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iP_ D
ar— ¢
. in which D and (' have another value than in (14).

Equation (16) is, of course,” also satisfied z =z, and ¥=1uy,

hence by a singular point of the system liquid - gas. In this case,
2

C (1Y)

D and C and consequently obtain the same value as in (14).

ar
We now imagine also the P,7-curve of the singular point drawn in

dP :
fig. 4; we may then easily demonstrate that o7 8 determined for

this curve by (14).

If now, on one of the straight lines ZFZ, of fig. 1 a singulax
point oceurs, so that in the equilibrium of solid # 4 liquid 4 vapour the
two latter ones have the same composition, its 2, 7-curve must meet
the P, T'curve of the singular point in fig. 4.

Such a case occurs when at a definite P and 7" a singular point
appears or disappears on the saturation line of F, so that the satu-
ration line and the correlated vapour line meet each other in thiat point,

With the aid of the previous formulae we might be able to inves-
tigate more accuralely the cowrse of the P,7-lines if we expressed
the (uantities r, s, t ete. by means of the equation of state of
Vax pew Waars, in which # and b must then be considered ag

functions of « and y.
< (To be continued).

;
Chemistry. — « Equilibria in ternary systens.”” V. By Prof. F. A, H.
SCHRRINEMAKERS.
(Communicated in the meeling of February 22, 1913).

In the previous communication we have disregarded the case
when the straight line ZFZ, of fig. 1 (IV) coincides with the line
XY of this figure. If a liquid moves from the point /7 of this
figare towards X or towards ¥ then. as follows from (119) (IV)
both the numerator and denominator of R are = 0.

The value of %D from (11) (IV) then becomes indefinite so that

we will consider this case separately. In order to simplify the cal-
culations we again limit ourselves to the case when the vapour
confains one component only so that we may pnt », and y, = 0.

Our conditions of equilibrium are given in this case by (18) (1I)
(19) (1). We now write these:
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07 0Z
T =— ]

; —— 7+ 72, =0 -
5w Ty, + % )

W)

07 0Z
5, +U=Pg-—~Z+5=0 |

If we develop these with regard to «,'y, P and 7" and call
z=e« and y=—p we find, if we keep to the same notation as in

communication (1I): -
adw + bdy + Yeda® -} ddudy 4 Sedy® + .. ..

=—CdP+DIT+.. . . . . . . . ... @

Yrde? 4 sdedy + Yedy® + ... = AdP—BAT + ... . . (3)

In equation (3) are wanting the terms d¢ dP, dy dP, ded? and -
dydT. 4, B, C. and D have hevein the same signilicance as in
communication II; therein, however we must now call @ =«, y=,
2, =0 and 7, =0.

We now allow the liquid, saturated with /7 and in equilibrium
with vapour, to proceed along the line ZFZ, in fig. 1 (IV). For
this we call dy =tg ¢ . dx; from (2) and (3) now follows:

(a4 Detgp)de + (c + 2dtg @ + etg® p)da® + .. ..
— — CdP + DAT +.... N 7))
3 + 2stgp + ttg'p) da® 4 .= AdP—BdT + .. . . (5)

We now allow the straight line ZFZ, in fig. 1 (IV) to coincide
with the line XAY of this figure. As X/7V is the tangent in the
point 7 at the liquidum line of the heterogeneous region passing
through /7, this is determined by : ’

(ar + Bs)dw + (as + By)dy = ada 4~ bdy = 0.

Hence, if in fig. 1 (IV) the line ZFZ coincides with the line
XFY, a—{—])tg(pzo.

If we substitute this value of ¢y ¢ in (4) and (5) we get:

_2—1(,—,@ do® 4 .. =—CAP + DT ... . . (V)

1
EES.(M;’—I— o= ddP—BdTl ... . . . . (0
In this @ and S have the same value as 1n communication (II),
namely :
Q = 2abd—a’e-—b
S = a?t + b*r—2abs == (rt—s*) (¢*r + 2afis + %)
At first, we may limit ourselves to terms recorded in (6) and
(7); from this we find:
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- dP B Q-uS
aT—40-98° ' oo 8)
“in which p and A have the"szm}e significance as in communication
JI), namely

C D
Ai=—andy = —
i Aan “ B
and further:
"B Q-uS 4 Q-8
= —— da? Al =— . — . d2* . .
P=r Bo—ap ™ 50 BO—aD ** ®)

wherein, as in the previous occasion, we take BC — 4D > 0.

Let us first take a P, a-diagram such as in fig. 2 (IV) and 3 (IV).
As B= H—n is always positive, /° has the same sign as @ —puS.
In communication (II) we have seen that (J — wS is negative when
the boiling point line, of the solutions saturated with F passing
through I" is curved in the point /7 towards O. The point O here
represents the component occurring in the vapour. The boiling point
line then has a form like the curve ) in fig. 1 (II). dP now
being negative, the P, a-curve must have a form like c¢/'d in
fig. 2 (IV). . )

If the boiling point line of the solutions saturated with F is
curved in the point /' away from the point O so that it presents
a form like curve o) in fig. 2 (II), Q—uS will be positive. Erom
the value of dP from (9) it now follows that the P, z-curve must
have a form like curve ¢/"d of fig. 3 (IV).

In order to find the 7T,e-carve in the vicinity of the point ' we
must distinguish two cases.

V>v or 4>>0-If Q—Ai8 is negative, the saturation curve of I
under its own vapour pressure is curved in'the vicinity of F towards
O and, therefore, has a form like curve al70 in fig. 1 (II); d7 is
now negative and the Zla-curve has a form like curve ¢/’d in

fig. 2 (IV). If Q=—AS is positive the saturation line of # under its
own vapour pressure will have a form like « /76 in fig. 2 (II); d7
from (9) is now positive and the Z.z-curve has a form like ¢c/7d in
fig. 3 (1V).
C V<Lw or ALO0. If Q—AS is negative the saturation curve of
J7 under its own vapour pressure will have a form like curve a/7%
in fig. 4(I); d7 from (9) is now positive and the 7z-curve, has
consequently a form like curve cI’d in fig. 3(IV). 1f Q—:S is
positive the saturation curve of I7 under its own vapour pressure
will have a form like curve af') in fig. 3(Il); T from (9) is now
negative so that the Z%e-curve has a furm like curve ¢/7d of ig. 2 (LV).
. 7Y
Proceedings Boyal Acad, Amsterdam, Vol. XV «

Ly
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dP
From the value of e from (8) it follows that this is not equal to
[«

B -
7 the P, T-curve corresponding with the straight line. XFT of

fig. 1 (IV) will, therefore. not meet, in fig. 4 (IV), the melting point
line /id i F. Whereas, as we have stated previously, all the P,7-
curves in fig. 4 (IV) meet the melting point line of /' in the point /7~
this is no longer the case when the straight line ZFZ, n fig. 1(I1V)
“coincides with XY

In order to determine this P,7-curve in the vicinity of /' more
closely we eliminate dz* from (6) and (7); we then get:
a, da*+. . =(4Q—CS)dP— (BQ—DS)dl'+b, dedP+4c, dxdT+... . . (10)
In this equation, as dP and d7 are according to (9) of the order
da?, dzdP, and dadT ave of the order dz*; ihe terms omiited are
all of the order dz* and higher. We now substitute in (10) the
value of dv which we can deduce from (7) namely :
dv 4. .=a,VAIP—Bdl +. . . . . (11)
so that (10) is converted into
a, (AdP— BAdT)': = (AQ—C8) dP — (BQ—DS) dT +
4 a, (Adp—BdP)l (b, dP-+ ¢, dT) . . . (12)
in which the terms omitted arc of an order higher than d2®. For
. (12) we write:
(AQ—C8) dP -~ (BQ—DS)dT = (b, dP + ¢, dT) (A dP -BdT)h . (13)
or:
(@, Y—b, Xy =, ¥ ¢, X (AY—BX). . . (14)
In order to nvestigate (14) we take a siraight line a, Y—0b, X=d,
in which ¢ is infinitely small so that this line is situatled parallel 1o,
and in the immediate vicinity of, the fangent in the point /. Tts
points of intersection with (14) are given by:
a, Y —b,X=1d¢ and (b, ¥ + ¢, X)* (AY—BX) = d".
This is satisfied by ;-
Y=aqa,.d0%% and X =10, &k . Co
hence : a,a; — b,0, =0 and (b,a, + ¢,b,)* (4a; — Bb;) =1
or: ‘

(1)

by ,

S (b, — Ba) (b, £ ca ) =1. . . . . (16)
@y

a;’
b:
As X and 1" do not change their sign when d does so, it follows

(4b, — Ba) (bb, + o' =1. . . . . (17)




that the P,7-carve has in point /7 a cusp so that we find at both
sides of the tangent in /7 a branch of this curve. Now a, = A(Q—2S

b,=B(Q—ud)

Ab, — Ba, = (BC — AD) 8

so that Ab, — Ba, is positive. From (16) and (17) it now follows
that &, and 4 (Q— 78) have the same sign, and the same applies

to @, and B {Q— uS).
In connection with (15) follows:

dT of X has the same sign as 4(Q—28) . . (18)

ar ., ¥
what agrees with (9).

We will now consider some cases.

w o BQ—wS . . 19

V" >v hence 4>0 and 4>0 ; Q—28<0 ; Q—usS<O.

From

iP_ 4 Q—uS_4

daT B 0-18 B

-~

(A—u)S
[1+EJE:J A (10

- B
it follows that T is smaller than R (From our assumption

BC—AD>0 follows namely ? —g >0): If iu fig. 1 the line d, Fd
represenis the tangent at the point J7 of the not drawn melting point
line, the P,T-curve XJ7¥ will, in ils turning point I/, have a tangent
like the dolted line in fig. 1 passing through F. From (18) and (19)
and also from (9) it follows that P and dT are negative, so that the
curve X /7Y in fig. 1 must proceed from /7 towards lower temperatures

Fig. 1.

and pressures. The latter may be
found also by other means. For
this we take the minimum
melting point of the compound
17 therefore the temperature
Typ of fig. 1; as @— 250,
the saturation line of F under
its own vapour pressure has at
this temperature a form like
curve alfh in fig. 1 (If) in which
we must also itnagine the tangent

XFT to be drawn. As this tangent has only one point in common
with the saturation curve, namely the point of contact F, a vertical
line passing in fig. 1 through the point J© may intersect the curve

XFY in the point /7 only.

We now tke a temperature I’ somewhat lower than Tp; it

9*

I
|

1]
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now in fig. 1 (II) we also imagine to be drawn the saturation line
under its own vapour pressure of this temperature 77, we notice
that this intersects the line XY in two points. In fig. 1, therefore,
a vertical line corresponding with the temperature 7" must intersect
the curve XFY in two points. -

If we take a temperature 7" somewhat lugher than 7'» we find
that the vertical line corresponding with this temperature does not
intersect the curve XIY in fig. 1.

We now take the boiling point line of the compound 7' of the
pressure Py, that of a somewhat lower pressure P’ and that of a
somewhat higher pressure P". As @ -—uS<C0 it follows that that
of the pressure Py has a form like curve a/') of fig. 1 (II) in which,
however, we must imagine the arrows to point in the opposite
direction. From a consideratior of these boiling point lines it follows
that in fig. 1 curve X/7Y is intersected by a horizontal line corre-
sponding with the pressure Py in F only, and in two points by a
horizontal line corresponding with the somewhat lower pressare FP’.

V> v therefore 4>0 and 2>0; Q — 28<{0; Q@ —uS>0.

dP
From (8) it follows that T is negative, from (9, and also from

(18) and (19) that d7" is negalive and dP positive. In fig. 2 d,Fd
again represents the tangent at the point F of the not drawn melting
point line; the dotied line passing through the point /7is the tangent
in the cusp £ of curve XF'V.

The fact that the curve XFY proceeds from F towards lower
temperatures ahd higher pressures may be deduced also in the following
manner. From a consideration of the saturation lines under their own

vapour pressure of the temperature

\ Tr, the somewhat lower tempe-
d rature 77, and the somewhat higher
temperature 7', it follows that curve

XI'Y in fig. 2 isintersected by the

vertical line corresponding with the

temperature 7’ in 1’ only and in

z
Xy zZ i two points by the vertical line
" 2N
corresponding with the somewhat
Fig. 2. lower temperature 7”. -

As Q—uS >0, the boiling point line of the solutions saturated
with I/ has, at the pressure Pp a form like curve alf'h of fig. 2 (I1)
in which, however, the arrows must be imagined lo point in the
opposite divection. If we imagine in this figure the tangent XY,
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notice that the latter, besides the point of contact F, hasanother
points of intersection in common with curve af), which both
wtain to a lower temperature than 7. The horizontal line in fig. 2
esponding with the pressure Pp must therefore intersect the curve
Y, besides in F, also in two other points to the left of point
the one point of intersection must lie on the branch XF, the
v on the branch Y7 '
' now we-take the boiling pomnt line of a somewhat lower pres-
+ P’, this will be intersected in fig. 2 (I1) in twq points by the
XFY. Hence, the horizontal line in fig. 2 corresponding with
‘pressare P’ must intersect curve XFI in two points.
'he hoiling point line of a somewhat higher pressure P" isinter-
ed by the line XZFT in four points, of which two lie on the
- XF and two on the part TF of this line. The horizonial line
‘esponding with this pressure " in fig. 2 intersects therefore
h of the branches XF and T/ in two points.
f in fig. 2 (II) we take a straight line ZFZ, whose direction
ers but little from the tangent XFY this will intersect the boiling
1t line of the pressure Pp not only in I but also in three other
ats namely two on FZ, and another on FZ. The horizontal line

fig. 2 corvesponding with the pressure Pr, therefore, intersects

curve ZFZ, in F and further the branch ZF in one and the
nch ZF in two points. Hence, on branch Z F must occur a
nt with a maximum and another with a minimum vapour pressure

V > v therefore 4 >0 and 2>0; @Q—AS>0; Q—puS>0.
1P B

from (20) follows : %1— positive and greater than e from (9) and
(i

) from (18) and (19) follows dP and d1'positive. The curve XFY
st therefore have a form as drawn in fig. 3 wherein d,Fd again
resents the tangent in the point F at the omitted melting point
3; the dotled line passing through Z represents the tangentin the
p F at curve XFY.

The fact that curve AZY in
fig. 3 must proceed from I towards
higher temperatures and pressures
is again evident from a considera-
tion of the saturation line of the tem-
perature Tz under its own vapour
pressure, and of the boiling point
line of the solutions saturated with
I7 of the pressure Py For both
curves have in this case a form

e —
=

|

Ly
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like in fig. 2 (II) so that the fangent XF¥ besides meeting the curve
alfh in the point 77, also mtersects this m two other points. In har-
mony with fig. 3 we find that the vertical line corresponding with the
temperature 777 must intersect the curve XY in two points above
I, and the horizontal line corresponding with the pressure Py must
intersect this curve in two points at the left of 2

From a consideration of the straight lines whose direction differs
but little from the tangent X77Y it follows that their P, T-curves
in fig. 3 must exhibit on the one branch proceeding from F, a point
with a maximum tenperature and one with a maximum pressure,
and on the other branch, besides two similar points, also one with
a minimum temperature and a minimum pressure. -

The deduction and further consideration of the other cases I must
leave to the reader.

We can also determine the course of the saturation lines under
their own vapour pressure and of the boiling point lines of the
solutions saturated with solid matter, which has been discussed in
the previous communications, in a different manner.

For the stability requires that if we convert a system, at a constant
" temperature, into another having a smaller volume the pressure
must increase; if converted into one with® a greater volume the
pressure must decrease.

We may also perceive this in the following manner. At the pressure
P exists the system S which is converted at the pressure P -} dP
into the system 5. We represent the § of the system .S, at the
pressures P and P 4-dP by &p and &ppap, that of the system S’
by &p and &' pyap.

As at the pressure P the system .S is the stable one, it follows
that ?p < G'p.

As at the pressure P~ dP S is the stable one it follows that
§pyap < Epyar. I we rvepresent the volumes of S and S at the
pressure P by V and V” the latter condition can also be expressed by

Up+ VAP 8p + VdP.
From this now follows in connection with the first condition :
V'dP < ViP _
hence, V7’ < V if dP is positive and V' >V if dP is negative.
The volume V" of the system §’, is, at the pressure P4 dP,

! dV!
like V' 4 Edl’, in which F is negative ; from this now follows :

V'LV if dP is positive and V">V if dP is negative,
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Hence, if we compare two systems .S and S’ which are conver ted
into each other, at a constant temperature, by a small alteration in
pressure, it follows from the foregoing that :

If S exists at a higher pressure than .S, the volume of S is smaller,
if S exists at a lower pressure than S, the volume of S is greafer
than that of S’. And reversally : N

if S has a smaller volume than S 1t exisis at a hlghel, if it has
a greater volume than 8" it exists at a lower plessme than S’

We may express this also a follows:

a system S is corverted by increase m pressure into a system
with a smaller and on reduction in pressure into a system with a
greater volnme. And reversally : -

if a system .S is converted into another with a smaller volume,
the pressure must increase, and if converted into one with a greater
volume the pressure must decrease. We may then compave the volu-
mina of the two systems either both under their own pressure or
both under the pressure of the system S, or both under the pressure
of the system S’

It is evident that a Similar consideration applies to two systems
S and S' which, at a constant pressure, are converted into each
other by a small change in temperature. For the case in question,
the equilibrinm : solid + liquid +- gas we may also deduce the above
rules in a different manuer. For this, we take at the temperature 7’
and the pressure P a complex consisting of n quantities 4
quantities L 4+ ¢ quantities (. We now allow a reaction to take
place between these phases at a constant 7" and P wherein

(n 4+ dn) quantity F - (m--dm) quantity L' + (q -+ dg) quantity G’
is formed aud 1 which L’ and G differ but infinitesimally from L and G.
The increase in volume A in ihis reaction is then determined by :
oV oV oV, V
‘ﬁdw—}-m dJ—{—ga Lda, —|—qa Yy
As the total quantity of each of the three componenta remains
unchanged in this reaction we have:
adn 4 xdm - »,dg 4 mda + gde, =90
Bdn - ydm + y,dg + mdy + gdy, = 0
dn 4+ dm 4 dg=20.
After elimination of dn, dn, and dg we find:
mi(y,—B) A + B~ (A + )l dv —m {(w,—a) 4 + (u—a ) (4 + Oy
_Q{(I‘/_ﬁ) A1"|‘ ( "'3/ (A1+C )j da + 9{("' —a) A + (a— )(A +Cl)] d./1
={(v,—a) (y —B) — (¢—0) (Jl—ﬂ)} A
which for the sake of brevity we write:
mAydy — mAdy — q{iyldml + qdpdy, = E. A

vdn + Vdm + Vidg 4 m

—_

-10 -
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We will choose the new system F —+ L’ -4 G’ in such a manner
that it is in equhibrium at the temperature 7" and the pressure

P+ dP. Then, as follows from our previous communications,
de, dy, dz, and dy, are determined by:
(@ —a)r+ (y —B)s]de + [(w—a)s + (y— B) t] dy = AdP
[(w,—a) 7 + (y,—B) s] dov + [(@,—) s + (y,—B) €] dy = (4 +C) IP

and two corresponding equations which determine dz, and dy,. -
From' this we find:
E (rt —s*) do = — (sAz+t4y) dP  E(rt—s") dy = (rds+sd,) dP

B (rt,—s,%) do,=(s, 4z, +1,4y,) P E(rit,—s,")dy,= — (r, 4z +5,4y,)dP.
After substitution we find:
A% o 2eddy 4 147 N quzi%q + 25 dody 1A A
7t —s? 7t — 8, dP
so that & and dP must have the opposite sign.
In the above relation & represents the change in volume if both
systems are compared at the same pressure P; if, when the new
systera is taken at the pressure P - dP, the change in* volume is

represented by A’', we get:

A=A+ d_Vl .dP
dP
in which V; represents the total volnme of the new system at the
pressure . From this follows that A’ and A have always the same
sign and A’ and dP always the opposite one.

Let us now consider the system F'- L - G at a constant tem-
perature, namely the saturation line of I wunder its own vapour
pressure and its conjugated vapour line. These are respresented in
fig. 7 (), 11 (I), 12 (I) and 13 (I) by the curves AMamb and M a,mb,.

We now take the system S—= F -+ L - G which is stable at
the pressure P and the system S = F 4 L’ - G’ which is stable
at the -pressure P’. If now the volume of S’ is smaller than that
of S, P will be greater than P; if the volume of .§’ is greater
than that of S, P’ will he smaller.

Reversally, if P’ is greater than P the volume of S is smaller
than that of S; if P’ is smaller than P the volume of S’ will
be greater.

All this applies, as we have noticed previously, if .S and S can
be converted into each other and when P and P’ differ but lirtle.

We now omit from the system § the vapour so that we retain
I+ L only. We now can distinguish two chief cases, depending
on whether a phase reaction is possible, or impossible, between the
three phases of the system F -+ L + G, -

-11 -
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4. No phase reaction -is possible The {liee phases form the apexes
of a three phase triangle such as, for instance, Faa,, in fig. 4 (I).
We may further distinguish three other cases, namely

1. 4 L is converted by a change of pressure in the one direction
into -+ L’ 4+ G’ and by a change of pressure in the other direc-
tion, into I - L". Hence on change of pressure in the one direction
vapour is formed, but not when in the other direction.

2. F 4 L[ is converted by a change of pressure in the one direc-
tion into I L’ 4 G’, and by a change of pressnre in the other
direction into F -+ L"+ G"'. Hence, vapour is formed on increase
as well as on decrease of pressure.

3. '+ L is converted by a change of pressure in the one direc-
tion into [7-- L’ and by a change in the other dirvection into
I’ L. Hence, no vapour is formed either on increase or on reduction
of pressure. The case cited in 1 is the one generally occurring,
those mentioned in 2 and 3 only occur exceptionally.

B. A phase reaction is possible. The three phases are now repre-
sented by three points situated on a straight line. The system /7 + L -
can then be converted by a change in volume unaccompanied by a
change of pressure, into the system /' L 4 (. So long as these
three phases are adjacent, neither the pressure nor the composition
of liquid or vapour is altered by a change in volume; all that hap-
pens is a reaction between the tlree phases. As regards this reaction.
we can now distinguish three cases:

1. F2 L+ G

In the graphic representation, the point I is siluated between the
points L and G. On a change in volume in the one direction solid
matter is deposited; when m the other direction this disappears.

2. F+L2G.

In the graphic representation the point G' is now situated between
the points // and L: On change m volume in the one direction, gas
is formed; when a change takes place in the other direction the gas
disappears.

3. F+ G2 L. .

In the graphic representation the point Z is now situated between
the points F and @. On change in volume in the one direction,
liquid is formed, when in the other direction this disappears. If, in
one of the, veactions sub A and B vapour is formed, the volume
will as a rule become larger aund if vapour disappears it will become
smaller. The- reverse, however, may also occur as will be perceived
in the following manner. In order to convert ¥ L into ' L'+ G*
we first of all form from Z a little of the vapour G“; the liquid L

-12 -
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Jis hereby converted into a somewhat différent liquid L". Now, so-as
1o convert L" inlo L' either solid # must dissolve in L" or crystallise
from the same. If now this solution or erystallisation of £'is accom-
panied by a great decrease in volume, this may exceed.the increase
of volume occurring in the generation of the vapour; the system
F 4 L is then converted with decrease in volunme into ' L'+ @.

Such a conversion may be particularly expected in points of the
saturation line under its own vapour pressure which are adjacent
to the point #. The liquid then differs but liitle in composition from
the solid substance F so that in order to slightly aller the compo-
sition of the liquid large quantities of solid substance must either
dissolve or else crystallise out. Moreover, if in this case the solid
substance 7' melts with increase in volume, the latter will increase on
-addition of Z and decrease on the separation of the same. If 7
melts with decrease in volume, the volume will decrease on addi-
tion of /' and increase when this substance is deposited.

Hence, in the case of points of the saturation line of # under its
own vapour pressure situated in the vicinity of F, the system '+ L
can be converted with decrease in volume into K4 L' 4 G':

. if in that conversion solid matter separates and if this melts
with increase of volume (17> ).

2. if in fthat conversion solid matter dissolves-and if this melts
with decrease of volume ( V< w).

We may - now apply the above cousiderations in different ways.
If, for instance, we take the change in volume along the saturation
line under its own vapour pressure as known, we may determine
the change in pressure; if the value of the latter is known we may
determine the change in volume. We now merely wish to demon-
strate that these views support our previous considerations. We
first take the case when all the points of the saturation line under
its own vapour pressure are removed comparatively far from the
point F, so that the two-phase complex I+ L is converted with -
increase in volume into the three-phase equilibriam F 4~ L'+ G

We represent the equilibrium -+ L 4 G by the three-phase
triangle Faa, of fig. 3 (1) or 4 (1); the two-phase complex F - I
is then represented by a point of the line Fa.

As, according to our assumption the system /' L which exists
at the pressure P, is converted with increase in volume into the
three-phase equilibrium F-- L’ -} ¢ existing at the pressure P’ the
few pressure P must be smaller than P.

From a consideration of fig. 3 (I) or 4(I) it follows at once.that
the new liquid L’ must Le sitnated in such a way that the new
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conjugation line F'L’ is sitnated at the other side of Fa than the point a,.
From all this it follows that, on reduction in pressure, the conjugation
‘line solid-liquid turns away from the vapour point, and that on
increase in pressure it turns towards the same.

We notice at once that this is in conformity with the change in
pressure along the saturation line undér its own vapour pressure in
fig. 7 (1) and 11 (D).

For if we allow the conjugation line solid-liquid to turn away
from m towards M or along malM or along mbil, it always furns
towards the vapour point while the pressure increases. We now take
the case when the saturation line of F under its own vapour pressure
is situated, in part, adjacent to the point /. We now distinguish
two cases depending on whether the substance # melts with increase
or decrease in volume.

V > ». The substance melts with increase in volume. For these
points of the saturation line under its own vapour pressure which are
removed far from the point I7, F4L will be converted into F-+L'+ G’
with increase of volume; for points in the vicinity of F, F4- L
may pass into F'-4- L’ 4+ G with decrease in volume, provided
that, as stated above. much solid matter is deposited in this convesision.

We have already seen above in what direction the conjugation
line solid-liquid turns when F -4 L is converted with increase in
volume into F -+ L’.4 G’; we may now readily deduce that this
conjugation line will turn in the opposite direction if that conversion
takes place with decrease in volume. Hence, we find the following:
we take from the three-phase equilibvium /'+ L 4 (7 the two-phase
complex F-+ L; if F- L is converted into - L'+ G’ with
increase of volume the conjugation line solid-liquid on veduction of
pressure turns away from the vapour point; atan increased pressure
it turns towards the vapour point.

If F- L is converted into /' - L’ 4 G with decrease in volume
the conjugation line solid-liquid turns in the opposite direction.

Let us now consider the saturation line of fig. 12 (I) under its own
vapour pressure of which a part is adjacent to the point / and which,
as we have seen before, applies to the case when the substance /7
expands on melting (V >>v). We draw through /£ two tangents ai
this corve Mm; we will call these points of contact R and R'.

As seen from the figure, the conjngation line solid-liquid now
moves, on increase in pressuve, on the branch RMR’ towards the
vapour point; on the branch Rm&’, however, it moves away from
the vapour point. In connection with the above, it now follows
that the conversion of K- L into F+ L'+ G’ is accompanied,
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on .the branch RMR’ with an increase and on branch RmR’ with

a decrease in volume. B
In the points of contact themselves where both branches amalga-

mate, the case sub A 3 now occurs. Let us take the two-phase com-
plex F - liquid B. We now see that, on increase as well as on
redaction in pressure, the conjugation line F-liquid R gets out-
side the new three-phase triangle so that no vapour can be formed:

Let us now see what happens in a similar point of contact R if
the pressure changes but infinitesimally. At this infinitesimal ‘change
of pressure, the liquid then moves at an infinitesimal rate- along
the tangent IR either towards or away from JF. The only thing
what happens is that in the liquid a little # is dissolved, or else
crystallised from the same, without any vapour being formed.

If now a substance F7 melts with increase in volume and, there-
fore, in this case also dissplves with increase in volume, it will
crystallise out on increase in pressure and get dissolved on reduction
of the same. This also is in harmony with the change in pressure
along the saturation line under its own vapour pressure in the point
R of fig. 12 (I): on elevation of the pressure the liquid moves, stdrting
from R, from the point F; this signifies that solid matter is being
deposited. On reduction of pressure the liquid moves from R towards
the point F7; this means that solid matter is being dissolved.

The fact that in a point of contact B no vapour takes part in
the reaction may be also demonstrated in the following manner.
We again take at the pressure P a system .S consisting of:

n quantities /7 m qnantities L 4 ¢ quantities G ;
at the pressure P - dP is formed thereof the system .S’ consisting
of
(n—+dn) quantities F4-(m-dm) quantities L’4-(y4-dq) quantities G*

From the three relations already employed for this and which
indicate that the quantity of each of the three components remains
the same in this conversion we can deduce:

Ein = — m {(y,—y)da — (@,—2)dy} — ¢ {(y:—9)dv, — (v, —2)dy,]

Edg = m{B—y)de — (¢ -a)dy} + ¢{B—y)de, — (e—a)dy,}

Edm=m{(y,—B)dv — (z,~ a)dy} + ¢ {y, —B)da, — (v, —a)dy,}
in which all the letters have again the same meaning as before.

If now we proceed at the pressure P from the system /4 L we
must call g =0; we then obtain:

Edn = — m{(y,—y)da — (z,—a)dy} :
Edg = m{(8—y)de — (a—a)dy}

Bim=m{y,—P)de — (e, —a)dy}.
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Hence, as a rule dn, dm and dq are not Q; if, however, we cai
draw through the point 2,y of the saturation conrve under its own
vapour pressure a tangent passing through the point /7 we find

. dy B—y

da o—a

hence dg =0, whereas dn and dm differ from zil. It means that
no vapour takes part in the reaction so that the system F4-L is
converted into another system /4 L’ devoid of vapour.

We have noticed previously that the saturation line of the sub-
stance /' under its own vapour pressure which passes through the
point /7 can have a form like the curve Jfub of fig. 2 (II). At a
somewhat lower temperature this curve still possesses about this

a form but it becomes citcumphased. In fig. 4 a part

of this curve has been drawn. So long as the point £
R’ s situated sufficiently close to this curve we can draw
through /7 four tangents at this curve with the points

R of contact B, R, X and .X'. Let us now imagine in
Fe m'x fig. 4 the saiuration line under its own vapour pressure

x' fo be shifted further towards the left and also its
correlated vapour line to be drawn.
We now allow a conjugation line solid-liquid to
g turn from m in such a divection that the pressure
increases. Let us now proceed from m towardsa. On
the branch mR, the conjugation line F-liqwd turns
towards the vapour point, from R to R’ away from the vapour
point and from B’ to a and further on it again turns towards the
vapour point. The same applies to the branch mX.X’b on which, in
the points X and ', the direction of the rotation of the conjugation
line gets reversed. The conversion of '+ L into '+ L' - G’ then
takes place on branch m B and in.X (andm.X) with increase in volume, on
branch RR’ (and NXX’) with decrease m volume and on branch
R'a (and X’b) again with increase in volume. In the point of contact
R now appears the case sub 42 and in the point of contact R’
the case cited sub A3. Let us take for instance the two-phase
complex I lignid R. We now notice thal on increase as well as
on decrease in pressure the conjugation line F-iquid R gels situated
within the new three-phase triangle so that /7 < liquid R is converted
into #4+ L'+ G
On an infimtesimal change in pressnre, nothing takes place in the
points 2 and /77 but a solution, ov a crystallisation of solid matter,
As 27 mels with mercase in volume and n this case also dissolve

Fig. 4.
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with increase in volume, crystallisation will occur at an increased
and solufion® at a reduced pressure. This is, moreover, in conformity
with the change in pressure in the points R and R’ along the
saturation line under its own vapour pressure.

The same considerations as the above-cited may be also applied
to the case when the subslance /7 melts with decrease in volume.

(To be continued).

Chemistry. — “The dynamic Allotropy of sulpluwr.” (Fifih commu-
nication.) ') By Dr. H. R. Kroyr. (Communicated by Prof.
P. va~y RomBureH.)

(Communicated in the meeting of January 25, 1913).

As point 5 of the résumé of my third paper on the above subject
I wrote in 1909:

“Es wurden neue Untersuchungen uber den Einfluss des S, auf
“"den Umwandlungspunt S,;, 2 S, in Aussicht gestellt”.

In connection therewith I wrote ?) in July 1911 :

“Dr. vax Krooster of Groningen has this year started thatinvesti-
gation and although the provisional result-is only of a gualitative
character as yet 1t may be taken for granted . . . .”

Nevertheless, Messrs. Swits and pe Lewuvw pablished, i these
Proceedings (XIV, p. 461), an investigation concerning this question.

In the Zeitschr. f. Electrochemie’) I communicated, in connection
with some other questions regarding sulphur, that the above investi-
gation had been continued and brought to a close, also to what
conclusions it had led and that a detailed communication would soon
appear; receniy it appeared as the fourth communication in this
series i

Meanwhile, Dr. o Luevw (Proc. XV p. 584) has contradicted the
above cited conclusions and condemned the still unpublished investi-
gations in advance.

Although I should have every reason not to take any notice of that
paper, (wo reasons in particular have induced me to repeat and extend

1) For the previous communications see Zeilschr. [ physik. Chem. viz. I: 64,
513 (1908); I : 63, 486 (1909); Ill: 67; 821 (1909) and IV; 81, 726 (1913),

2) Chem. Weekbl. 8, 643 (1911). .
8) Z. [ Elektiochemie 18, 581 (1912),
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