investigated
by him, which do not affect the general character of the lines, but
might have a very considerable influence on the numerical values
of the quantities to be calculated. For this reason I have abstained
from endeavours to find the numerical values of a’s and &’s, and
have confined myself to the general course of the investigated lines.

§ 4. The wolume-contraction. Further on we shall return to the
vapour-pressure lines, but for a reason which will soon become clear,
we shall first speak about the volume contraction. According to
Mr. KAtz it may be represented by a hyperbola:

o
=i
in which ¢ is the contraction in em® when 1gr. of dry substance
absurbs ¢+ gr. of water. What does the theory of the norinal mixtures
teach us about this quantity ? If we may assume that the tempera-
ture has been chosen so low that we may put the limiting volume
b for the liquid volume, the increase of volume Ar in consequence
of the wmixing of M, (1—2a) gr. of water and W, 2 gr. of dry sub-
stance becomes :

bLe=b—b(1-2)—bo=—a(l—a)b, +b,—2b,) . . (5

From this we must derive the relation between ¢ and {. Now
evidently :

[

Lo

- flf,a:.
follows from the definitions, ¢ and Av taken for the same concentration.
If we further mix 1 gr. of dry substance and i gr. of water resp.
M, with M, i gr., the number of molecules are evidently in the

M
ratio 1:—1¢ s0:
Ml

-11 -



1 M, o '(5)

1 +_M—}E Ml + ‘H,l

M,
and

1 M

ngl + M
So equation (5) becomes :
i .
e S b, 4+ b,—2b
¢ ‘;‘11 + Aff,i( 1 + 3 la)

so really a hyperbola.

Also the second above mentioned peculiarity of the c,i-lines that
the quantity 4 in the equation of the hyperbola becomes much
smaller than is usually the case, is found confirmed here. For

M
Ei is found for this quantity.

¥

The heat of miring. Mr. Katz has already pointed out'), that the
hyperbola found by him is in accordance with a formula givenby
vAN DER Waars in the Théorie Moleculaire. But this formula was
derived on the supposition of linear dependence of b on z (h,+-b,=20,,)
and we saw already that both the experimental vapour pressure and
volume contraction lines and the theory exclude this supposition in
our case. If we, however, again assume the supposition, on which
the said formula of vax per Waatrs is also founded, that viz. the

41
potential energy of a mixture may be represented by — E{’ we find
x

for the increase of the potential energy or the absorbed qﬁanlity of
heat when M, gr. of dry substance is mixed with M, (1—u)gr.
of water : o '

l—a b, b 4, a ‘
A= w(w%b“) ?al —* 4 a, E‘ —2a,—a —& (5 — ;f)(b,—%bl - 21),,)‘ (7)
. 3 2 T 1 *

Between A and the quantity W used by Mr. Karz the relation

4 . . . ‘ .
W:——M exists again, and of course, equation (6) holds again.
R :
So it appears that we do not get a hyperbola for W, but a curve
of higher degree than the second. ’
In how far this involves a deviation from the experimental data,
we shall examine presently ; first we must see what conclusion may

be derived from the limiting ratio —%, for very small values of &

1) 1. ¢. p. 970.

-12 -
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determined by Mr. Karz, so values of z which are nearly equal to 1.
With such values of = the terms multiplied by (0, -+ &, — 25,,) now
predominate on the lefthand side; so we find for the required ratio:

Lo b
If- this expression is to be independent of the order of magaitude
of b,, we must conclude that in general a increases proportionally

with &* for increasing values of b, so that :; remains of the same
order of magnitude.

Also with a proportional to b the coefficients 2% would remain
equal, they all being zero then. This supposition does not call for
any further dJiscussion, also because the critical temperature rapidly

rises for all known bodies with great increase of b, whereas the
critical pressure remains of the same order of magnitude.

- a . ' .
§ 5. Supposition that i of the same order of magnitude for

the components. So we should have to conclude from this that we
have assumed the increase of a for certain increase of & too small
in § 1 and 3. And now the question should be solved whether what
was found above for the vapour-pressure line continues to hold also
with the now supposed great increase of o. For this purpose 1once
more examined the course of the vapour-pressure line with the aid
of the above formula, now on the suppositions .b, =1004,,
b,, = 2245, a,= 10000 a,. For a,=150 we find then that the
region of unmixing has quite disappeared ; with a,, = 140 on the
other hand we find y =1.03 for & =0.01. So if we take z slightly
higher, we shall find exactly the required width of the region of
unmixing already with g—’:: 100. So all Mr. Katz’s results mentioned
1

under 1, 3, and 4 can be derived from our theory.

So it finally remains the question in how far the result under
2 is incompatible with the simplest theory developed here. If we
take the last mentioned example, viz. b, =100, b,, =224,
@, = 10000 a, and a,, =140 a,, we find for the heat of mixing the
expression :

A=

5(1—5)
T

x

(1362 4- 5563.82). . . . . (7a)

-13 -
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A'
This is in conflict with the hyperbolical line W:B; ., for this
1
leads to an expression of the form:
x(l—a)
4’(1 : -— . - . . 8
C4+Dz ®)

For a course from & =10 to x =1 equations of these two types
can certainly not perfectly accurately agree; it is, however, the
question in how far they deviate within the region in which the
observations lie (x=0.1 to £=04). If now for 2=20.1, 0.2,

by
136.2 4+ 5563.8.0
and if we divide the result by the value for 2= 0.4, we find:

0.7342, 0.8223, 0.9110 and 1.0000

these values do not ascend linearly, but they differ from the purely
linearly ascending ones:
0.7336, 0.8223, 0.91190, 0.9997

everywhere less than 1°/,,, the experimental errors certainly amount-
.ing to a few percentages. So it is clear that the discrepancies which
exist between a formula of the type (7) and of the type (8), are
much too small in the considered region to allow of an experimental
decision. We must conclude that a formula of type (7) represents
the experimental data as well as a formula of type (8)'). Farther
reaching conclusions are of course excluded, as we already remarked

0.3, 0.4 we calcnlate the value of the expression

1) Perhaps we may go still further and say that in the general case a formula
as (7) represents the experimental relations better than (8). For according to the
latter formula the total heat of mixing W and also the differential heat of mixing
dw

—— must always retain the same sign, while cn the other hand for certain values

di

of the a's and U’s a reversal of sign is possible according to formuia (7). And this
. aw j
change of sign of T which can never take place for a hyperbolical formula,
R :

seems indeed lo appear in reality in some cases e.g. for inulin, as appears from
the subjoined table.

i W in Cal.
0 (]
0.052 11.8
0.095 16.7
0.116 19.0
0.223 2.4
0.293 23.0
1.05 21.8

It is also in conmection with this deviation of the theoretically required formula

-14 -
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above, by the absence of accurate numerical values of all the a’s,
b’s, and even the molecular weights.

S6 summarizing we must say that all the experimentally found
particularities can appear exactly in the same way for mixtures of
perfectly normal substances which behave according to the sim-
plest theory.

§ 6. Deviation from the lme of vaN 't Horr even in case of
extreme dilution. There is another particularity in connection with the
absence or presence of unmixing, to which it may be desirable to
draw attention. 1 mean departures from the well-known vapour-
pressure formula of vax 'r Hore for extreme dilutions

dp
= —1,
pdr,

This formula, which may be expressed geo-
metrically by saying that the vapour-pressure
line') in its limiting direction points to the
opposite angle (direction AB in figure 3), is
* considered of general validity for systems
whose components differ widely in volatility.
And indeed if we understand by this latter

.-, ‘ w . - .
. condition that — =0, at the limiting value,
Flg. 3. Z,

from. a hyperbola that the property mentioned in the last lines of § 2 can he
cal,

20

10 4

¥ T T T Y T T i
0.50 1.00
Fig. 2.
proved in a simple way for the volume contraction, but not for the heat of mixing.
1) Of course the folal vapour-pressure line is meant here. For the partial vapour

-15-
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i.e. that the ratio of the concentration of the second compounent in
the vapour and in the liquid is very small, this rule can be perfectly
rigorously derived for the limiting value purely thermodynamically
in the wellknown way. Puarely thermodynamically, because we have
then only to do with the logarithmic part of the thermodynamic
functions, and need not know anything more about the system. But
this definition of <difference in volatility” is not the only possible
one, and not the only one that naturally suggests itself. We might
as well, perhaps better, understand by this idea, that one pure
component has a very much lower vapour-pressure than the other
at a definite temperature. And these two detinitions by no means
always coincide. Let us e.g. take a system for which the equations
1—4 hold. On the supposition f=7 and 73, =47}, it follows that
the quantity p,/p, is of the order 10 -1% at a temperature of '/, T}, .
So there seems, indeed, to be every reason to say that the sccond
component is much less volatile than the first. Yet by no means

lim. 2= 0. On the conirary, if we put /=1, it follows from the
'zl

above that the p,x -line begins ascending, so x, > x,; in the begin-

ning the second component is present in the vapour in greater

quantity than in the liquid, and van 't Horr’s law by no means holds

any longer even for the extremest dilutions. Exactly the same thing®

applies for other values of Zf. So we must supplement the condition
1
for the validity of vay 't Horr's law also for the extremest dilutions
as follows, that the components differ greatly in vapour-pressure,
and that there be no reqion of wnmizing in the neighbourhood.
For if this were not the case we should already soon get a vapour
in which the partial pressure of the second component would be
greater than the total pressure of the component at the chosen
temperature, and this is not possible for absolutely stable states').
So where the rule of van 'tv Horr does not hold with great difference
in vapour pressure, this will be in the closest connection with this

| pressure lines on the side of their component it always holds that they point to
the opposite angle with their initial direction, as immediately follows by differentia-
tion of the equation on p. 103,

1) We used this thesis already above to conclude to the existence of unmixing. It
may be proved as follows. It follows from the differential equations of the two
parlial vapour-pressure lines (Cont. I, p. 163) that they will possess a maximum
or a minimum only on the borders of the stable and unstable region. So if there
is no unmixing, the parlial vapour-pressure line of the first component is always
descending, that of the second always ascending. If there is a region of unmixing,
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that the liquid phase becomes unstable and unmixing appears already
at very slight concentrations. So we shall have to expect that
vaN 't Horr's law does hold for substances with unlimited imbibition
power, And our formulae prove in harmony with this. As we namely
saw it is required e.g. in the case b, =100 6, and [ not far from

1 that T does not lie far below 35. Then, however, we find for

ay
dip. . .2, 150 i
R about — 380, and so lim . of the order 10—'%. On the other
hand for substances with limited imbibition power vax’r HorrF’s law
may hold, but this is by no means necessary, or even probable, and
we shall undoubtedly have to take this circumstance info account
in attempts to derive the molecular weight of these substances from

the properties of their solutions.

§ 7. Other systems with great difference wn vapour pressure of the
components. 1 already pointed out the possibility of such departures
from vaNx ‘'t Horv’s rule in an earlier communication published in
These Proceedings, mentioned in the beginning of this paper. What
was said there, will have been made sufficiently clear by the foregoing
discussion. So 1 shall only add a few calculations here for systems
as the one discussed there (aniline or nitrobenzene with isopentane
or hexane). These systems agree in so far with the systems discussed
in the foregoing that there exists a very large difference in vapour
pressure between the two components, though not nearly so great
as in the cases examined by Mr. Karz, where the second component
nowhere shows a measurable vapour pressure. But for the rest the
difference is great; whereas in the systems discussed up to now the

. b : .
ratio 53 veaches very great values, the ratio here is not far from 1,
1

the partial vapour  pressure of a component in
the maximum can of course considerably rise
above the value for the component itself (see
p fig. 4), but then this is always in the metastable

.7 or unstable region. For the partial vapour pressures

7 must be the same in the two coexisting liquid
-7 B/ phases. So the point A must lie on the same

A -7 level as B, and as both between A and C, and
I - between B and D the partial vapour pressure line
can only be ascending, the partial vapour pressure

: must be smaller than DE throughout the region
ig. 4. " of the absolute stable mixtures.

-17 -



112

and the substance with the greater vapour pressure has here even
the greater molecule. Instead of in the righthand half of the general
isobaric figure of van per WaaLs we are now in the lefthand part.
Accordingly the unmixing found here must not be ascribed to the
. b ,
same cause, the high value of 23, but {so long as we assume that
¢
1
we have not to do with abnormal systems, and with the systems
mentioned we may do so to all probability) to a smaller value of [/
than generally occurs.
Let us take as an example the system aniline-hexane. 6, is here
b b
0,006113, b—’ = 0,007849, s0 b, =1,284, and —;’3—'- = 1,136 follows

1 1
d*b

de
from the formula of Lowrkntz, so A= 0,1153, and Ew’:O,Oi?.

Further a, = 0,04928 and «a, = 0,05282, so L = 0,9659, If we sub-
stitute these values in the equations (2) and (4), we get:

dip, 27 _
( r ) — 7 (0,8847—1,0850) 4 2 (0,7694~1,0850). (2¢)
r=1

da m,
and
d*lp, J oo .
TEY) = L (3,313,100 4 4141 — 4,200 4+ 0,22, (o)
da? r==1 3
d*lp, . . 2
So we get (-dl:):—i,il for /=1 with /=17 and my = -
T

(T% hexane = 235° and the temperature of the upper mixing point
= 68°9). So we have not to expect unmixing, at least in the
neighbourhood of the border, nor for greater concentrations,

al d*lp,

because d;:jf must at least be — 4 to make 14 zx(1—ua) e
negative. In agreement with the complete miscibility tfll% = 2,62, and so
l1—a, 1 . \ , .

l-wl:—l—a’ and accordingly vaN 't Horr’s law is fulfilled
with pretty close approximation. As soon, however, as [ becomes
smaller, this is changed. For /= 0.9 we get %% = (.66, and so
;—:::>~;, and the lowering of the vapour pressure of the second
component by addition of the first will therefore amount to only

dlp.

has the

half of what vax 't Horr’s rule would require. But as -

da?®
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value — 4,08 already now, we see clearly that there is a region of
unmixing at hand, and it will already have appeared with some

dlp,
decrease of temperature. For /=0,85 finally E& has already got the
&
negative sign o= 0,3 ) at the chosen temperature; so the
oA

vapour-pressure line does not descend from the side of the most

volatile component, but ascends; there is a maximum vapour pres-
2

d*lp,
sure. But then the value of ;l—I: has fallen to almost — 6, and we
. &

may expect that even for not very great concentrations unmixing
will take place.

The calculations given here, will, I hope, have sufficiently eluci-
dated the thesis which 1 pronounced in the cited paper that vax 't
Horr’s rule need not hold, even as a limiting law, for systems whose
components differ very much in vapour-pressure, when viz. these
substances do not mix in all proportions, or at least a region of
unmixing is close at hand. They also set -forth again '), how much
greater the influence is of slight deviations in the value of [ from
unity, than in those of %3 or 3—3 and that such deviations are able to

1 1
modify the course of phenomena entirely, so that certainly only a
small part of all the possible cases is observed when we start from
the supposition that the relation /=1 should be always rigorously
fulfilled. On the other hand they also show that in all the systems
known to us, we have to do with values of [ which are contained
within narrow limits, and that we have not a single indication to
think values possible for the value of [ of the same order as

b .
undoubtedly occur for —b—f and also for 2.
1 * al

Mathematics. — «“On looping coefficients.” By Dr. L. E. J. Brovweg.
(Communicated by Prof. D. J. KorTEwke.)

{Communicated in the meeting of February 24, 1912).

Let us suppose in Sp, two non-intersecting simple closed curves
k, and k, furnished with a sense of circuit. Then %, possesses with
respect to &, a looping coefricient answering to the  intuitive notion

1) Cf. the paper in the Zsch. f. phys. Ch. 75 cited in the beginning of this
treatise.

8
Proceedings Royal Acad. Amsterdam. Vol. XV.
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