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Physics. — A theory of polar armatures.” By H. pv Bois. (Com-
munication from the Bosscha-Laboratory).

A well-known partial theory for truncated cones was given by
Sterax and applied to the isthmus-method by Sir Arrrep Ewive. As
a first approximation the magnetisation of the poles is everywhere

Fig, 1.

assumed parallel to the r-axis (Fig. 1) and thus polar elements have
to be dealt with on the terminal surfaces only.

Now the magnetic field due to coils of various shapes has been
thoroughly investigated in every detail by various authors, whereas
that produced by ferromagnetic pole-pieces is only known for parti-
-cular points in a few special cases. I believe it is now useful to
develop a more general and complete theory for arbitrary points
in the field, regard being also paid to protruding frontal surfaces,
sunch as I have been using since 1889 (see fig. 1).

Considering the increasing introduction of prismatic pole-pieces,
e.g. for string-galvanometers and other applications, I have also
calculated equations for these, generally exhibiting a formal analogy
with the conic formulae. Instead of a meridian section, Fig. 1 in
this case represents a normal section, the generatrices being directed
normally to the plane of figure and parallel to the z-axis.

For the determination of attraction or repulsion the first derivatives
of the field with respect to the coordinates have to be considered;
e.g. for gradient-methods in measuring weak para- or diamagnetic
susceptibilities and also for extraction-magnets, such as those used
in ophtalmologic surgery and in ore-separators.

Besides the intensity of the field its topography, especially its
more or less uniform distribution appears more and more important
in quantitative work and ought to be investigated. Here the second
derivatives of the field also come in.

The following equations may occasionally serve as well for certain
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electrostatic problems showing the same geometrical configuration,
on account of the well-known general analogies. The details and
proofs are to be given elsewhere.

Round armatures. Considering in the first place surfaces of
revolution, more especially cones, the coincident vertices of which
both lie in A, the field in this point is known to be

B
H=29, +J’g,:4zf§sinversﬂ+4nfjsin’acosalogT, . ()

The notation sufficiently appears from Fig. 1. Both terms are
generally of the same order practically; the first corresponds to the
truncated frontal planes, the second to the conic surfaces; the latter
shows a maximum for ¢ = fan—'V'2 = 54°44’.

In order to judge of the field’s uniformity we now consider the
second derivatives, which are related to one another by Laprace’s
equation and the symmetry of the case. The a-component, £,, of
the field is everywhere meant, though the index x is mostly omitted
for simplification. For the centre A, where the first derivatives
evidently vanish, the following values are found

09, —_»a 9.9, 9 05, —dn 88in’,800.s:§_ 23 33in‘(}coi§

00t dy* 0:* ’ a? 4 b? 1)

Now the term ©, always shows a minimum in the centre A,
when passing along the longitudinal z-axis, corresponding to a
maximum along the equatorial transverse axes, because the numerator
sin® B cos *3 remains positive for 0 <8< x/2; in particular this is
a maximum, and accordingly the non-uniformity is greatest, for
8= tan—'V'*/, = 39°14’.

The term £, behaves exactly in the opposite way, its second
derivative vanishing for that same angle. This well-known result also
follows from the general formula, which I now find, viz:

029, g 06, — s 0°H,
0z* T 0y* 02

As B > b this expression evidently is = for a § cos— y'*/, — 39°14/;
accordingly 9, shows a longitudinal minimum and transverse maximum
for smaller semi-angles, whereas for larger ones the reverse holds,
s0 as to make the field weaker on the axis than in its lateral
surroundings. Finally for the total field

‘2’_(%%@ =4n 3 Q:ZT [2 sin' Bcos 8 -+ sin* et cos @ (5 cos® a-3) (1 —%;)](3)

22*

3 1 1
—=4x . —é—:in‘ a cos a (5 cos® a—3)(—7 - —é;)(2)
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Equalizing the contents of the square brackets to zero gives a
relation between e and 3. In most practical cases 4°/B' may be

neglected and we find

e.g. for a=239°14" |
the value: g==90° |

as corresponding sets. For the most favourable semi-angle @ = 54°44’
it is thus possible to combine uniformity and intensity of the field.
For «¢ — 63°26’ the same value is obtained for 8 and we have the
ordinary non-protruding truncated cones. These results, somewhat
at variance with current ideas, were shown to be correct by
measurements with a very small test-coil, for which 1 am indebted
to Dr, W. J. pe Haas.

For excentric axial points, at a distance z from the centre A, the
value of the first term is

, atz a—zx
= 4= 1 — — - I
D) =43 ( SVt i b 2&/(,;::;)*:::53) “

54°44’ | 57° | 60° 63°26’
79°267 | 76°52' | 72°49’ | 63°26’

That of the second term for one single cone

B-zsinacosa+V B~2 Bz sin acos atz?aina
1

H(2)==2xF sin® c cos a[log
: b-z sin e cos a + V' 6*=2bz sinat cosa + z* sin® aT

ztga—2B ztg a—2b
+ o . = . ].(5)
B'_2Bzsinacosa-+ z*sinc V' —2brsinacosa + z'sinta

This formula was developed by CzerMak and HausMaNINGER in a
somewhat different form.

By (4) and (5) the total field for any axial point may be calculated,
whether the vertices coincide or not. However a cone is a magnetic
“optimum-surface” relatively to its vertex only.

For excentric points on an equatorial y-axis the first term becomes

o
—? 3 —
D)= ijdg E a(ry cos 0—a*—y*) - b'
b i(a’—*—y’ sin? 0)Va:+yz__2rym0+r’ —

. (6)

which is reducible to elliptic integrals. For the second term a still
more complicated integral is found, of which the first part also
leads to elliptic integrals of the third kind; whereas the logarithmic
term can only be expressed by series of elliptic integrals, a result
kindly worked out by Prof. W. Kaprern. In fact for two concentric
cones we find
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X

If the point considered neither lies on the z-axis nor on the
y-axis the equation for 9, (z, y) becomes more complicated still.
By applying (4) to pole-shoes having parallel frontal planes only
the field for any axial point is easily found; after integration and
division by the polar distance the mean value is found to be
— . 16 1 S
4;,:433(1+~2~;~72- 4+;,). )
As a matter of fact the uniformity in such cases is generally
rather satisfactory. It may even be improved within a larger range
by hollowing out the front surfaces. If a spherical zone be considered
of radius K, perforated in its centre; if the visual angle of the
periphery bé 2y, that of the aperture 2y’ as seen from the sphere’s
centre, then at a distance x from the latter the field is

o= 2x3 |2 —2R' + (2R* - 2*)Rw cos 8 + Rz sin’ HiQ:w ©

8 =V a* + R*—2zR cos 0 19_—_7' B

The sign depends upon whether the point considered lies on the

concave or convex side (z< Ror > RE). By (9) the field in any

axial point of a centered pair of spherical zones may be calculated,

-the interferric space having the shape of a biconvex, biconcave or

concave-convex lense; without aperture we have y' = 0. The formula

for 0°£/02® becomes rather complicated; this derivative vanishes for

concentric concave hemispheres, for which we find after considerable
simplification

f;:%’fﬁ,.........(m)

independent of z, i. e. a perfectly uniform field, a result following
moreover from known properties. The same holds more generally for
a spheroidal cavity in the midst of a ferromagnetic medium, rigidly
magnetised parallel to the axis of symmetry; we then have



334

473 m
'@——l—m’ 1-—-—‘7—1—:;—’ cos 1m). N (8
here m denotes the ratio of the axis of revolution to a transverse
axis of the spheroid; such a case might be approximately realized if
the necessity arose.

The attraction exerted upon a smali body inan axial point is pro-
portional to 0H/0x in case of saturation, or to £ . 05/dz if a magnetisation
proportional to the field be induced in it. It may therefore be found
by differentiation of the expressions (4), (5) or (9), though this gene-
rally becomes rather intricate.

Prismatic armatures. If we denote the length at right angles to
the normal section (Fig.1) by 2¢, then we have for c=o, i e.
practically for prisms of sufficient length, if the inclined planes have
one mutual bisectrix through A

.@“:.@1—}—.D,::Sj,’?—f—Sjsinacosalo‘qg N U4

For shorter prisms the first term becomes

- b c?
’91:83&1"—!7{ l/;;m. N § 400
and the second term
—
B B (l/l + csina 1)
H,=8Fsinacosa}l log — —log (1*%,2)

b R )
b ([/ 142 1)
¢ sinta . |

The subtractive term in brackets vanishes for ¢ = oo ; then evidently
0H,/0a vanishes for «=—45°, which is the most favourable angle
in this case, giving the strongest field ; for shorter prisms however
a > 45°. '

The uniformity along the z-axis is complete for prisms of sufficient
length, i.e. 0°z/0z> = O; for this case we find

0'H, _ 09, sin 2 cos® §

— 8% — 8% sin’ ﬁsinﬁ?_

dz* 0y’ a? b

1

This expression remains positive and passes through a maximum
for g =tan—! '/, = 30° the non-uniformity consequently being
greatest for this angle.

The term £, again behaves inversely, its second derivative vani-
ghing for this same angle; in fact cos 3a then vanishes in the formula
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0°H, 09, 1 1 s

3 _—ay’—-BSsm acos3a(;)7—1—;,— .o (2%

As B>b this expression is = for « S 30°% For the total field
we finally have

2 1 bl
M = 83— | sin? Bsin 28 -} sin*acos Baa| 1 — — . (3%
Or* b? B
Equalizing the bracketed terms to zero gives a relation between
a and 8; neglecting 5*/B* we find
eg for a«a=30°| 45° 48° 50°46’ | 54°44’ | 60°
the value: g=90° | 82°38’ | 79°59’ | 77°9’ | 72°26’ | 60°’
as corresponding sets. For « = 60° we obtain the same value for 8,
i. e. non-protruding frontal rectangles.
In excentric axial points at a distance @ from the centre 4 the
value of the first term is

2ab
S €
— b2t (+)

That of the second term for one pair of inclined planes

H,(2) =23 sin acos « I:ZOg

H,(z) =43 tan"'1

B! — 2Bz sinacos a + 2* sin® a

b* — 2bz sin a cos @@ + 2* sin® a %)
b—zxsinacosa B —asinacosa
4 2ty af tan—! , —tan—1 '
& 8nd o & sin® a

By means of (4*) and (5% the total field may be calculated for
any axial point, whether the 4 inclined planes intersect in one line
or not; only in the former case do they form an “optimum-surface”
with regard to A.

For excentric points on an equatorial axis of y we find as the
first term, for ¢ = o

2ab )
@1(]/) == 43 tan—ﬁ‘ ‘a‘;:—m ; . . . . . (6*)
and as the second term for two pairs of inclined planes

B*+ 2B .
D(y)=2Fsinacosal log + 2Bysin’a + y*sin* a
b* 4 2by sin® a + y*sin® a

B* —2Bysin*a+ y'sin'a
b* — 2bysin*a 4 y*sin*a

lyn’n“az—b__‘“m_ly sinfa -+ B tan— Y sin’ a— )]

n 2t9a(tan_.f/_f_“i_ii’3 + oy

ysinacosa

-+ tan—

Yysinacos a y sin acos o Yy sinacosa

The distribution of the field is thereby completely determined ; in
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the symmetric equatorial plane it is everywhere directed parallel to
the z-axis. The most general case of any arbitrary point in the
field leads to an expression for £, (v, ), capable of integration but
more complicated still than (7*). By differentiation 9./,/0y may also
be obtained, though this also turns out rather intricate. In much the
same way the distribution of £, along the z-axis may be calculated
for prisms of finite length and the integrals.

zq 2z

| $.(2)dz and [ H(2)dz

1 1
may be computed, of which the latter is of importance e.g. in the
study of transverse magnetic birefringency. The case of an air-space
shaped like a cylindric lens is of less practical importance and
may here be omitted.

Physiology. — “Injfluence of some inorganic salts on the action of
the lipase of the pancreas.” (By Prof. Dr. (. A. PEKELHARING.)

Hydrolytic fat-splitting by the lipase of the pancreas, the only
enzyme that will be considered here, may be aided by a number
of inorganic salts as well as by bile acids. It does not follow however
that this action is always due to the same cause, to the process of
activating the enzyme.

It has been proved by Racrrorp as early as 1891 that bile aids
the action of the lipase of the pancreas especially on account of the
presence of bile salts. The fat-splitting power of rabbit’s pancreatic
juice was increased by the addition of a solution of glycocholate of
soda nearly as much as by the addition of bile'). According to the
researches of more recent investigators, especially TerroiNg?), it is
highly probable, that the action of bile acids is based on a direct
influence on the enzyme, so that here we might speak of an “activator”
in the real sense of the word. The fact that various electrolytes also
aid the hydrolysis of fat by the lipase, has been demonstrated by
Porrevix ®) and more in detail by Terrowvg*); afterwards also
by Mixami ¢). However, the mode of action of the electrolytes is still
unknown, as has been clearly pointed out by Terroink. The investi-
gators 1 mentioned used for their experiments pancreatic juice or a

1) Journ. of Physiol. Vol. XIL. p. 88

%) Biochem. Zeitschr. Bd. XXIII. 8. 457.

8) Compt. rend. Acad. d. Sciences, T. GXXXVI, p, 767.
4) 1. c. S, 440.

§) Bioch. Zeitschr, Bd. XXXIX, S. 892.



