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Mathematics. — “The scale of reqularity of polytopes’. By Dr.
E. L. Evte (Meppel). (Communicated by Prof. P. H. Scrovurs).

In my dissertation') it was my aim to determine the semiregular
polytopes, 1. e. the polytopes analogous to the semiregular polyhedra.
So this investigation had to be based on a definition of the notion
‘“‘semiregular polytope”. Now ordinarily a semiregular polyhedron is
defined as follows: “A semiregular polyhedron has eitker congruent
(or symmetric) vertices and regular faces or congruent faces and
regular vertices. So there are two kinds of semiregular polyhedra
which we will call with CataLan®) “semiregular of the first kind”
and “semiregular of the second kind”; those of the first kind are
enumerated in the following table. For any of these polyhedra this
table gives the numbers of vertices, edges, faces and indicates which
faces pass through each vertex and which couples of faces pass
through each kind of edges. Here p, denotes a regular polygon
with n vertices.

’Notation; N'. ; Vertices| Edges | Faces Fac:sv;gr&ugh Fafﬁ: _;lé;(:;gh

T 12 18 8 |1ps, 206 e, 6 %ps,ps

tC 2| % {14 [1ps, 28 Ps.ts 1?3,‘93

t0 31 24 36 | 14 |1ps, 26 o ,Po | Po.Ps

D | 4l 60 | 0 | 32 |1p5,20  |pwdilputs

g |51 60 | 9 | 32 |ips,2%  |pe.pe ps.ts

co |6 12 24 14 |20, 204 P43

ID 7 30 60 32 |25, 25 P53

RCO | 8 24 48 26 | 1p3, 3P4 24,04 [ P1aD3

RID [ 9, 60 | 120 62 | 1ps, 204 , 1P5)Pa b5 [ParPs

tCO (10 48 72 26 124 » 16 , 1Pa§Ps P8 {Pa P8 (Pa) Pe
tID I 120 180 62 1P, 196 W1 Prols [ ProPs | P4 :Pt;
cs |12] 24 60 38 | 1py , 403 Pubs | P3,0a l
DS (13| 60 | 150 2 |ips, 4ps Ps.Pa | P3.bs

Pp 14, 2n | 3n n+21{ 1pn, 2p4 PniPs (Pi.Pa

APy | 15| 2n n | 2n+2]| 1pp, 3p3 Pnip3 | P3P

i

Y) “The semiregular polytopes of the hyperspaces”, Groningen, 1912.
-9 “Mémoire sur la théorie des polyedres”, Journal de I’ Ecole Polytechrique,
Cahier 47. :
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The semiregular polytopes of the second kind are the polar-reci-
procal figures of those given in the table with respect to a concentric |
sphere.

The definition of semiregular polyhedron given above had to be
modified in order to make it applicable to polydimensional spaces.

We say that a polyhedron possesses a “characteristic of regularity”,
if either all the vertices, or all the edges, or all the faces are equal
to each other. Equality of vertices signifies that the polyangles
formed by the edges concurring in each vertex are congruent (or
symmetric); equality of faces consists in the congruency of the
limiting polygons. But the equality of edges includes two different
parts which can present themselves each for itself: equality in length
of the edges and equality of the angles of position of the faces
through the edges. So all the polyhedra of tlie table have edges of
the same length but — with exception of the numbers 6 and 7 —
more than one kind of angles of position, whilst quite the reverse
presents itself with the corresponding polyhedra of the second kind.
If the equality of edges is realized only partially — as in the case
of the polyhedra of the table — we speak of a “half characteristic”
so that these polyhedra admit 1} characteristics. By bringing this
result in connection with the circumstance that a polyhedron can
admit 3 characteristics, the epitheton “semiregular” obtains a literary
signification. As the polyhedra N°. 6 and N°. 7 of the table possess
both the bhalf characteristics of the edges, these polyhedra must be
called ““*/,-regular’ according to our system.

We remark that the characteristics of a semiregular polyhedron
of one of the two kinds are lacking in the corresponding polyhedron
of the other. Moreover that we are obliged to observe a quite
determinate order of succession in counting the characteristics of a
polyhedron of defined kind and, beginning at the commencement, to
count successive characteristics only, i.e. in the case of polyhedra
of the first kind to take into account successively equality of vertices,
equality in length of edges, equality of angles of position round
edges, equality of faces, and reversely in the case of polyhedra of
the second kind. If this order of succession was not observed e.g.
with respeet to the two half characteristics of the edges a beam
with different length, breadth, and height would appear as a semi-
regular polyhedron of the first kind on account of equality of ver-
tices and angles of position, whilst a double pyramid formed by the
superposition of two faces of two equal regular tetratredra would
appear as a semiregular polyhedron of the second kind, to which
enunciations fundamental objections ean be raised.
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Now the definition of “degree of regularity” extended to higher
spaces runs as follows:

“The degree of regularity of an n-dimensional polytope is a fraction
with » as numerator and the number p of the successive charac-
teristics of regularity as denominator, this number p being counted
in the case of a polytope of the first kind from the vertex end, in
the case of a polytype of the second kind from the end of the limiting
n—1-dimensional polytope.”

In my dissertation 1 have contined myself to polytopes of the
~first kind, the degree of regularity of which is } at least. For the
methods employed in unearthing these polytopes I must refer to
that memoir.

In discussing my dissertation my promotor Dr. P. H. ScHovte
remarked that if all the fractions representing possible degrees of
regularity of an n-dimensional .polytope are reduced to the denomi-
nator 2n the numerators 1 and 2n—1 will be lacking, on account
of the fact that the first and the last characteristic have not been
subdivided into two halves; so in this sense my scale contains
something superfluous.

Indeed the classification of the polyhedra according to my scale
is indicated in the diagram

0 1 2 3 4 5 .
6 6 6 6 6
| : i i i | ]
I P 1—5, 6,7 R
8—15

where the numbers 1—5, 8-—15 at the midpoint and 6,7 at the
right designate the polyhedra bearing these numbers in the table,
whilst 7 and R stand for quite irregular and regular polyhedra and
P cither for the beam or for the double pyramid wmentioned above,
according to the scale corresponding either to polyhedra of the first
or to polyhedra of the second kind. Indeed the points of division

1 5 . . .
5 and 3 &re unoccupied and in S, the analogous characteristic

1
property presents itself with respect to the points of division o
n

2n—1

d .

and —-

It goes without saying that we can take away the superfluity
indicated (of the two points of division adjacent on either side to

the extremities) either by counting each of the two extreme charact-
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eristics, that of the vertices and that of the limiting n—1-dimensional
polytopes, for half a characteristic, o — what comes to the same —
by counting each of the two extreme characteristics and each of the
two halves of the remaining intermediate characteristics for one. So
the scale relating to our space passes into

1 2 3
0 - h = 1
4 4 4
| | | | |
I P 1—5 67 R
8—15

where the numbers and the letters have the same meaning as above.
An n-dimensional polytope of the degree of regularity 2 according
" n

to the scale given in my dissertation will be qualified, for1 < p<n —1,

by the degree of regularity ?;f- according to the new scale, whilst
n——

this degree would aecquire the same value for both scales in the
cases p=0 and p=mn, ie. for entirely irregular and for regular
polytopes. For in the cases 1 <p<n—1 a polytope loses in the
first of the two possibilities indicated by either and or a half characte-
ristic, whilst the total number of available characteristics diminishes
by a half at either side which changes the denominator r into n—1.

In this paper I wish to take position with respect to the modifi-
cation of my scale due to Dr. Scroutk. Thereby I will have occasion
to point out three different moments.

1. Besides for entirely irregular and for regular polytopes the
two scales coincide with respect to semiregular polytopes proper.
For the supposition :

B

T n—1

3 =3

gives
2p(n—1) = n(2p—1),
i.e. p=4n and therefore

}i :p—-é = .

n n—1

So, if we arrange the polytopes of space S, in three groups, for
which the degree of regularity is successively smaller than a half,
equal to a half and larger than a half the modification proposed
brings no alteration in these groups. Otherwise: in passing to the
new scale the polytopes with a degree of regularity equal to a half

: 14
Proceedings Royal Acad. Amsterdam. Vol. XV,
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do not stir, whilst — if we use scales of the same length — the
others execute a movement enlarging their distance fronr the centre.
S0 the polytopes with a degree of regularity of at least a half
found by wme present themselves quite as well if we use the new
scale; so in this respect 1 have not the least objection to accept this
new scale. )

2. However one may not flatter oneself with the hope, that the
new scale shall not contain superfluous points of division with respect
to either of the two kinds of polytopes considered for itself. In space
S, already we find with respect 10 the polytopes of the first kind
in this new scale, agreeing with the old one for » =23, the point

-

of division 2« unoccupied. For we have
1 2 3 4 5
0 — — — — — 1
6 6 6 6 6
i ‘ : ! i ! {
I P ¢,8(5) 6S(G) e S(5) R

where [ and IR have the same meaning as before, whilst P represents
a rectangular parallelotope with edges of four different lengths and
e,5(5), €,S(8), ce, S(5) indicate three polytopes deduced from the
regular simplex S (5) of S, in the notation given by Mrs. A. Boore
SroTT *).

3. As the new scale contains no nnoccupied points of division in
the case n=3 only, it would not be worth while to substitute it
for mine, which has the advantage of treating all the groups of

limiting elements — vertices, edges, faces, etc. and the limits with
the highest number of dimensions — on the same footing, if it did

not possess a second advantage, in my opinion of great importance.
We will treat this somewhat in detail.

In the determination of the semiregular polytopes of the first kind
I consider of any polytope the corresponding ‘vertex polytope’ ?).
In general the vertices of the latter are those vertices of the former
joined by edges to a vertex of this original polytope. In an appendix
to my dissertation 1 state the rule, that a polytope with edges of

1} Dr. Scuorte requests me to communicate that the primitive idea of this new
scale for S, presented itself to him in an intercourse with F.Zernike, candidate
in mathematics and physics at the University of Amsterdam.

2) “Geometrical deduction of semiregular from regular polytopes and space
fillings”, Verh. Kon. Akad. v. Wetenschappen, Amsterdam, 1st series, Vol, XI, n% 1,

3) Not to be confounded with the polytope of vertex import of Mrs. A. Boorz Srorz,
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the same length ') admits one characteristic of regularity more than
its vertex polytope, i.e. if the latter is n-dimensional and admits the

degree of regularity ?j’ the former must admit the degree of regularity
n

1 .
2 +1. In this rule the indicated modification of the scale evidently

n+
does not bring any alteration. If we build up an n-1-dimensional
polytope by starting from a given n-dimensional vertex polytope,
the n-}1-dimensional polytope will possess all the characteristics of
regularity of the n-dimensional one, each of these adapted to limiting
elements of one dimension higher, and moreover it obtains at the
beginning of the series two new halves of characteristics, i.e. equal
verfices and edges of the same length. Finally the denominator like-
wise increases by unity, the new polytope admitting one dimension
more than its vertex polytope.

In my dissertation 1 had to point out an exception to this rule,
presenting itself in the case p =0, i.e. when the vertex polytape

0 1
is irregular. For in that case — passes into él instead of
n n

nt1
So the vertex polytope of the semiregular polyhedra of the table
— l.e. ‘“the vertex polygon’ here — is an isosceles triangle for the

numbers 1-—5 and 14, an isosceles trapezium for 8, 9, 15, a scalene
triangle for 10, 11, a symmetric pentagon for 12, 13 and therefore

0 13
the degree of regularity 7 of the vertex polygon has to lead to ~§— =}

in the cases enumerated. This exception now disappears by intro-
duction of the new scale of Dr. ScHoutk; for according to this scale

0 1
1 passes into 5 in these cases. ,

On account of the latter important advantage of the new scale
over the old one I wish to accept the first. Therefore I insert
finally a second table in which the polydimensional polytopes with
a degree of regularity equal to or surpassing } are enumerated with
addition of their degree of regularity according to the new: scale.

The superscripts S, represent the number of the n-dimensional
limits of the polytope. The character of these limits is indicated by
notations, the meaning of which is partially clear by itself or by
the first table of this paper. Moreover we may state the meaning
of the following symbols :

1) The latter has been supposed tacitly on p. 129.




206

DegreeéNotation S, | s S, S S, S, Se S,

4:6 | tCs 10] 30 (104 20)ps 5045T

3:6 | tCq 32| 96| G4ps+24p, | SBCOH16T

3:6 | tCy 96| 283 96pa+ 144p, | 24CO+24C

4:6 | tCoy | T20| 3600 (1200 + 2400)ps] 6000 + 1201

3:6 | tCio 1200 | 3600|2400p; + 120ps | 1201D - 600 T

3:6 30| 60| 20ps+ 20 10T

3:6 288| 576| 192p3 -+ 1445 48tC

3:6 20| 60| 40p3+ 30p, 10T 4 20P,

3:6 144| 576 384p;+288p, | 480 -+ 192Ps

3:6 n2| 2n2| nips+2np, 2nP,

5:8 | Sg2 200 90 1204 30T +300 12 4Cs

6:8 | HM; 16| 80 160 p5 (80+40)T 16 C5 4 10 Cyg

4:8 ] Sl 15| 60| (20460)p; 30T 4150 6 Cs -+ 61C;

4:8 | Crst 40| 240{ (80-+320)p3 | 160T 4800 32tCs+ 10 Cyg

4:8|Crs2 | B0| 480 (3204+320)ps | SOT-2000 | 32tCs+10Cy

7:10| Vop 2| 120 21605 2160 T 432 Cs + 270 Cyg 54 HM;

6:10| HMs | 32| 240 6403 (160 +480)T | 192C5+4+60Cig | 32Ss+ 12HM; .
8:10| Vyy 21| 216 1205 1080 T 216 C5+-432C5 | 125+ 27Crs

10: 12| Vg 56| 156 4032p; 10080 T 12096 Cs (2016 + 4032) S5 | 576 Sg+- 126 Crg

B:12| Vips | 1261 2016] 1008024 20160 T (4032 -+ 12006) C; | 4032S5 + T56 Crs | 576 Sg + 56 Vi

6: 12§ Vsie | 57610080 40320 p3 (30240 + 20160) T 116128 Cs +- 7560 Cyg 2016 Ss -+2268HMs|126 HMg -+ 56 Vip

8:14 Vyg [2160[60120] 483840, 1200600 T (241020 -+ 967680)Cs 483840 S5+ 60480Crs|138240Sg-+ 6720 V7117280 S 4 240 Vig6
12:14) Vyyy | 240| 6720 60480 241920 T 483840 C; 483840 S5 (69120-1- 138240)Sg|17280 S; - 2160 Cr4
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T... ,,  tetrahedron,

C ,» hexahedron (cube),

0 ,,  octahedron,

C,.. ,,  fourdimensional five-cell,

C,, » ’ sixteen-cell,

C,. » ” twinty four-cell,
Ss ,,  n-dimensional simplex,

Cr, » » cross polytope.

The cases in which we have to deal with a half characteristic
are also indicated in this table. So e.g. the first polytope of the table
is limited by equilateral triangles of two different kinds, presenting
themselves in the numbers 10 and 20.

Meppel, June, 1912.

Chemistry. — “Contribution to the knowledge of the direct nitration
of aliphatic vmino compounds”. By Prof. A. P. N. FrancunonT
and Dr. J. V. Dussky. ’

In the January meeting 1907 1 had the honour to give a survey
of the action of absolute nitric acid on saturated heterocyclic com-
pounds whose rving consists of C and N aloms. This originated in
the fact observed and described by Dr. Doxk, that the so-called

H
glycocollanhydride H,C—N—CO, in which the group NH is placed

O(})—~N -(l)H,
. H

between CO and CH,, nitrated with difficulty, with much more difficulty
than I had expected because a number of other heterocyclic com-
pounds with rings of five or six atoms in which the group NH is
placed in the same manner may be readily nitrated with absolute
nitric acid at the ordinary temperature. This was not the case here;
only a treatment of the nitrate with acetic anhydride or, as I showed
with Dr. Friepmann, of the glycocoll anhydride with acetic anhydride
and nitric acid gave a mono- and a dinitroderivative.

CH,
H
With the so-called alanine anhydride HC—N—CO and with the
| i
OC—N—CH
H
&,




