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Chemistry. — «Equilibria in ternary systems” IV. By Prof. F. A. H.

SCHREINEMAKERS.

(Communicated in the meeting of January 25, 19183).

We consider a liquid L, saturated with the solid substance F and
in equilibrinm with the vapour G. We allow this liquid to proceed

along a straight line which passes through the point F.
If we call dn the quantity of solid substance F that dissolves in

the unir of quantity of the liquid, we get:
de = (a—z) dn dy = (B—y) dn
If we substitute these values in (6) (II) and (7) (I we have:
—M.dn=AdP—B4T . . . . . . . (1)
—N.dn=CdP—Dd1T . . . . . . . (2

where for the sake of brevity:
M = (v—a)r + 2a—a) (1—P)s + —B)%
N = (z,—a) (r—a)r + {(v—)(y,—1) + (@,—2)y —B)is + (¥, —1)y—B)
From this follows: .
DM—BN DM—BN da
=—— = . (8)
BC—AD BC—AD «—=
. CM—AN in — CM—AN _d_’t._ . @)
~ BC—-4D BC—AD g—ax = =~
dP __DM—BN
AT CM—AnN N €5))
As in the previous communication, we agsume the very probable
case that BC—AD is positive.

M
If now we call 2=« and y = 8 then }/=(0, N=0 and =0,
- a—&
bat does not become 0 as a rule. If we call zg(,,:y'—{)’ we
a—a r—a
get:

Bl(z,—a)r + (4, —8)s + {(®, ~ &)s + (y,—P) tgp]

and for d7" a same form \with this difference that in the numerator
B has been replaced by 4.

To perceive the significance of this we take fig. 1 in which the
closed curves indicate the boiling point lines of the solutions saturated
with #. The exphased ones, as has been stated previously, have

1) The figures (1), (I1),,and (Ill) refer to the former communications.
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shifted to that side of F where the vapour region is situated. On
increase of pressure, the boiling point line disappears finally in the
point J/, the correlated vaponr line in the point #/,. The point
D indicates the vapour which can be in equilibrium with the solid
substance J© and the liquid F, therefore the vapour which forms at
the minimum melting point of the compound 7. The line XFY is
the tangent in F at the boiling point line passing through . We
have already noticed previously that the lines DFE and XY are
conjugated dizfgonals of the indicatrix in # at the liquidum side of
the &-plane.

We now lay down through F an arbitrary line ZZ, and let a
liquid proceed along this line; as according to (6) dP and dT have
& definite value differing from nil it follows that in this point neither
the pressure nor the temperature is at a maximum or a minimum.

If, however, we choose the line in such a manner that

(@ —a)r + (y—8)s 4 (@ —a)s + (1, — B tgp =0 . . (7)
then dP as well as d7" is nil. From (13) (1) it follows that (7) is
safisfied when the line drawn through # comes into contact
in F with the ULoiling point line passing through this point, therefore
When the liquid proceeds along the straight line XFY.

If now we introduce a line element dg positive in the direction
away from F and negative in the direction towards F, and if we
let ¢ change from 0° to 360° we have dz=cos¢.do so that (6)
is converted into:

dP — B[{("l"x—a)r + (yl'—ﬁ)s; c0s p -+ {(ml—a)s + (y1—ﬁ)t} Sin(p] d9° (8)

BC— AD

The factor
{@,—a)r + (y,—P)s} cos @ + {(@,—a)s + (¥ =BG sinp . . (9)
in the point F is nil towards X as well as towards ¥ ; in all other
divections it differs from nil. 1f 0 ¢ is given such a value that the
line passes through the point D we notice that the factor (9) is
positive. Hence, in the point F the value of (9) is positive in the
direction towards D and negative in the direction towards .

We may now easily deducé that (9) is positive if, starting from
I", we move fowards that side of the line XF'Y where the point
D is situated; and that (9) is negative when we move from F
towards the other side of the line XJ/7Y. These positive or negative
values are, however, very small if the direction almost coincides
with X or- F'Y so that at some distance a reversal of the sign
may perhaps take place. B = H— being positive it follows from

(8) that the pressure when starting from £ increases towards that
78*
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side of the line X/M'Y where the point D is situated and decreases
when starting from [’ towards the other side of the line XFY.

Hence, if a liquid proceeds along the line FD or M, or FZthe
vapour pressure increases starting from Z'; if it proceeds along the
line I'Z, or F'G or I'E the vapour pressure decreases from J7. Only
in the direction of F towards X or towards I” the vapour pressure
remains at first unchanged. B

It will be easily perceived that these considerations are in harmony
with fig. 1. For the closed curves drawn in fig. 1 are the boiling
point lines of the solutions saturated with I7; each curve, therefore,
apphes to a definite constant pressure. As the pressure becomes higher,
these curves draw nearer to M to tinally disappear in this point. _
Of course, it may happen also that on increase of pressure a curve
moves away entirely or partially from A/ to again draw nearer to
A at a farther inerease of pressure. In the point ' this, however,
is not the case; we have already demonstrated that the part of the
boiling point line passing through F sitnaled in the vicinity of
moves on increase oOf pressure towards A/, and on reduction of pressure
away from 3.

4
X i~ f
K 4 F z
Y Mg, 2.
D A
P
/
a £ .
o Y
. ¢ !
Frig. 1. | £
- Z ' z,
Fig. 3.

In fig. 2 the line ZIFZ, represents the same line of fig. 1; the
part FZ lies, therefore, at the same side of XF¥ where the point
D is situated; the part FZ, lies, theretore, at the other side. Perpen-
dicularly on tle line ZZ, we place the pressure axis, hence the
vapour pressures of the liquids saturaied with F of the line ZIFZ, . As
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according to our previous considerations the pressure increases from
I’ towards Z and decreases towards Z, the vapour pressure curve
in /" maust have a direction like curve af”h. As the line I'Z comes
into contact with one of the exphased boiling point Lines, the pressure
in this point is a maximum; on the curve a0 of fig. 2 a maximum
vapour pressure mnust, therefore, occur somewhere between a and /7.

If, however, the line ZFZ, of fig. 1 is tarned in such a manner
that it keeps on passing continually through F, the curve aF’d of
fig. 2 will change its form although it will of course, also keep on
passing through #”. From our previous considerations it follows at
once that the direction of the tangent in J” and the position of the
point with maximum vapour pressure changes. If ZIFZ, coincides
with XZV" we obtain in fig. 2 a curve cF'd with a horizontal
tangent in /7,

We have assumed in fig. 1 that the boiling point line passing
through £ is curved in the point F in the direction towards D;
in our previous communication (II) we have noticed, however, that,
in the vicinity of /7 1t may be curved in some other direction also.
It may then present a form such as curveraFd of fig. 2 (II) in
which, however, we must imagine the arrows tg pointin the opposite
direction. We have deduced this form while*assuming that the
vapour contains one of the three components' only. Althongh in
this case, the appearance of such a form is not very likely,
the possibility thereof is greater when the vapour contains the three
components and when, for instance, in the system LG a maximum
temperature occurs. We now imagine through point & of tig. 1 and
also at somewhat higher and lower pressures, boiling point lines of
this form. Lines proceediry from £ towards that side of XF'Y
where the point D is situated will then each again come into contact
with a boiling point line, so that a pressure maximum must occur.
Lines which proceed from F towards the other side of XF Y either
do not come into contact with a boiling point line at all, or else
they meet two of these, so that there occurs one point with a
maximum and one with a minimum vapour pressure. The latter
case will occur on lines in the vicinity of X and FT.

On turning the line-ZFZ, of fig. 1 we will, therefore, have vapour
pressure cuvves like aZ”h of fig. 2, further like af") of fig. 3, and
if ZFZ, coincides with XFY of fig. 1, a vapour pressure curve
cl”d of fig. 3.

In order to investigdte the change in temperature in the point
I on the lines passing through this point we take the formula
corresponding witl (8): ) . )
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_ Al —a) vy, —B8) steos o + {(m,—a) s [y, —B) t] sin
’— BC—AD
in which 4=V — v therefore positive or negative.

From this it follows that d7" will be ni/ when {9)is nil, therefore
when the line drawn through ' coincides with the tangent X/'Yin =
F at the boiling point line passing through this point, or what
amounts to the same thing, at the saturation line under its own-
vapour pressure. We now distinguish two cases.

V' > ». The saturation lines under their own vapour pressure are
now sitnated as in fig. 14 (I); we now imagine, in this figure, the
tangent drawn on to the saturation line under its own pressure,
passing through F. As in fig. 1 we will call this XZ'Y. The point -
corresponding with the point D of fig. 1 is, of course, situated in
fis 14 (I) on the vapour line correlated to the saturation line under
its own vapour pressure which passes through the point Z. Hence
it is situated, as in fig. 1 to the left of the line YFX. :

If now we move in fig. 14 (I) from I towards that side of the
line XFY where the point D is situated, then, as follows from (10),
the temperature increases starting from #; when moving towards
the other side of the line X/'Y the temperature decreases from 7.

After the previous considerations in regard to Fig. 1 1t is evident
that this agrees with tig. 14 (I). If in this figure we imagine a line
drawn from I towards that side of N/ where the point D is -
situated this will come into contact with one of the exphased satu-
ration lines under their own vapour pressure. As each of these curves
belongs to a definite constant temperature differing, of course, from
curve to curve, the temperature in this point of contact is a maximum
one. 1f now in fig. 2 we imagine the pressure axis to be replaced
by the temperature axis we again obtain a curve hike a/”6 with
a maximum temperature between ¢ and /. If in fig. 14 (I) we turn
the line passing through I until it coincides with XZ'Y, the curve
al"b of fig. 2 is transformed to curve c¢F’d of this figure.

Should the case occur that in [ the saturation line under its own
vapour pressure becomes curved away from ), we obtain curves
as in fig. 3 in which we must again imagine the pressure axis to
be replaced by the temperature axis.

V< wv. The saturation lines under their own vapour pressure are
no longer situated as in fig. 14 (I); we may, however, easily imagine
them from this figure if we suppose the point /' to lie on the line
MM, between M and AM,. From a consideration of this figure it
then follows that, starting from [, the temperature decreases towards
that side of the line XFI where the point D is situaled and

©

aT do . (10)4
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increases towards the other side of this line. Af the side turned away
from the point D of tke line XFY is now also found the temperature
maximum. This is also in agreement with (10). 4= V—uv now
being negative it follows that for positive values of (9) and of dy,
dT from (10) is now negative ; this means that the pressure decreases
from F towards that side of the line XY where the point D is situated.

1P .
We now take ;—T from (5) and write this in the form:

b _B—ED ...y
dT~ A--RC

In this:

R— % _ He—ar 4+ (y —B)s} cos ¢ + {(@ — €)s + (y—P) sin ¢ 11a)

N7 o, —a)y + (y,--y)s cos p A {o,— ) - (y, —y)f sin @ )

For t=¢ and y=g3, R =0 unless ¢ 15 chosen in such a manner
that the denominator also Lecomes O, this is the case, when starting
from ¥ 1n fig. 1, one moves along F.\ or FY. We will first assume
that this is not the case.

If one moves from JF towards that side of XFY where the point
D is sitnated R will be positive, when moving from F towards
the other side R will be negative. We now let a hquid saturated
with solid F proceed along the line ZFZ, , from (11) it now follows
that in the point Z :

[ ——
ﬂ:‘E:}I i L e e (12
AT~ A V—v
,
V> . In the PT-diagram of fig. 4 aK vepresents the sublimation,
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KT the three-phase and Fd the melting point curve of the compound”
I'; these three curves are therefore the same as the homogeneous-
curves of fig. 3 (IIT). The direction of the melting point curve Fd
(fig. 4) is delermined by : -
dP  1I—y
ar— V—u
From (12) it follows that, in point F of fig. 4, the PT curve
ZIZ, must come into contact with the melting point line Fd. The
further course of this PZcurve in the vicinity of the point I/ may’
he traced in the following manner :
We proceed in fig. 1 from I towards Z,, R thus becoming negative.

al

. . dpP
From (11) it now follows that o7 remains positive so that the curve

must be situated like curve FZ, of fig. 4.

If, in fig. 4 we move from F towards Z, B becomes positive.
A being small, the denominator of (11) will soon become nil $0
that curve FZ of fig. 4 must have a vertical tangent in the vicinity
of the point Z. If in fig. 1 we move further from # towards Z, then

1P - .
(ZTfl'om (11) will become negative first, and ni/ afterwards, so that
(

. ar
curve FZ of fig. 4 must have a Lorizontal tangent. As T after-
wards becomes posilive, curve FZ is bound to fall at a decreasing

temperature.

Proceeding from point Z we find on curve ZFZ, first apressure-
and then a temperature maximum, further a point of contact with
the melting point line /d of the compound 7 at the minimum
melting point of the compound and finally a receding branch Iz,
All this veminds of the P, T-curves deduced by VaN DER WaALS
for solid - liquid -~ gas in binary systems.

To some differences, for instance that the P, 7 curves mentioned
here do not meet the sublimation line of 7 in the maximum subli-
mation point, I will refer later.

In fig. 4 it has been assumed that curve ZFZ, exhibits a double
point 0, namely a point of intersection of the branches FZand £Z,.
In order to perceive the possibility of a similar double point we fake a -
circumphased boiling point line (fig. 1). On this occurs a point with a
maximum and another with a minimum temperature. These points
divide the boiling point line inlo two branches and in such a man-
ner that to each point of the one branch appertains a definite point
of the other branch, namely in that sense that both points indicate

L
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solutions of the same {emrerature and the same vapour pressure, and
saturated with I

Of all straight lmes which unite two such correlated points of
the two branches one is sure to pass throngh the point £. If now,
we allow the line ZFZ, of fig. 1 to coincide with the above men-
tioned connecting line, we then find two solutions situated at different
sides of I, which have the same temperature and the same vapour
pressure. The branches FZ and FZ, of fig. 4 then must intersect
each other at that temperature and pressure.

V < v. The melling point line Fd of fig. ¢ now proceeds from
the point /7 towavrds lower temperatures and higher pressures; the
point [ of curve ZFZ, now gels situated between the point with
a maximum {emperature and that with a maximum vapour pressure.

To each of the solutions of the line ZFZ, of fig. 1 saturated
with solid 7, appertains of course a definite vaponr; the points
representing these vaponrs form a curve which we will call the
vapour line conjugated with the line ZFZ,. It is evident that this
vapour curve conjugated with ZFZ must pass through the point
Dof fig. 1. If the line ZFZ, is turned, the conjugated vapour curve
will also alter its position and form, but still pass through the point
D. In fig. 5, the vapour curve conjugated with ZFZ, is represented
by the dotted curve ( fee De). .

In fig. 5 it is assumed that the straight line ZFZ, and its con-
jugated vapour curve intersect each’ other in a; that such a point
of intersection can appear 1s easy to understand. On each of the
boiling point lines of fig. L occurs a point where the tempera-
ture along tlus curve is a maximum and another point wlere
it is a minimum. If now we
take the vapour phase apper-
taining to a similar solution,
this with the liquid and the
point F, will lie on a straight
line. We now draw, through
a similav liguid & with a maxi-
mum or minimum temperature,
the line ZFZ (fig. 5); the
vapour a which is in equili-
brium with this liquid 5 is then also situated on the line ZFZ. so
that the vapour curve f¢ must intersect the line ZFZ in a. With
each liquid of the line 47, is now in equilibrium a vapour of curve
ae, such as liquid ¢ with vapour ¢, liquid £ with vapour D, liquid
b - with vapour a. With each liquid of line baZ a vapour of curve

Fig. 5.
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acf 1s in equilibrium. If ¢ represents the vapour in equilibrium with -
the liquid @, a vapour between ¢ and ¢ will be in equilibriaum with -
a liquid between @ and b. If each liquid is united with the vapour

. with. which it is in equilibrium, these conjugation lines not only

occupy the strip eaZ, and faZ but also a part sitnated between

ba and curve ce outside this field.

We have taken the point of intersection a of ZFZ, and the curve -
Je between F and Z; it is evident that it may also be situated at
the other side of 7.

We now imagine drawn in fig. 5 a set of straight lines passing
through F' and for each one its conjugated vapour curve ; these latter
all pass through the point D. Among these there is one that ulso
passes through the point /. At the maximum sublimation point of
the compound F the vapour in equilibrinm with solid # has the
composition /7 and the liquid which then, of course, is present in
an infinitely small quantity only, a composition K (fig. 5). We can -
observe this also by other means. We imagine then in fig. 1, besides
the boiling point lines of the solutions saturated with 17, also drawn
their appertaining vapour lines; one of these passes through the
point /7 so that at a definite P and 7" a vapour exists of the same
composition as £ which can be in equilibrium with solid F and a
liquid. This liquid is represented by the point X of the boiling
point line of the pressure P, appertaining to the vapour point F.
In fig. 1 and 5 this point is'represented by K. Hence, the equili-
brium solid # - vapour F - liquid X occurs; we are therefore,
at the upper sublimation point of the compound F, therefore, in the
point K of the sublimation line aX of fig. 4.

Ir now in fig. 5 we twrn the line ZFZ,, until it passes through
the point X, its conjugaled vapour curve will pass through the
points D and F. '

We have noticed above that the straight line ZF.Z,, and its con-
jugated vapour line can have a point of intersection a (fig. 5. As
in this case the vapour @, the liquid 6 and the solid substance F
are situated on a straight line, it follows from (11) that:

dP  (v,—e)B— (@—a) D (z,—a) H 4 (a—2) H + (z—&)q
AT~ (@,—2) 4 — (¢ ~) C (@,—a) V + (a—a) V, + (t—a) v

so that the same relation applies as if the three phases belong to a
binary system.

If, on one of the straight lines ZFZ,, the points a and b of fig.
5 coincide, the solid substance Z is in equilibrium with a liquid
and a vapour which both have the same composition. This is the

(13)

-10 -



1209

case if in the ternary system liquid -+ vapour, a singular point
occurs and when the saturation curve of I passes through this
- point. As in this case x =, and y =y, it follows from (11}, as
R becomes intinitely large, that :
@_D_ A
a7 C T V,—V

We Dbave noticed above that ifthe straight line ZI'Z, passes through
pomt K of “fig. 5, its conjngated vapour curve must pass through
D and F and that with the liquid A a vapour I isin equilibrinm.
Hence, we have for the pomt K », =a and y, =8. As R now
becomes — 1 it follows from (11) that:

aP B+ D I —n
= - — . s . . (10)
AT~ A+ C  V,—v

The above formula also determines the sublimation line a K of the
compound I (fig. 4) If, in fig. 5 the straight line ZFZ, passes
through the point K, ihe corresponding P,T.-curve in fig. 4 must
meet the sublimation curve aX in the point K. We now give in fig.
1 different positions to the straight line ZFZ,; to each position
appertains a definite £, 7curve in fig. 4 so that we can draw in
this fignre an infinite number of P, 7-curves. From our previous
_ considerations it now follows that ql/ these (I will refer later to a
single exception) meet the melting point line Fd of the compound
I in the point ¥ and that one only meets the sublimationcurve a K
in the point K. The latter takes place when the straight line ZFZ,,
in tig. 1 passes through the point K. All other P, T-curves in fig. 4.
proceed ahove the point K, or in other words: at the upper subli-
mation temperature T%. of the compound F' the vapour pressure of
each system: solid & - liquid + vapour is greater than the vapour
pressure oi the solid substance J7.

Different P, T-curves, besides coming into contact in F with the
melting point curve Fd will also meet the three-phase line FK.
Although all this is evident from what bas been said previously,
we will still consider' a few of these points in another manner.

On warming the solid compound JF, this, as mentioned previously.
proceeds along the sublimation curve « A of fig. 4 until the upper
sublimation point X is attained; then the equilibrium: solid F 4
liquid 4 vapour is formed ‘which proceeds along the three-phase
line K I of fig. 4 until the melting point line Fd has been obtained.

We have alveady noticed previously that the liquid and vapour
continually alter their composition therewith and we may now ask
what curves they proceed along in fig. 1.

-11 -
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At the temperature Tk of fig. 4, therefore at the upper sublimation*”
point of the compound F, the vapour has the composition /' and-
the liquid which can be in equilibrium with that vapour the com-
position K of fig. 1. At the temperature 75 of fig. 4, therefore at
the minimum melting point, the vapour bas the composition D and
the liquid the composition F of fig. 1. Whereas the compound J
proceeds in the P,7-diagram of fig. 4 along the three-phase linc .
FK the liquid in fig. 1 proceeds along a curve from K towards I
and the vapour along a curve from F towards D; we will call
these curves the curves KF and FD.

We now imagine drawn in fig. 1 some more boiling point lines
of the solutions saturated with /' among which also those passing
through the point A; on each of these a maximum and a minimum
temperature occurs. The curve K/ now intersects each of the boiling
point lines situated between X and Z in the point with the maximum
temperature, or in other words the curve K[ is the geometrical
place of the points with a maximum temperature on the boiling
point lines situated between KX and Z.

The liquid and vapour of the three-phase line K/ of fig. 4 being
formed from the solid substance F, the three points #, L, and G'in
fig. 1 must always lie on a straight line.

This means that the temperature along the boiling point line of
such a liquid is a maximum or & minimum one.

From a consideration of fig. 1 it follows that here the temperature
in this case is a maximum, from which follows at once what has
been said above as to the course of the curve K7

In the same manner we find that the curve FD also intersects
each of the vapour limes conjugated with the boiling point lines in
the point with the maximum temperature.

In fig. 1 we might also have drawn instead of the boiling point
fines the saturation lines of JF under their own vapour pressure.
We then should have found that the curve KF intersects each of
these lines in the point with the minimum vapour pressure.

We now turn the line ZFZ, of fig. 1 until it intersects the curve
KF of this figure; the corresponding P,7-curve in fig. 4 must then
meet the three-phase curve 'K in a point. For in the point of intersection
of the line ZFZ, and the curve KJI in fig. 1 the pressure and tem-
perature for both curves is namely the same; as, however, the curve
KF passes through the points with maximum temperature of the
boiling point lines in fig. 1 and as this is not the case with the
line ZI'Z, a higher temperature (lhe pressure being equal) is found
on curve KF than on the line ZFZ,. The P T-curve of the line

-12 -
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ZFZ, therefore comes into contact with the three-phase line KF of
fig. 4 and is situated further above and to the left of this three-
phase line.

In order to deduce something more from the P,7T-curves, we take
a temperature 7 lower (han the minimum melting point of
the compound J. The saturalion line of ' under its own vapour
pressure bas at this temperature 7’z a form as in fig. 7 (1) or 11 (I);
the minimum vapour pressure in the point . of this saturation line under
its own pressure we call P,. the maximum pressure P,r. Of all the
equilibria of F -+ liquid -+ gas appearing at the temperature
Tp, the highest vapour pressure is, therefore, Py and the lowest
P,. If, in fig. 4, we Yepresent both pressures hy the points M
and m, one P, 7T-curve passes. through the point M and one through
the point m, whereas ail he others must intersect the perpendicular
line placed in B3 betwween A and m. One obtains the P, T-curve passing at
Tp through the point M when the moving line ZFZ, of fig. 1
coincides with the line Z/M, and the one passing through the point
m when the line ZFZ, coincides with the line [, of fig. 7 {I) or
11 (). In fig. 4 two P, T-curves must pass through each point
between M and m. For if we choose a pressure . between Py and
P, we notice from fig. 7 (I) and 11 (I) that at the temperature
Ty two different systems: solid /7 + liquid 4 gas have a vapour
pressure P, from which it follows at once, that in fig. 4 two P,7-
curves must pass through each point befween M and m.

If on the curve Mamb of fig. 7 (I) or 11 (I) we imagine two
points of. equal pressure connecied by a straight line, we notice
Ablat there must be a definite pressure P, at which this conjugation
line passes through the point Z. If now, the straight line ZFZ of fig. 1
passes through this conjugation line, the corresponding P, T-curve at
the temperature Tzand the pressure P, must exhibit a doable point. This
curve is represented in fig. 4 by ZpFbZ,. All the other P,T-curves
as a rule intersect the line Mm in {wo points of which one is
situated above and the other below the point 5.

If the temperaiure T'p is changed, then in fig. 7 (1) or 11 (I) the
saturation line uander its own vapour pressare changes its position
and form, while Py, P, and P, also change. The points M,
m and A in fig. 4 then proceed along a curve; the curve through
which the points M and m go, is represented by MM, A, M, Fim,Km;
we will call this cnrve the boundary curve of the system: solid
F 4 lignid 4 gas.

The cquilibrivm betveen solid [, liquid, and gas is defermined by
(6) II and 7 (I1). To the pomt A and m also applies the .relation:

—~——

-13 -
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—a ]
= .
&—r  J17Ny -

Frowm this follows for the boundary curve:
' P (¢,—a)B—(@-=6)D
_—_— T
ar "~ (z,—a)A—(q—e) C

so that this boundary curve must com® jnfo contact With the subli-_
‘mation line of the compound in the Mgximum sublimation point K
and with the melting line in the miniMym melting Point £. Further
it is evident that the three-phasé line 4 of the compound F is &
part of the boundary curve.

Hence, all the P,7-curves in fig- ¢ al'e situated in the regio.n
encompassed by the boundary  curves throggh each point of this
region pass two P,7-curies and throu8}, each point of the boundary
line passes a P, T curve which meets tjs boundary line in that point.

The boundary curve itself is, therefOlq 1o p,7-curvein thatsense
that it corresponds with a straight Npe passing through F, this,
however, is the case if only one Of the three componenrs of F
occurs in the vapour.

The double point b passes in fig. 4 tht0ygha curve terminating in the
point F. When the saturation curves ulQgp thejy own vapour pressure
possess, in the vicinity of the minimity melting point 77, a form
as in fig. 12 (I) no double point Of 5 P, 7-curve appears above
Zp. The double point cuarve 1n fig. 4 then proceeds from F towards
lower temperatures. “

If, however, the saturation line at 7% yunpder 1S own vapour
pressure has a form such as the curve ofb in fig. 2 (II) the double
points ave still possible above 7 aPQ at each temperature moreé
than one may appear.

From (11a) it appears that R can beqgme ml only forz = “_&“d
y =, therefore, in the point #. R, hOlever, may becowe infinitely
great and change its sign in other poin!\ of the component triangle.
This will be the case when the denomiNgtor becomes 0, hence:

fo—a)r + (y,—y) s}eosq (@~ 4 (r,—y)tisng =10 - (16)

Let us call the solution for which 1By js the case, 'the solution ¢
(16) then means that the line Fg comes jnto contact in ¢ with the
liquidum line passing through the poitg ¢ of the heterogeneous
region L -+ (. We may express (his jz0 as follows: 1 becOmes
infinitely great when the conjugation lingg liquid-solid and liquid-gas
are conjugated diagonals® of the indiChyix in the liquidum point.
As R =, (11) is converted into:
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. in which D and (' have another value than in (14).

Equation (16) is, of course,” also satisfied z =z, and ¥=1uy,

hence by a singular point of the system liquid - gas. In this case,
2

C (1Y)

D and C and consequently obtain the same value as in (14).

ar
We now imagine also the P,7-curve of the singular point drawn in

dP :
fig. 4; we may then easily demonstrate that o7 8 determined for

this curve by (14).

If now, on one of the straight lines ZFZ, of fig. 1 a singulax
point oceurs, so that in the equilibrium of solid # 4 liquid 4 vapour the
two latter ones have the same composition, its 2, 7-curve must meet
the P, T'curve of the singular point in fig. 4.

Such a case occurs when at a definite P and 7 a singular point
appears or disappears on the saturation line of F, so that the satu-
ration line and the correlated vapour line meet each other in thiat point,

With the aid of the previous formulae we might be able to inves-
tigate more accurafely the course of the P,7T-lines if we expressed
the (uantities r, s, t ete. by means of the equation of state of
Vax pew Waars, in which # and b must then be considered ag

functions of « and y.
< (To be continued).

;
Chemistry. — “Equilibria in fernary systems.”” V. By Prof. F. A, H.
SCHREINEMAKERS.
(Communicated in the meeling of February 22, 1913).

In the previous communication we have disregarded the case
when the straight line ZFZ, of fig. 1 (IV) coincides with the line
XY of this figure. If a liquid moves from the point /* of this
figare towards X or towards ¥ then. as follows from (119) (IV)
both the numerator and denominator of R are =O0.

The value of %D from (11) (IV) then becomes indefinite so that

we will consider this case separately. In order to simplify the cal-
culations we again limit ourselves to the case when the vapour
confains one component only so that we may pnt », and y, = 0.

Our conditions of equihbrium are given in this case by (I8) (1hy
(19) (1). We now write these:
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