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and as now the plane through  and the chord a‘through Pis deter-

mined unequivocally, and as in this plane only two chords & lie,
point P counts only once.

3. Through %* pass four quadratic cones whose vertices we shall
call 7', ....T,. These vertices too behave themselves somewhat irregularly
with respect to the question put originally, for an arbitrary plaune
e.g. through the line a passing through 7, contains always two chords
b, so that also the four vertices of the cones regarded by themselves
satisfy the given question an infinite number of times; nevertheless
these points are for R° only single points.

This can be proved most easily with the aid of the edges of the
tetrabedron 7', ... T',. Let us consider e.g. 7,7, and let us regard %*
as the intersection of the two cones having 7' and 7, as vertices. All
points P” of T, 7, have with respect to the first cone only one polar
plane x,, viz. the plane 77,7, and likewise with respect to the
second cone only one polar plane =, viz. 7,7,T,; the line of inter-
section 7,7, is therefore the line s for all points P of 7', T,, or in other
words the planes Ps (or I’,b,) for all points of 7,7, form a pencil
of planes around the edge 7,7',. The question is to find the points
P of T,T,, for which the chord a of £* passing through P lies in
the plane Ps and to this end we have but to intersect each plane Ps
by 4%, by means of which we find in each suchlike plane three
chords a forming altogether a seroll £* of order four with £* as
a nodal curve and s as a single directrix. For, through a point of s only
one chord a passes, whilst in a plane through s three of suchlike
chords are lying, and through a point of £* evidently two chords a
pass intersecting s. Now this scroll ¢ intersects 7,7, in four points,
but to these 7', and 7', themselves do not belong, because no reason
whatever can be given why of the three chords @ in the plane 7", 7, 7',
e.g. just one should pass through 7; so wefindon T\ 7, four*points
of intersection besides the two vertices of the cones, and as the latter
of course likewise belong to the surface they count once on 7,7,
and therefors likewise in general. '

If we determine the points of intersection of £2* with the chord a
through 7', then we find that the two points which this chord has
outside 4* in common with the surface (§ 1) coincide with 7’,, which
with & view to the preceding means that « touches the surface in 7',.
We endeavour also to acquire on this specia! chord a the (2,2)
- correspondence of § 1, which is easily done and where we have but
this to remark, that in the plane 5,5, as well as in the plane b,*b,*
the four points of £* lie two by two on two lines through 7). If
CeT 33
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now the point of intersection P of b, and a is to coincide with the
point of intersection @ of &, and a then the four points of &*in the
plane abb, must form a complete quadrangle with P and 7’ astwo
of the three diagonal points, and this is only possible if the line 7', P,
thus «a, lies on a special cone of order two, which will in general
not be the case. In an arbitrary plane through 7, lie namely four
points of £*, forming a complete quadrangle; one of the three dia-
gonal points is 7', the two other ones lie in 7,7,7, and evidently
describe here when the plane varies a conic through 7,,7,,7,. If now
a happened to lie on the cone projecting this conic out of 7', then
two coincidences of the (2,2) correspondence would lie on the conic
and the two others in 7' ; in every other case however all four
coincidences must coincide in 7', and so a must touch the surface
£ in T,

4. We now proceed to determine the points of intersection of
£° with an entirely arbitrary line /. To that end we allow a point
P to travel along the line / and we investigate how often the chord
a passing through P lies in plane Ps. According to § 3 the chords a
issuing from the points > of [/ form a scroll of order four with
nodal curve Z* and single directrix /; the lines ~ belonging to the
points P of [ form a regulus and the planes I’s envelope a develop-
able of class 3. If namely point P describes the line [ then the two
polar planes x, and «, of P with respect to ®, and @, (comp. § 2)
revolve around the two lines /,,/, conjugated tv /, and crossing each
other in general; thus the line s describes a regulus with I and 1, as
bearers. '

Now the surface enveloped by the planes Ps. We imagine an
arbitrary point () in space, we choose a point P on /, we determine
the corresponding line s and we find the point of intersection Q of
the plane Os with [/; in this manner to each point P one point Q
corresponds. If reversely we wish to know how many points P cor-
respond to , we draw the line connecting O and @ and we
intersect it by the regulus of the lines ¢ just found; through each
of the two points of intersection passes one line s whose corresponding
point P lies on [, so that to one point  two points P correspond.
Between the points P and @ on [ there exists a (1, 2) correspond-
ence; for the three coincidences the plane Ps passes through O;
so the planes Ps belonging to the points of a line 1 envelope a
developable of class three. ‘

We now add to the figure an arbitrary plane « and we determine
the section of this plane with the scroll of order four, formed by
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the chords of %* resting on /, as well as with the developable just
found of class three; the former is a rational curve of order four
with three nodes in the points of intersection of « and 4* and a
single point in the point of intersection of « and /, the second a
rational curve of class 3 with a double tangent.

Through an arbitrary point of the curve of order four passes one
chord a, intersecting ! in P, and through /I’ passes one plane Ps,
so that in this way to each point of the curve &' of order four one
tangent of the curve X, of class three corresponds, whilst in the
same way we can see that to a node of /* two different tangents
of k, correspond. In the same easy way we can convince our-
selves that to each tangent of %, one point of k* corresponds and
to the double tangent two different ones; so the result is that there
exists a (1,1) correspondence between the points of £* and the tangents
of k,; the question now is how many coincidences this correspondence
possesses.

Let us take a point P on %*and let us determine the corresponding
tangent ¢ of k,, cutting 4* in four points (J; reversely through one
point  pass three tangents ¢, and to each of these one point P
corresponds; so between the points I and @ exists a (3, 4) corre-
spondence and, as the bearer is rational, the number of coincidences
is seven. One of these must necessarily be the point of intersection
of [ and «; for, through this point taken as point P of [, passes a
chord a and likewise a plane Ps cutting a of course according to a
line passing through P, however without it being necessary for a
to lie in the plane Ps. So we have here a coincidence in the plane
a to which no incidence of a into the plane Ps corresponds; if we
set this case apart six coincidences remain which are each the conse-
quence of a point of intersection of / and £°.

For the sake of completeness we add to the preceding that the
regulus of the rays s belonging to the points P of [/ contains the
four vertices of the cones 7,,..., T, (comp. § 3); for 7T, has as
polar plane with respect to ®, as well as to @, the plane 7,7,7,,
so inversely the two polar planes of the point of intersection of { with
this plane pass through 7', and so does therefore their line of
intersection . . ’

The developable of the planes Ps is of class three, so through
each point P of [ itself three planes Ps must pass; indeed two
rays s of the regulus cut / and to these two points P of ! cor-
respond; so through [ pass two planes Ps and these must for
each point of [ be added to the plane passing through that point
but not through /.

33*
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5. As we have seen before %* is for the surface &' a single curve,
k* a nodal curve, and the surface cannot contain other nodal curves
for, if a point O is to be a double point, then through this point either
more than one chord @ or more than two chords & must pass; the
former is only possible for the points of k*, the latter only for those
of %% and these two curves we have already investigated. On the
other hand the surface contains a number of single lines crossing
each other, ax many as twendy; the chords of &* namely form a
congruence of rays (1,3), those of £ one (2,6), and these congruences
have according to the theorem of Harprex 1.2 4 3.6 = 20 rays in
common. Through a point 7’ of such a ray passes one chord a, one
chord b coinciding with @ and one chord & more; so it is a single
point for £*. Two of these lines cannot possibly intersect each other
outside &', for in that case two chords a would pass through one
point, which is impossible; it is not impossible for them to intersect
on &°, but this requires a peculiar situation of %* and &' with respect
to each other, which we will not presuppose.

Ap arbitrary plane through one of the twenty lines cuts £°
besides in this line still according to a curve of order five which
has with the line in common its two points of intersection with A*
but not those with 4!, because the latter are but single points for
the surface. However besides the two points of intersection on A*
the curve must have three points more in common with the line,
in which points the indicated plane must therefore touch the surface;
s0 the swurface L° possesses an infinite number of threefold tan-
gential planes, which are arranged in tiventy pencils of planes, around

the twenty lines of the surface as azes.

7.8.9°
A surface of order 6 is determined by 158 1 =83 points or

in general single conditions; we shall investigate for how many
single conditions £°, £, and the twenty lines of the surface count.
The curve %* must be a nodal curve; s0 we try to construct a surface
of order 6 baving %* as a nodal curve. In an arbitrary plane a we
assume eighteen points quite arbitrarily ; we determine the three
points of intersection of ¢ with %*, and we construct a plane curve
of order 6 having these last three points as double points and at
the same time containing the 18 points above mentioned; as a double
point eounts for three single data and a curve of order 6 is deter-
mined by 4.6.9 =27 points, we have in « just enough data to
determine the curve of order six.

In a second plane 8 we assume arbitrarily only 12 points,
and we add to these the six points of intersection with the curve
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lying. in a; then we can also find in 8 a curve of order 6 which
must lie on the surface. Finally in a third plane y we have now
of course to assume arbitrarily only 6 points and then the surface
is determined; for every arbitrary fourth -plane cuts the three curves
lying in a, 3,y together in 18 single points, and %> in three points
which must be double points, by which the section of the surface
to be constructed is determined. Besides %4° we therefore want
18 4+ 12 4 6 = 36 points to determine the surface; so the condition
that £* is a nodal curve is equivalent to 83 — 36 = 47 single conditions.

If k* is to lie on the surface of order six, then we have to take care
that it must have twenty-five points in common with the surface; so
k' as a double curve and k* as a single curve absorb 47 4~ 25 = 72
single conditions, so that but 83 —72 =11 conditions are left. Now
a common chord of k' and £* has with every surface of order six
passing twice through £* and once through £* in its points of inter-
section with both curves exactly six points in common with this;
thus by distributing the eleven points which are left among eleven
of the twenty common chords, we can be sure that also these
eleven chords will come to lie on the surface. However, we know
that on our surface £2° all the twenty common chords lie; so we
can state the following theorem: the twenty common chords of &°
and k* lie on a surface ° of order 6 passing twice through k* and
once through k*; it is the locus of all the points of space for which
the triplet of chords a -+ 2b is complanar.

6. The first polar surface of an arbitrary point O of space
with respect to £2° is a surface II,° of order five passing once
through 4*; the complete section with £°, which must be of order
thirty, breaks up into £* counted twice and a residual section r**
of order twenty-four, from which ensues immediately that the apparent
circuit of L2° out of an arbitrary point of space on an arbitrary plane
15 .a curve of order twenty-four.

The curve ' has as is easy to see twelve points in common
with £*. The second polar surface of (), viz. a surface IT,* of order
four, does not contain %°, so it intersects it in twelve points; these
are the points which £* and »** have in common. If namely we connect
O with an arbitrary point P of #*, then OP is a tangent in P of
£°*: now if P lies on k* then OPF touches in P one of the sheets
. of L°* passing through 4* but in consequence of this on the line
OP lie united in P three points of £2°, and therefore two of I1,, and
one of I7,: Each of these twelve points counts for three eoinciding points
of intersection of £° with its two polar surfaces; for, if we intersect
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£ & ', the section of £° and I7,, by IT,, then every point of inter-
section with 4* counts for two, with r** for one; therefore each of
the twelve points under discussion counts for three. Asthe complete
number of points of intersection of the three surfaces is 6.5.4 =120, .
outside £° there are 120—3.12==84. It is wellknown that the tan-
gents in these points to r** pass through O: thus the apparent circuit
of L% possesses ewghty-four cusps.

To determine the class of £° and with it of the eircumscribed cone,
resp. the apparent circuit, we assume a second point (', and we
coustruct the first polar surface I7,”; this, too, passes through £* and
intersects the curve »*' just found in 3120 points of which twelve
however lie on £, and count singly, because r** is a single section
of £2° and 17, and 4* is again a single curve of I7;; so outside £°
the three surfaces have 120 — 12 = 108 points in common, so that
the class of £° amounts to 108.

By applying the Prtcker formula »==pu (u—1) — 2d — 3x to the
apparent circuit, we find

20 = (u—1) —» — 3% = 24 .23 — 108 — 3, 84
or
d = 96.

The projecting cone out of O contains therefore 96 double edges,
the apparent circuit 96 nodal points. '

The PLicker equation dualistically related:

g=r@®-1) — 2r — 3y,
applied to the apparent circuit furnishes us with
2r 4+ Bt=—1r (r—1) —p = 108 . 107 — 24 — 11532,
whilst the third formula: ¢« — % = 3 (v—pu) furnishes for ¢
t = 84 4 3(108—24) = 3836;
so we find 2v = 11532 — 3. 336 = 10524, or » = 5262.

Now however we have to remember that the planes through O
and the twenty lines of 2° are threefold tangential planes of the
cone, that their traces are therefore threefold tangents of the apparent
circuit and that therefore they count together for sixty double tangents,
If we subtract these from the entire number 5262, then for the uppa-
rent circuit remain 5202 real double tangents completed by 20 three-
Jold ones.

A cusp in the apparent circuit is generated by a principal tangent
(a tangent with coniact in three points) of the surface passing through
O; these principal tangents form a congruence, of which according
to the above mentioned the first characteristic (number of rays through
a point) is eighty-four. The second characteristic indicates the number
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of rays in a plane; in order to find this we have but to determine
the number of inflexions of a plane section of £°. We have already
seen that this plane section is of order 6 and of class 24, and that it
contains 3 double points, whilst the number of cusps is O; from this
ensues easily that the number of inflexions is 54, the number of
double tangents 192: the congruence of the principal tangents of
Q* has therefore the chavacteristics 84 and 54, those of the double
tangents 5202 and 192.

7. Through each point P of &' passes a plane x, in which are
situated one chord a of %* and two chords b of £*; we wish to
study the surface which is enveloped by those planes z. The class
of this surface can be determined in different ways; we shall deduce
this number in the first place by asking how many planes a pass
through a chord a of #*. Through the point of intersection 4, of
a with %* passes one plane a which in general however does
not pass through o, and the same holds for the second point of inter-
section .4,. Besides these two points a has still but 2 points S,, S,
in common with £, and through these passes a plane = countaining
a; for S, eg. is a point of £* exactly for this reason that the
chord a lies with two chords b of k* in a plane x. So to each
of the two points S,, .S, a plane = through a corresponds.

However planes a can also pass through a without it being
necessary for the point of intersection P of the triplet a 4 25 to
lie exactly on a itself. If we make a plane e to rotate round a, it
contains in each position 2 more chords @ and 6 chords , forming
a complete quadrangle. The two chords a describe the two quadratic
cones by which £* is projected out of the two points A4, , 4,, the
diagonal points of the complete quadrangle describe a twisted curve
possessing in each plane e three points apart from the points lying
on q itself and which are nothing but S, , S, ; so the diagonal points
form a twisted curve 4* of order 5 resting in 2 points S, S, ona,
(and containing evidently the four vertices 7\ ,.., T,, § 3). Let us
consider a point of intersection of this £* with one of the just men-
tioned quadratic cones, we then have evidently obtained a point of
£° and at the same time a plane x through a. Now %° intersects
each cone in ten points, but among these are S, and S, ; so outside
a lie only sixteen points of intersection and if we again add S, and
S, , counted once, we then find that the surface enveloped by the planes
x bearing a triplet a 4 2b is of class eighteen. We shall indicate
it by £,,.

As easily we can determine the class of £, by means of a chord

-10 -
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b of k. If it cuts &* in B, , B,, we must bear in mind that these
points according to § 2 are for the surface £* single points only, from
which ensues that through those points only one plane x passes
which comes in consideration if we make, as is done here, a point -
P to describe the surface and if we ask after the surface to be
enveloped by the planes x; this one plane however does not pass
in general through &. Besides B,, B, b has with £* four more
points S in common ; through each of these evidently passesa plane
x containing b.

However, there are of course now again planes x through &,
whilst point P lies outside 6. A plane g through & contains three
chords a and these describe when @ rotates round b a scroll of
order four with 4* as a nodal curve and b as asingle directrix (§ 3).
The plane 3 contains moreover 6 chords of 4%, of which however
one coincides with b, so that one diagonal point lies on b and two
outside . These describe when 3 rotates round & a twisted curve
of order four, resting in B, B, on b; if namely g touches 4* in
B, or B,, it is easy to see that one of the two diagonal points lying
in general outside b coincides with the point of contact. This curve
of order four intersects the just mentioned scroll of order four in
sixteen points, to which however belong B, and B, as these lie in
b and therefore on the scroll too; if we set these aside, because
they do not satisfy the question, fourteen are left, and these added
to the four points on 4, which do satisfy the question, give us again
the number 18.

We can also determine by the way followed here the eighteen
tangential planes of £2,, through an entirely arbitrary line [ The
chords of £° resting on [/ lie again on a surface of order four, and
the diagonal points of the complete quadrangles in the planes 2 through
[ lie on a curve of order five resting in two points on /; for, the
chord a of £ which we discussed abovc is for 4* an arbitrary line,
so it contains as many diagonal points as in the general case. The
carve and the surface intersect each other now in twenty points,
but to these belong the two points of intersection of the curve
with /, which do not satisfy the question; so there are again
eighteen left.

8. An arbitrary plane through one of the twenty commen chords
of /* and k' contains beside this chord, representing an a as well
as a b, one chord » more, cutting the other outside £*, and therefore
it is a plane ax to be counted once; so through each of the twenty
chords pass an infinite number of tangential planes of £,,, from

-

-11 -



505

which ensues that the twenty common chords of k* and k* are single
lines of L,,.

The plane a issning from a point of &* contains two chords a
and so it counts twice as tangential plane of £,,, whilst reversely
it is easy to see that £,, can have no other double tangential planes
than these; for, in .such a plane must either lie two chords a,
which leads to the curve A*, or more than two chords [, which
is the case for the points of £*, but as for the latter only the plane
through the tangent and the chord a comes into consideration (§ 2),
the last possibility disappears and only the points of %* are left.
The double tangential planes of 2,, are therefore the planes x
corresponding to the points of k*; they envelope a developable L, of class 9.

In order to find this number we look for all the double tangential
planes passing through an arbitrary point B, of 4*. Such a plane
then must contain a chord of £* passing through B, intersecting 2,
and it can thus be obtained for instance by intersecting &* by the
cubic cone projecting £* out of B,, which furnishes 9 points ot
intersection, or inversely by intersecting 4* by the cubic cone projecting
k* out of the vertex B,, which furnishes 12 points of intersection,
of which three however coincide with /73, and must be taken
apart. If now we call A such a point of intersection lying on £*
then really through this point passes one double tangential plane of
L., containing point B, ; so the class of the developable is nine.

Through a point 4 of &* pass likewise 9 tangential planesof A, ;
for one of these points A itself is the point from which start the
two chords & of £*, in the eight other planes on the other hand
the chords & start from an other point; from this ensues that through
A pass altogether ten chords of &' which start from the point of
&* and which at the same time lie in the tangential planes of A,
corresponding to those points; the locus of those chords isa surface
22 of ovder twenty for which k* is a tenfold curve.

For, an arbitrary chord of 4’ meets in each of its 2 points
of intersection with 4* ten generatrices of the scroll to be found,
and is intersected outside &* by no chords of £’

In a tangential plane of &, lie also two chords ) intersecting £?,
viz. in point A to which that tangential plane corresponds; let us
also ask after the locus of these chords 5. Through each point of £°
pass two, through each point of &' nine, because (see above) the
cubic cone projecting £* out of that point is intersected by £° in
nine points; let us now determine the points of intersection of the
- scroll to be found with a chord b, of k*, then of these in each of the
two points of intersection of b, with &* lie nine united. If further-

-12 -
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more we make a plane 4 to rotate round 4, then the chord b, in that
plane, which cuts &, outside k%, describes a scroll having six points
in common with £*; through each of these passes a chord b, which
cats £* and b,; the seroll to be found is therefore a surface £°* of
order 2 X 9+ 6 =24. [t has &’ as a nodal curve and k* as a ninefold
curve.

2. The surface £2*° found in the preceding § possesses no other
manifold curve than £*. Each scroll of order n contains namely a
nodal curve which is cut by a generatrix in n—2 points, because a
plane through a generatrix contains as residual section a curve of
order n—1, and of the n—1 points of intersection of this curve
with the generatrix only one acts as a point of contact, so that all the
remaining ones are due to a nodal curve. Now a plune through a genera-
trix of £2** contains a residual section of order nineteen with two
ninefold points on £*; these together form eighteen points of inter-
section of the generatrix with the nodal curve, so that the latter is
complete with &° only. On the other hand the surface contains twenty
double generatrices, viz. the common chords of k* and k*, as is easy
to see, and these same lines are double generatrices of £2°*.

The surface £2** contains besides the nodal curve 4* and the ninefold
curve k' still a new nodal curve which is cut by each generatrix in
five points: for, a plane through a generatrix contains a residual
section of order twenty-three with two eightfold points on %' and
a single point on 4*, forming together seventeen points; so the gene-
ratrix must contain five points more of an other nodal curve. And
indeed, if we make a plane to rotate round a generatrix b,, it then
possesses in each position still one chord 4, of &* not meeting &,
on £‘; this chord describes a regulus intersected by 4* insix points,
of which one however coincides with the point of intersection of b,
and £*; through the remaining five passes every time one generatrix
of 2% meeting b, outside £ and 4%, thus in a point of the new
nodal eurve.

We can find the order of this new nodal curve with the help of the
theory of the permanency of the number. We conjugate an arbitrary
generatrix of £** which we call ¢ to all others which shall then
be called 2, and in this way we find oo pairs of lines gk to which
we will apply in the first place ScruBerT’s formula:

£6=2.58 -2 .8q").
The letter & indicates the condition that two rays g and 4 of a

1) Scuusert : “Kalkiil der abz. Geom.”, p, 60, N, 22,
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pair lie at infinitesimal distance without intersecting each other, o
on the other hand indicates that they intersect each other without
coinciding; the combination &6 therefore indicates the number of pairs
the two components of which lie at infinitesimal distance and cut each
other at the same time. This can take place in our case as follows.
We know that the double tangential planes of i* are simply the
tangential planes of the four quadratic cones cutting each other in
k*; & has with these four cones twenty-four points in common and
through such a point pass evidently two generatrices satisfying
the condition &6 and forming together one pair satisfying this con-
dition. These generatrices are the torsal lines of L2** and their points
of intersection with k* are the cusps. The surface £** contains however
also twenty double generatrices, viz. the common chords of &* and
k‘, and these too must evidently be regarded as satisfying the indi-
cated condition; the number & is therefore = 20 4 24 = 44.

The symbol #g indicates the number of pairs of rays which
coincide and where g (or A, which is of course the same) intersects
a given line; now that given line intersects the surface in twenty-
four points: so & is twenty-four. We thus find:

2.68—=¢60+ 2 .89 =44 { 48 = 92,
50
&3 — 46.

The symbol g indicates the condition that the two rays of a pair
intersect a ray of a given pencil, thus the symbol &2 indicates the
condition that those two rays lie moreover at infinitesimal distance
without intersecting each other; so the quantity &3 indicates in our
case evidently exactly the class of a plane section of L. If now
we remember that such a section contains in general no cusps, we
then find for the number of double points:

2d — 24 .28 —46 = 552 46 = 506,
80 :
d = 253.

Now we know of these 253 double points the following: 1. the
three points of intersection with £°; 2. the four points of intersec-
tion with £*, each of which is a ninefold point and therefore absorbs
1.9.8=36 double points; 3. the points of intersection with the
twenty double generatrices, so together 3 4 4.36 4+ 20=167;
the order of the new nodal curve is therefore 253 — 167 — 86.

A plane curve of order twenty-four can possess at most § . 23 .22
== 253 double points, just the number of our case: £2* is therefore
a rational surface.

-
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We control this result by wusing a second formula of Scauskrt

viz '), '

op + & + 3 =g, + gh + hy,

where dp indicates the number of pairs whose components without
lying at infinitesimal distance intersect each other, whilst the point
of intersection lies in a given plane, thus evidently in our case
the order of the complete nodal curve, however taken twice, be-
cause each ray can be a ¢ as well as an A, and therefore each
pair of rays satisfying the condition op counts for two pairs; g,
designates the number of pairs where the line ¢ passes through
a given point, a number which is evidently zero in our case,
because all our rays belong to a surface and can therefore not
pass through a point taken arbitrarily; for the same reason we
find %, zero. On the other hand g4 designates the number of
pairs where ¢ intersects a given line /, and A a given line [,
4 number which in our case evidently amounts to 24 .24 = 576,
because /, is intersected by twenty-four generatrices g, /, by twenty-
four generatrices 4, and each line of one group can be joined to
each of the other. Assg=24, e3—=46, sp becomes 576-—24 —46=506,
and as the order of the nodal curve is half of it, we find back the
quantity 253. |

In the formula:

e + €9 + eB=ge + gh + he,?)

which is dualistically opposite to the last but one, o¢ indicates the
number of pairs of rays whose components intersect each other
and whose plane passes through a given puint. Now, too, each pair
we find is counted double, because each ray can be ¢ as wellask;
so 40e is the class of the developable, enveloped by the double
tangential planes of 2. The quantity ¢, indicates the number of
pairs where the ray g lies in a given plane, and %, indicates the
same for /; both numbers are in our case evidently zero; and from
this ensues e = op = 506, so that the class of the doubly circum-
seribed developable of L2 amounts to 233.

For the sake of completeness we shall discuss in short the sur-
face formed by the chords of 4* resting on 4‘. Through any point of
£* passes one, so that £* is a single carve: through any point of £*
on the other hand eight pass, because the quadratic cone projecting
& out of that point is intersected by £* in eight points; so &* is .
an eightfold curve. From this ensues again that an arbitrary chord

3 Le. p. 60, Nv. 23,
%) Le. p. 60, No. 24.
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of &* intersects the demanded surface in each of its two supporting
points with %* in eight points and no more, because two chords of
k* cannot intersect each other outside &*; the demanded surface is thus
of order sixteen, and it has k* as an eightfold curve, k* as a single curve.
That k* is the only manifold curve follows again out of the circamn-
stance that two chords of £* can ineet each other only on the curve
itself; on the other hand the twenty common chords of k* and k* are
again double generatrices. As an eightfold point counts for § . 8.7 = 28
double points, the complete number of double points of a plane section
is 3.28420=104; a plane curve of order sixteen can however

contain at most 4 .15 .14 =105 double points; so the surface is of
genus 1. )

10. Through a point P of space pass two chords & of k' situated
in the plane & through P and the line of intersection s of the two
polar planes of I with respect to the two quadratic surfaces @, , &,
' 2) intersecting each other in 4*; we shall conjugate this plane  as
focal plane to P and we shall discuss the focal system that is formed
in this way. Each point of space has then one focal plane (so
a=1"), with the exception of the points of k* having o' focal
planes, viz. all the planes containing the tangent in that point.

In order to find inversely the number 3 of the foei P of an arbi-
trary plane &, we intersect that plane with @, and &, ; this gives
rise to two conics £, k., and with respect to these we take the
polar lines p,, p, of an arbitrary point Pof x. The polar planes of P
with respect to @, , @, then pass through p,,p, and the line s con-
jugated to P contains the point of intersection of p, and p,; if s is
thus to be situated in plane a, then p, and p, must coincide, and this
takes place only for the vertices of the polar triangle which £,* and
k,* have in common; so 8 is = 3.

The third characteristic quantity, y '), indieating how often a focus
P lies on a given line, whilst at the same time the focal plane =
passes through that line, is found as follows. When P describes
the line ! the two polar planes rotate round the two lines I, [, con-
jugated to [ with respect to @, ,®d,; their line of intersection s
describes a regulus with / ,/, as bearers, and passing through the
vertices of the four.doubly projecting cones of &*; this regulus intersects
{ in 2 points, through which every time one line s passes, and the
foci conjugated to these lines lie on [/ as is in fact the case for all
lines s of the mgulns;. for these two foci however the focal plane
== Ps passes through {; so y = 2.

1) Srurx, “Liniengeometrie” 1, p. 78.
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Through the points I of “space the polar planes =, , 7, with
respect to @, , P, are conjugated one by one to each other; so.we
can regard the lines x as the lines of intersection of conjugated planes
of two collinear spaces, and we then find inmediately that the lines
s formYy a tetrakedral complec, for iwhich the tetrakedron of the
four vertices of the cones of k* is the surface of singularity, in such
a sense that cach arbitrary ray through one of the vertices orin one
of the faces of that tetrahedron is a complex ray, whilst in general
the tetrahedral complex being quadratic a point has but a quadratic
complex cone, a plane a quadratic complex curve. As namely the two.
polar planes of the vertex of a cone coincide in the opposite face of the
tetrahedron, each line in this face can be regarded asaray s, and as
of a line [ through 7, e. g. the t w o conjugated lines liein 7,7,7,,
inversely the two polar planes of the point of intersection of those
conjugated lines pass through /, so that / is a complex ray s. The
complex cone of a point P in 7,7,T,= 1, breaks up into two
pencils, one with vertex /> and lying in v, the other with vertex I’
and lying in a certain plane through P and 7,; and likewise the
complex curve in a plane through 7', degenerates into 2 points, viz.
T, itself and a certain point in the line of intersection of that plane and .

A ray s being the line of intersection of the polar planes =, , ¥, of
a certain point I” with respect to ®, , ®,, inversely through an arbiteary
ray s two planes x, , x, must pass having the same pole P; if however
a line lies in a plane, then the conjugated line passes through the pole
of that plane; thus for s the #r0o conjugated lines s,, s, must pass
through P and must intersect each other in /2; so we can also define
the rays s as those rays of space whose two conjugated lines with
respect to P, B, intersect each other. In this we have also a means
to determine the focus of an arbitrary ray s; we have but to find
the point of intersection of s, and s,.

The rays s conjugated to the points of an arbitrary line / form
a regulus as we have seen above; those conjugated to the points of
a ray ¢ must thus form according to the preceding a quadratic cone,
and this is evidently the complex cone for the focus P of s, by
means of which a construction for that cone has been found ; we
take the ray s conjugated to /’, we allow a point to describe that
ray and we determine for each position the two pelar planes; the
line of intersection of these deseribes the complex cone when the point
describes the ray s. Just as the regulus for a line /, so each com-
plex cone contains the vertices of the four doubly projecting cones ;

1) Storu L c. p. 342.
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and as the two conjugated lines of a ray s lie likewise on the com-
plex cone of the focus P, they themselves are again rays s.

The complex curve lying in a plane « we find by regarding the
two poles 4, and A4, of a. The conjugated lines /,, /, of the lines [
of « pass respectively through 4, and A,, and are conjugated by the
rays [ one by one to each other, so that two projective nets of rays
are formed ; the locus of the points of intersection of rays conjugated
to each other is a twisted cubic through A, and 4,, and furthermore
through the four vertices of the cones T,...7,; for, the two conju-
gated lines of the line of intersection of « with 7,7,7, are A, T},
A,T,. The rays s conjugated to the points I of that twisted cubic
as foci lie in « and envelope the complex curve; and as each line
of the plane 7,7,T, can be taken as a ray s conjugated toeg. 7,
so also the line of intersection with «, the complex conic will touch
the four surfaces of the tetrahedron.

Botany. — “On the demonstration of carotinoids in plants” (First
communication): Separation of carotinoids in crystalline form.
By Prof. C. van WisserLineH. (Communicated by Prof. MoLy).

(Communicated in the meeting of September 28, 1912).

Many of the chemical, physical, and microscopical investigations
on the yellow and red colouring matters of the vegetable kingdom
which are grouped under the name carotins ') or carotinoids®) bear
witness to great care and originality. They have, however, not all
led to similar results. KEspecially the microscopical investigation has
led to very divergent results which sometimes seriously conflict with
those obtained by chemical and physical means. The investigators
might be divided into two groups; one is inclined to consider all
carotinoids -identical; believing that the differences observed are not
of a chemical nature. The other group distinguishes several carotinoids.

T. Tammes ®) is especially a representative of the first group. After
investigating a fairly large number of plants, she comes o the
couclusion that the yellow to red colouring matter of plastids, in

green, yellow variegated and etiolated leaves, in autumn leaves, in
flowers, fruits and seeds, in diatoms, green, blue, brown and red

1) (zarex, Biochemie der Pflanzen, 1. p. 172.

2) M. Tswerr, Uber den wmakro- und mikrochemischen Nachweis des Carolins,
Ber. d. d. bot. Ges. 29. Jahrg., Heft 9, 1911, p. 630.

%) T. Tamues, Uber die Verbreitung des Carotins im Pflanzenreiche, Flora,
1900, 87. Bd. 2. Heft, p. 244.
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