Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

F.A.H. Schreinemakers, Equilibria in ternary systems IV, in:

KNAW, Proceedings, 15 II, 1912-1913, Amsterdam, 1913, pp. 1200-1213

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Chemistry. - "Equilibria in ternary systems" IV. By Prof. F. A. H.

 Schreinemarers.(Communicated in the meeting of January 25, 1913).
We consider a liquid L, saturated with the solid substance F and in equilibrium with the vapour G. We allow this liquid to proceed along a straight line which passes through the point F.

If we call $d n$ the quantity of solid substance F that dissolves in the unir of quantity of the liquid, we get:

$$
d x=(\alpha-x) d n \quad d y=(\beta-y) d n
$$

If we substitute these values in (6) (II) and (7) (II) ${ }^{1}$) we have:

$$
\begin{align*}
& -M \cdot d n=A d P-B d T \tag{1}\\
& -N \cdot d n=C d P-D d T \tag{2}
\end{align*}
$$

where for the sake of brevity:
$M=(x-\alpha)^{2} r+2(x-\alpha)(y-\beta) \cdot s+(y-\beta)^{2} t$
$N=\left(x_{1}-x\right)(x-\alpha) r+\left\{(x-\alpha)\left(y_{1}-y\right)+\left(x_{1}-x\right) ;(y-\beta)\right\}^{s}+\left(y_{1}-y\right)(y-\beta)$
From this follows:

$$
\begin{gather*}
d P=\frac{D M-B N}{B C-A D} \cdot d n=\frac{D M-B N}{B C-A D} \cdot \frac{d x}{a-w} . \tag{3}\\
d T=\frac{C M-A N}{B C-A D} d n=\frac{C M-A N}{B C-A D} \cdot \frac{d x}{a-x} . \tag{4}\\
\frac{d P}{d T}=\frac{D M-B N}{C M-A N} \cdot . . . \tag{5}
\end{gather*}
$$

As in the previous communication, we assume the very probable case that $B C-A D$ is positive.
If now we call $x=\alpha$ and $y=\beta$ then $M=0, N=0$ and $\frac{M}{\alpha-x}=0$, but $\frac{N}{\alpha-a}$ does not become 0 as a rule. If we call $\operatorname{tg} \varphi=\frac{y-\beta}{x-\alpha}$ we get:

$$
\begin{equation*}
d P=\frac{B\left[\left(x_{1}-\alpha\right) r+\left(y_{1}-\beta\right) s+\left\{\left(x_{1}-\alpha\right) s+\left(y_{1}-\beta\right) t\right\} \operatorname{tg} \varphi p\right]}{B C-A D} d x \tag{6}
\end{equation*}
$$

and for $d T$ ' a same form with this difference that in the numerator B has been replaced by A.
To perceive the significance of this we take fig. 1 in which the closed curves indicate the boiling point lines of the solutions saturated with F. The exphased ones, as has been stated previously, have
!) The figures (I), (II), and (III) refer to the former communications.
shifted to that side of $I F$ where the vapour region is situated. On increase of pressure, the boiling point line disappears finally in the point M, the correlated v upour line in the point M_{1}. The point D indicates the vapour which can be in equilibrium with the solid substance F and the liquid F, therefore the vapour which forms at the minimum melting point of the compound F. The line $X F Y$ is the tangent in E at the boiling point line passing throngh F. We hare already noticed previously that the lines DFE and $X Y$ are conjugated diagonals of the indicatrix in F at the liquidum side of the ζ-plane.

We now lay down through F an arbittary line $Z Z_{1}$ and let a liquid proceed along this line; as according to (6) $d P$ and $d T$ have a definite value differing from nil it follows that in this point neither the pressure nor the temperature is at a maximum or a minimum.

If, however, we choose the line in such a manner that

$$
\begin{equation*}
\left(x_{1}-(c) r+\left(y_{1}-\beta\right) s+\left\{\left(x_{1}-c\right) s+\left(y_{1}-\beta\right) t\right\} \operatorname{tg} \varphi=0\right. \tag{7}
\end{equation*}
$$

then $d P$ as well as $d T$ is nil. From (13) (1) it follows that (7) is satisfied when the line drawn through F comes into contact in F with the boiling point line passing through this point, therefore when the liquid proceeds along the straight line $X F Y$.

If now we introduce a line element do positive in the direction away from F and negative in the direction towards F, and if we let φ change from 0°, to 360° we have $d x=\cos \varphi$. do so that (6) is converted into:

$$
\begin{equation*}
d F=\frac{B\left[\left\{\left(x_{1}-\alpha\right) r+\left(y_{1}-\beta\right) s\right\} \cos \varphi+\left\{\left(v_{1}-\alpha\right) s+\left(y_{1}-\beta\right) t_{\}} \sin \varphi\right]\right.}{B C-A D} d \rho .(8 \tag{8}
\end{equation*}
$$

The factor

$$
\begin{equation*}
\left\{\left(x_{1}-\alpha\right) r+\left(y_{1}-\beta\right) s\right\} \cos \varphi+\left\{\left(u_{1}-\alpha\right) s+\left(y_{1}-\beta\right) \theta \sin \mathscr{C} \cdot .\right. \tag{9}
\end{equation*}
$$

in the point F is nil towards X as well as towards Y; in all other directions it differs from nil. If to p is given such a value that the line passes through the point D we notice that the factor (9) is positive. Hence, in the point F the value of (9) is positive in the direction towards D and negative in the direction towards E.

We may now easily deduce that (9) is positive if, starting from F, we move towards that side of the line $X F Y$ where the point D is situated; and that (9) is negative when we move from F towards the other side of the line $X F Y$. These positive or negative values are, however, very small if the direction almost coincides with $F X$ or $F Y$ so that at some distance a reversal of the sign may perhaps take place. $B=H-\eta$ being positive it follows from (8) that the pressure when starting from F increases towards that
side of the line $X r^{\prime} Y$ where the point D is situated and decreases when starting from F towards the other side of the line $X F Y$.

Hence, if a liquid proceeds along the line $F D$ or $F M_{1}$ or $F Z$ the vapour pressure increases starting from E; if it proceeds along the line $F Z_{1}$ or $F G$ or $F E$ the vapour pressure decreases from F. Only in the direction of F towards X or towards I the vapour pressure remains at first unchanged.
It will be easily perceived that these considerations are in harmony with fig. 1. For the closed curves drawn in fig. 1 are the boiling point lines of the solutions saturated with F; each curve, therefore, apples to a definite constant pressure. As the pressure becomes higher, these curves draw nearer to M to tinally disappear in this point. Of course, it may happen also that on increase of pressure a curve moves away entirely or partially from M to again draw nearer to II at a further increase of pressure. In the point F this, however, is not the case; we have already demonstrated that the part of the boiling point line passing through F situated in the vicinity of F moves on increase of pressure towards $M \Gamma$, and on reduction of pressure away from M.

Fig. 1.

Fig. 2.

Fig. 3.

In fig. 2 the line $Z F Z_{1}$ represents the same line of fig. 1; the part $H Z$ lies, therefore, at the same side of $X F Y$ where the point D is situated; the part $F Z_{1}$ lies, therefore, at the other side. Perpendicularly on the line $Z Z_{1}$ we place the pressure axis, hence the vapour pressures of the liquids saturated with F of the line $Z F Z_{1}$. As
according to our previous considerations the pressure increases from F towards Z and decreases towards Z_{1} the vapour pressure curve in $F^{\prime \prime}$ must have a direction like curve $a F^{\prime} b$. As the line $F Z$ comes into contact with one of the explased boiling point lines, the pressure in this point is a maximum; on the curve $a F^{\prime} b$ of fig. 2 a maximum vapour pressure must, therefore, occur somewhere between a and E^{\prime}.

If, however, the line $Z F Z_{1}$ of fig. 1 is turned in such a manner that it keeps on passing continually through F, the curve $a F^{\prime} b$ of fig. 2 will change its form although it will of course, also keep on passing through F^{\prime}. From our previous considerations it follows at once that the direction of the tangent in $F^{\prime \prime}$ and the position of the point with maximum vapour pressure changes. If $Z F Z Z_{1}$ coincides with $S F Y^{\prime}$ we obtain in fig. 2 a curve $c F^{\prime} d$ with a horizontal tangent in F^{\prime}.

We have assumed in fig. 1 that the boiling point line passing throagh F is curved in the point F in the direction towards D; in our previous communication (II) we have noticed, however, that, in the vicinity of F tt may be curved in some other direction also. It may then present a form such as curve $a F b$ of fig. 2 (II) in which, however, we must inagine the arrows to point in the opposite direction. We have deduced this form whilc assuming that the vapour contains one of the three components only. Althongh in this case, the appearance of such a form is not very likely, the possibility thereof is greater when the rapour contains the three components and when, for instance, in the system $L G$ a maximum temperature occurs. We now imagine through point F of tig. 1 and also at somewhat higher and lower pressures, boiling point lines of this form. Lines proceeding from F towards that side of $X F Y$ where the point D is situated will then each again come into contact with a boiling point line, so that a pressure maximum must occur. Lines which proceed from F towards the other side of XFY either do not come into contact with a boiling point line at all, or else they meet two of these, so that there occurs one point with a maximum and one with a minimum vapour pressure. The latter case will occur ou lines in the vicinity of $F X$ and $F Y^{\top}$.

On turning the line- $Z F Z_{1}$ of fig. 1 we will, therefore, lave vapour pressure curves like $a F^{\prime \prime} b$ of fig. 2, farther like $a F^{\prime \prime} b$ of fig. 3 , and if $Z F Z_{1}$ coincides with $X F Y$ of fig. 1, a vapour pressure curre $c F^{\prime \prime} d$ of fig. 3.

In order to investigaie the change in temperature in the point F on the lines passing through this point we take the formula corresponding with (8):
$d T=\frac{A\left[\left\{\left(x_{2}-\alpha\right) r+\left(y_{2}-\beta\right) s\right\} \cos \boldsymbol{\rho}+\left\{\left(x_{1}-\alpha\right) s \mid-\left(y_{1}-\beta\right) t\right\} \sin \varphi\right.}{B C-A D} d \boldsymbol{p} \cdot(10)^{-}$ in which $A=V-v$ therefore positive or negative.

From this it follows that $d T$ will be nil when (9) is nil, therefore when the line drawn through F coincides with the tangent $X F Y$ in a F at the boilng point line passing through this point, or what amounts to the same thing, at the saturation line under its ownvapour pressure. We now distinguish two cases.
$V>v$. The saturation lines under thelr own vapour pressure are now situated as in fig. $14(\mathrm{I})$; we now imagine, in this figure, the tangent drawn on to the saturation line under its own pressure, passing through F. As in fig. 1 we will call this $X F Y$. The point corresponding with the point D of fig. 1 is, of course, situated in fig 14 (I) on the vapour line correlated to the saturation line under its own vapour pressure which passes through the point F. Hence it is situated, as in fig. 1 to the left of the line $Y F X$.
If now we move in fig. $14(\mathrm{I})$ from F towards that side of the line $X F Y$ where the point D is situated, then, as follows from (10), the temperature increases starting from F; when moving towards the other side of the line $X F Y$ the temperature decreases from F.

After the previous considerations in regard to Fig. 1 it is evident that this agrees with tig. 14 (I). If in this figure we imagine a line drawn from F towards that side of $X F Y$ where the point D is situated this will come into contact with one of the exphased saturation lines under their own vapour pressure. As each of these curves belongs to a definite constant temperature differing, of course, from curve to curve, the temperature in this point of contact is a maximum one. If now in fig. 2 we imagine the pressure axis to be replaced by the temperature axis we again obtain a curve like $a F^{\prime} b$ with a maximum temperature between a and F^{\prime}. If in fig. 14 (I) we turn the line passing through F until it coincides with $X F Y$, the curve $a F^{\prime \prime} b$ of fig. 2 is transformed to curve $c F^{\prime \prime} d$ of this figure.
Should the case occur that in F the saturation line under its own vapour pressure becomes curved away from D, we obtain curves as in fig. 3 in which we must agan imagine the pressure axis to be replaced by the temperature axis.
$V<v$. The saturation lines under their own vapour pressure are no longer situated as in fig. 14 (I); we may, however, easily imagine them from this figure if we suppose the point F to lie on the line $M M_{1}$ between M and M_{1}. From a consideration of this figure it then follows that, starting from F, the temperature decreases towards that side of the line $X F Y$. where the point D is situated and
increases towards the other side of this line. At the side turned away from the point D of the line $X F Y$ is now also found the temperature maximum. This is also in agreement with (10). $A=V-v$ now being negative it follows that for positive values of (\mathcal{y}) and of $d \rho$, $d T$ from (10) is now negative; this means that the pressure decreases from F towards that side of the line $X F Y$ where the point D is situated.
We now take $\frac{d P}{d T}$ from (5) and write this in the form:

$$
\begin{equation*}
\frac{d P}{d T}=\frac{B-R D}{A-R C} . \tag{11}
\end{equation*}
$$

In this:
$R=\frac{M}{N}=\frac{\{(x-\alpha) r+(y-\beta) s\} \cos \varphi+\{(x-\alpha) s+(y-\beta) t\} \sin \varphi}{\left.\left\{\left(a_{1}-x\right) r+\left(y_{1}-y\right) s\right\} \cos \varphi+\left\{x_{1}-c\right) s+\left(y_{1}-y\right) t\right\} \sin \varphi}$.
For $x=a$ and $y=\beta, R=0$ unless p is chosen in such a manner that the denominator also becomes 0 , this is the case, when starting from F in fig. 1, one moves along $F X$ or $F Y$. We will first assume that this is not the case.

If one moves from F towards that side of $X F Y$ where the point D is situated R will be positive, when moving from F towards the other side R will be negative. We now let a liquid saturated with solid F proceed along the line $Z F Z_{1}$, from (11) it now follows that in the point \vec{F}

$$
\begin{equation*}
\frac{d P}{d T}=\frac{B}{A}=\frac{H-\eta}{v-v} \tag{12}
\end{equation*}
$$

$V>v$. In the $P T$-diagram of fig. $4 a K$ represents the sublimation,

Fig. 4.
$K F$ the three-phase and $F d$ the melting point curve of the compound F; these three curves are therefore the same as the homogeneonscurves of fig. 3 (III). The direction of the melting point curve $F b l$ (fig. 4) is determined by:

$$
\frac{d P}{d T}=\frac{1 I-\eta}{V-v}
$$

From (12) it follows that, in point F of fig. 4, the $P T$ curve $Z H Z_{1}$ wust come into contact with the melting point line Fll. The further course of this $P T$-curve in the vicinity of the point F may be traced in the following manner:

We proceed in fig. 1 from F towards Z_{1}, R thus becoming negative. From (11) it now follows that $\frac{d P}{d T}$ remains positive so that the curve musi be situaled like curve $F Z_{1}$ of fig. 4.
If, in fig. 4 we move from F towards Z, R becomes positive. A being small, the denominator of (11) will soon become nil so that curve $F Z$ of fig. 4 must have a vertical tangent in the virinity of the point E. If in fig. 1 we move further from F towards Z, then $\frac{d P}{d T}$ from (11) will become negative first, and nil afterwards, so that curve $F Z$ of fig. 4 must have a borizontal tangent. As $\frac{d P}{d T}$ afferwards becomes positive, curve $F Z$ is bound to fall at a decreasing temperature.
Proceeding from point Z we find on curre $Z F Z_{1}$ first a pressureand then a temperature maximum, further a point of contact with the melting point line $F l$ of the compound F at the minimum melting point of the compound and finally a receding branch $F Z_{1}$. All this reminds of the P, T-curves deduced by Van der Waals for solid + liquid + gas in binary systems.
To some differences, for instance that the P, T-curves mentioned here do not meet the sublimation line of F in the maximum sublimation point, I will refer later.

In fig. 4 it has been assumed that curve $Z F Z_{1}$ exhibits a double point b, namely a point of intersection of the branches $F Z$ and $F Z Z_{1}$. In order to perceive the possibility of a similar double point we take a circumphased boiling point line (fig. 1). On this occurs a point with a maximum and another with a minimum temperature. These points divide the boiling point line into two brancles and in such a manner that to each point of the one branch appertains a definite point of the other branch, namely in that sense that both points indicate
solutions of the same temrerature and the same vapour pressure, and saturated with F.

Of all straight lmes which unite two such correlated points of the two branches one is sure to pass through the point F. If now, we allow the line $Z F Z_{1}$ of fig. 1 to coincide with the above mentioned connecting line, we then find two solutions situated at different sides of F, which have the same temperature and the same vapour pressure. The branches $F Z /$ and $F Z_{1}$ of fig. 4 then must intersect each other at that temperature and pressure.
$V<v$. The melting point line $F l$ of fig. 4 now proceeds from the point F towards lower temperatures and higher pressures; the point F of curve $Z F Z_{1}$ now gets situated between the point with a maximum temperature and that with a maximum vapour pressure.

To each of the solutions of the line $Z F Z_{1}$ of fig. 1 saturated with solid F, appertains of course a definite vapour; the points representing these vapours form a curve which we will call the vapour line conjugated with the line $Z F Z_{1}$. It is evident that this vapour curve conjugated with $Z F Z_{1}$ must pass through the point D of fig. 1 . If the line $Z F Z_{1}$ is turned, the conjugated vapour curve will also alter its position and form, but still pass through the point D. In fig. 5, the vapour curve conjugated with $Z F Z_{1}$ is represented by the dotted curve ($f c a D e$).

In fig. 5 it is assumed that the straight line $Z F Z_{1}$ and its conjugated vapour curve intersect each other in a; that such a point of intersection can appear is easy to understand. On each of the boiling point lines of fig. 1 occurs a point where the temperature along this curve is a maximum and another point where

Fig. 5. it is a minimum. If now we take the vapour phase appertaining to it similar solution, this with the liquid and the point F, will lie on a straight line. We now draw, through a similar liquid b with a maximum or minimum temperature, the line $Z F Z_{1}$ (fig. 5); the vapour a which is in equilibrium with this liquid b is then also situated on the line $Z F Z$, so that the vapour curve $f e$ must intersect the line $Z F Z Z_{1}$ in a. With each liquid of the line $b Z_{1}$ is now in equilibrium a vapour of curve ae, such as liquid d with vapour e, liquid F with vapour D, liquid b - with vapour a. With each liquid of line baZ a vapour of curve
$a c f$ is in equilibrium. If c represents the vapour in equilibrium with ${ }^{-}$ the liquid a, a vapour between a and c will be in equilibrium with a liquid between a and b. If each liquid is united with the vapour with. which it is in equilibrium, these conjugation lines not only occupy the strip eaZ, and $f n Z$ but also a part situated between $b a$ and curve ca outside this field.

We have taken the point of intersection a of $Z F Z_{1}$ and the curve $f e$ between F_{i}^{\prime} and Z; it is evident that it may also be situated at the other side of F.

We now imagine drawn in fig. 5 a set of straight lines passing through F and for each one its conjugated vapour curve; these latter all pass through the point D. Among these there is one that also passes through the point l. At the maximum sublimation point of the compound F the rapour in equilibrium with solid F las the composition F and the liquid which then, of course, is present in an infinitely small quantity only, a composition K (fig. 5). We can observe this also by other means. We imagine then in fig. 1, besides the boiling point lines of the solutions saturated with F, also drawn their appertaining rapour lines; one of these passes throngh the point F so that at a definite P and T a vapour exists of the same composition as F which can be in equilibrium with solid F and a liquid. This liquid is represented by the point K of the boiling point line of the pressure P, appertaining to the vapour point F. In fig. 1 and 5 this point is'represented by K. Hence, the equilibrium solid $F+$ vapour $F+$ liquid K occurs; we are therefore, at the upper sublimation point of the compound F, therefore, in the point K of the sublimation line $a K$ of fig. 4.

It now in fig. 5 we turn the line $Z F Z_{1}$, until it passes through the point K, its conjugated vapour curve will pass through the points D and F.

We have noticed above that the straight line $Z F Z_{1}$, and its conjugated vapour line can have a point of intersection a (fig. 5). As in this case the vapour a, the liquid b and the solid substance F are situated on a straight line, it follows from (11) that:
$\frac{d P}{d T}=\frac{\left(v_{1}-x\right) B-(x-a) D}{\left(v_{1}-x\right) A-(x-a) C}=\frac{\left(x_{1}-a\right) H+(\alpha-v)}{\left(v_{1}-\alpha\right) V+(a-v) H_{1}+\left(x-v_{1}\right) \eta}$
so that the same relation applies as if the three phases belong to a binary system.

If, on one of the straight lines $Z F Z_{1}$, the points a and b of fig. 5 coincide, the solid substance F is in equilibrium with a liquid and a vapour which both have the same composition. This is the
case if in the ternary system liquid + vapour, a singular point occurs and when the saturation curve of F passes through this point. As in this case $x=x_{1}$ and $y=y_{1}$ it follows from (11), as R becomes intinitely large, that:

$$
\begin{equation*}
\frac{d P}{d T}=\frac{D}{C}=\frac{H_{1}-I I}{V_{1}-V} \tag{14}
\end{equation*}
$$

We bave noticed above that if the straight line $Z F Z_{1}$ passes through point K of -fig. 5, its conjugated vapour curve must pass through D and F and that with the liquid K a vapour F is in equilibrium. Hence, we have for the point $K x_{1}=a$ and $y_{1}=\beta$. As R now becomes - 1 it follows from (11) that:

$$
\begin{equation*}
\frac{d P}{d T}=\frac{B+D}{A+C}=\frac{I_{1}-\eta}{V_{1}-v} \tag{15}
\end{equation*}
$$

The above formula also determines the sublimation line $a K$ of the compourd F (fig. 4) If, in fig. 5 the straight line $Z F Z_{1}$ passes through the point K, the corresponding P, T-curve in fig. 4 must meet the sublimation curve $a K$ in the point K. We now give in fig. 1 different positions to the straight line $Z F Z_{1}$; to each position appertains a definite P, T-curve in fig. 4 so that we can draw in this figure an infinite number of P, T-curves. From our previous considerations it now follows that all these (I will refer later to a single exception) meet the melting point line $F d$ of the compound F in the point F and that one only meets the sublimationcurve a K in the point K. The latter takes place when the straight line $Z F Z_{1}$, in tig. 1 passes through the point K. All other P, T-curves in fig. 4. proceed ahove the point K, or in other words: at the upper sublimation temperature T_{k}. of the compound F the vapour pressure of each system : solid $F+$ liquid + vapour is greater than the vapour pressure of the solid substance F.

Different P, T-cruves, besides coming into contact in F with the melting point curve $F l l$ will also meet the three-phase line $F K$. Although all this is evident from what has been said previously, we will still consider a few of these points in another manner.

On warming the solid compound F, this, as mentioned previously. proceeds along the sublimation curve $a K$ of fig. 4 until the upper sublimation point K is attained; then the equilibrium : solid $F+$ liquid + vapour is formed which proceeds along the three-phase line $K F$ of fig. 4 until the melting point line $F l d$ has been obtained.

We have already noticed previously that the liquid and vapour continually alter their composition therewith and we may now ask what curves they proceed along in fig. 1.

At the temperature T_{K} of fig. 4, therefore at the upper sublimation ${ }^{-}$ point of the compound F, the vapour has the composition F andthe liquid which can be in equilibrium with that vapour the composition K of fig. 1. At the temperature $-T_{F}$ of fig. 4 , therefore at the minimum melting point, the vapour has the composition D and the liquid the composition F of fig. 1 . Whereas the compound F proceeds in the P, T-diagram of fig. 4 along the three-phase line $F K$ the liquid in fig. 1 proceeds along a curve from K towards F and the vapour along a curve from F towards D; we will call these curves the curves $K F$ and $F D$.

We now imagine drawn in fig. 1 some more boiling point lines of the solutions saturated with F among which also those passing through the point K; on each of these a maximum and a minimum temperature occurs. The curve $K F$ now intersects each of the boiling point lines situated between K and F in the point with the maximum temperature, or in other words the curve $K F$ is the geometrical place of the points with a maximum temperature on the boiling point lines situated between K and F.

The liquid and vapour of the three-phase line $K F$ of fig. 4 being formed from the solid substance F, the three points F, L, and G in fig. 1 must always lie on a straight line.

This means that the temperature along the boiling point line of such a liquid is a maximum or a minimum one.

From a consideration of fig. 1 it follows that here the temperature in this case is a maximum, from which follows at once what has been said above as to the course of the curve $K F$.

In the same manner we find that the curve $F D$ also intersects each of the vapour lines conjugated with the boiling point lines in the point with the maximum temperature.

In fig. 1 we might also have drawn instead of the boiling point fines the saturation lines of F under their own vapour pressure. We then should have found that the curve $K F$ intersects each of these lines in the point with the minimum vapour pressure.

We now turn the line $Z F Z_{1}$ of fig. 1 until it intersects the curve $K F$ of this figure; the corresponding P, T-curve in fig. 4 must then meet the three-phase curve $F K$ in a point. For in the point of intersection of the line $Z F Z_{1}$ and the curve $K F$ in fig. 1 the pressure and temperature for both curves is namely the same; as, however, the curve $K F$ passes through the points with maximum temperature of the boiling point lines in fig. 1 and as this is not the case with the line $Z F Z_{1}$ a higher temperature (the pressure being equal) is found on curve $K F$ than on the line $Z A Z_{1}$. The P, I^{\prime}-curve of the line

ZFZ Z_{1} therefore comes into contact with the three-phase line $K E$ of fig. 4 and is situated further above and to the left of this threephase line.

In order to deduce something more from the P, T-curves, we take a temperature T_{B} lower than the minimum melting point of the compound F. The saturation line of F under its own vapour pressure has at this temperature T_{B} a form as in fig. 7 (1) or 11 (I); the minimum vapour pressure in the point m of this saturation line under its own pressure we call P_{m}. the maximum pressure $P_{A I}$. Of all the equilibria of $F+$ liquid + gas appearing at the temperature T_{B}, the highest vapour pressure is, therefore, P_{M} and the lowest $P_{n n}$. If, in fig. 4, we represent both pressures hy the points M and m, one P, T-curve passes through the point M and one through the point m, whereas all the others must intersect the perpendicular line placed in $B 3$ between M and m. One obtains the P, T-curve passing at T_{B} through the point M when the moving line $Z F Z_{1}$ of fig. 1 coincides with the line $I M$, and the one passing through the point m when the line $Z F Z_{1}$ coincides with the line F_{m} of fig. 7 (I) or 11 (I). In fig. 4 two P, T-curves must pass through each point between M and m. For if we choose a pressure P between $P_{A C}$ and P_{m} we notice from fig. 7 (I) and 11 (I) that at the temperature T_{B} two different systems: solid $F+$ liquid + gas have a vapour pressure P, from which it follows at once, that in fig. 4 two $P_{r} T$ curves must pass throngh each point betrveen M and m.

If on the curve Mamb of fig. 7 (I) or 11 (I) we imagine two points of. equal pressure connected by a straight line, we notice that there must be a definite pressure P_{b} at which this conjugation line passes through the point F. If now, the straight line $Z F Z$ of fig. 1 passes through this conjugation line, the corresponding P, T-curve at the temperature T_{B} and the pressure P_{b} must exhibit a double point. This curve is represented in fig. 4 by $Z b L^{\prime} b Z_{1}$. All the other P, T-curves as a rule intersect the line $M m$ in two points of which one is situated above and the other below the point b.

If the temperature T_{B} is changed, then in fig. 7 (I) or 11 (I) the saturation line under its own vapour pressure changes its position and form, while P_{M}, P_{m} and P_{b} also change. The points M, m and b in fig. 4 then proceed along a carve; the curve through which the points M and m go, is represented by $M M_{1} M_{2} M_{\mathrm{a}} F \mathrm{Fm}_{2} \mathrm{Km}$; we will fall this curve the boundary curre of the system: solid $F+$ liguid + gas.
The equilibriom betreen solid I, liquid, and gas is determined by (6) II and 7 (II). To the pomt M and m also applies the relation:

$$
\frac{x-\alpha}{x_{1}-x}=\frac{y-\beta}{y_{1}-y} .
$$

From this follows for the boundary nurve:

$$
\frac{d P}{d T}=\frac{\left(x_{1}-x\right) B-\left(x_{2}=a\right) D}{\left.\left(x_{1}-x\right) A-(x)-a\right) C}
$$

so that this boundary curve must come nto contact with the subli-, - mation line of the compound in the $\mathrm{m}_{\text {eximum }}$ sublimation point K and with the meling line in the minim ${ }^{1} \mathrm{~m}$ melting point F. Further it is evident that the three-phase line $\langle\bar{Z} F$ of the compound F is a part of the boundary curve.
Hence, all the P, T-curves in fig. 4 we situated in the region encompassed by the boundary curve; through each point of this region pass two P, T-curves and throngh each point of the boundary line passes a P, T-curve which meets this boundary line in that point.
The boundary carve itself is, therefore, $110 P, T$-curve in that sense that it corresponds with a straight line passing through F, this, however, is the case if only one of the three components of F occurs in the vapour.

The double point b passes in fig. 4 thro ${ }^{\text {igh }}$ a curve terminating in the point F. When the saturation curves und ${ }_{\mathrm{er}}$ their own vapour pressure possess, in the vicinity of the minimub melting point T_{p}, a form as in fig. 12 (I) no double point of a P, T-curve appears above T_{F}. The double point curve in fig. 4 then proceeds from F towards lower temperatures.

If, however, the saturation line at T_{F} under its own vapour pressure has a form such as the curve rabl in fig. 2 (II) the double points are still possible above T_{F} and at each temperature more than one may appear.

From (11a) it appears that R can become nil only for $x=a$ and $y=\beta$, therefore, in the point $F . R$, hotvever, may becone infinitely great and change its sign in other points of the component triangle. This will be the case when the denomin ${ }_{\text {atol }}$ becomes 0 , hence:

$$
\begin{equation*}
\left\{\left(x_{1}-x\right) r+\left(y_{1}-y\right) s\right\} \cos \varphi+\left\{\left(x_{1}-x\right)^{s}+\left(y_{1}-y\right) t\right\} \sin \varphi=0 .(\tag{16}
\end{equation*}
$$

Let us call the solution for which this is the case, the solution q; (16) then means that the line $F q$ comes anto contact in q with the liquidum line passing through the point q, of the heterogeneous region $L+G$. We may express this aleo as follows: R becomes infinitely great when the conjugation lines liquid-solid and liquid-gas are conjugated diagonals" of the indicarrix in the liquidum point. As $R=\infty$, (11) is converted into:

$$
\begin{equation*}
\frac{d P}{d T}=\frac{D}{G} \tag{17}
\end{equation*}
$$

in which D and C have another value than in (14).
Equation (16) is, of course, also satisfied $x=x_{1}$ and $y=y_{1}$, hence by a singular point of the system liquid + gas. In this case, D and C^{\prime} and consequently $\frac{d P}{d T}$ obtain the same value as in (14). We now imagine also the P, T-curve of the singular point drawn in fig. 4; we may then easily demonstrate that $\frac{d P}{d T}$ is determined for this curve by (14).

If now, on one of the straight lines $Z F Z_{1}$ of fig. 1 a singular point occurs, so that in the equilibrium of solid $F+$ liquid + vapour the two latter ones have the same composition, its P, T-curve must meet the P, T-curve of the singular point in fig. 4.

Such a case oscurs when at a definite P and T a singular point appears or disappears on the saturalion line of F, so that the saturation line and the correlated vapour line meet each other in that point.

With the ad of the previous formulae we might be able to investigate more accurately the course of the P, T-lines if we expressed the quantities r, s, t etc. by means of the equation of state of Van der Waals, in which a and b mast then be considered as functions of x and y.

> (To be continutecl).

Chemistry. - "Equilibria in ternary systems." V. By Prof. F. A. H. Schrhinemakirs.
(Gommunicated in the meeting of February 22, 1913).
In the previous communication we have disregarded the case when the straight line $Z F Z_{1}$ of fig. I (IV) coincides with the line $X P Y$ of this figure. If a licuid moves from the point P of this figure towards X or towards Y then, as follows from (I1a) (IV) both the numerator and denominator of R are $=0$.

The ralue of $\frac{d P}{d T}$ from (11) (IV) then becomes indefinite so that we will consider this case separately. In order to simplify the calculations we again limit ourselves to the case when the vapour contains one component only so that we may put x_{1} and $y_{1}=0$.

Our conditions of equilhtrium are given in this case by (I8) (II) (19) (II). We now write these:

