Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

F.A.H. Schreinemakers, Equilibria in ternary systems. V, in:

KNAW, Proceedings, 15 II, 1912-1913, Amsterdam, 1913, pp. 1213-1228

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

$$
\begin{equation*}
\frac{d P}{d T}=\frac{D}{G} \tag{17}
\end{equation*}
$$

in which D and C have another value than in (14).
Equation (16) is, of course, also satisfied $x=x_{1}$ and $y=y_{1}$, hence by a singular point of the system liquid + gas. In this case, D and C^{\prime} and consequently $\frac{d P}{d T}$ obtain the same value as in (14). We now imagine also the P, T-curve of the singular point drawn in fig. 4; we may then easily demonstrate that $\frac{d P}{d T}$ is determined for this curve by (14).

If now, on one of the straight lines $Z F Z_{1}$ of fig. 1 a singular point occurs, so that in the equilibrium of solid $F+$ liquid + vapour the two latter ones have the same composition, its P, T-curve must meet the P, T-curve of the singular point in fig. 4.

Such a case oscurs when at a definite P and T a singular point appears or disappears on the saturalion line of F, so that the saturation line and the correlated vapour line meet each other in that point.

With the ad of the previous formulae we might be able to investigate more accurately the course of the P, T-lines if we expressed the quantities r, s, t etc. by means of the equation of state of Van der Waals, in which a and b mast then be considered as functions of x and y.

> (To be continutecl).

Chemistry. - "Equilibria in ternary systems." V. By Prof. F. A. H. Schrhinemakirs.
(Gommunicated in the meeting of February 22, 1913).
In the previous communication we have disregarded the case when the straight line $Z F Z_{1}$ of fig. I (IV) coincides with the line $X P Y$ of this figure. If a licuid moves from the point P of this figure towards X or towards Y then, as follows from (I1a) (IV) both the numerator and denominator of R are $=0$.

The value of $\frac{d P}{d T}$ from (11) (IV) then becomes indefinite so that we will consider this case separately. In order to simplify the calculations we again limit ourselves to the case when the vapour contains one component only so that we may put x_{1} and $y_{1}=0$.

Our conditions of equilhtrium are given in this case by (I8) (II) (19) (II). We now write these:

$$
\left.\begin{array}{c}
x \frac{\partial Z}{\partial x}+y \frac{\partial Z}{\partial y}-Z+Z_{1}=0 \\
(x-\alpha) \frac{\partial Z}{\partial x}+(y-\beta) \frac{\partial Z}{\partial y}-Z+\zeta=0 \tag{1}
\end{array}\right\}
$$

If we develop these with regard to x, y, P and T and call $x=a$ and $y=\beta$ we find, if we keep to the same notation as in communiration (II):

$$
\begin{gather*}
a d x+b d y+\frac{1}{2} c d x^{2}+d d x d y+\frac{1}{2} e d y^{2}+\ldots . \\
=-C d P+D d T+\ldots . \cdot \cdot \cdot . . \tag{2}\\
\frac{1}{2} r d x^{2}+s d x d y+\frac{1}{2} t d y^{2}+\ldots=A d P-B d T+\ldots \tag{3}
\end{gather*}
$$

In equation (3) are wanting the terms cle $d P$, $d y d P$, $d x d T$ and dy $d T$. A, B, C. and D have herein the same signilicance as in commonication II ; therein, however we must now call $a=a, y=\beta$, $x_{1}=0$ and $y_{1}=0$.

We now allow the liquid, saturated with $F F$ and in equilibrium with vapour, to proceed along the line $Z F Z$, in fig. 1 (IV). For this we call $d y=\operatorname{tg} \varphi \cdot d x$; from (2) and (3) now follows:

$$
\begin{gather*}
(a+b \operatorname{tg} \varphi) d x+\frac{1}{2}\left(c+2 d \operatorname{tg} \varphi+e \operatorname{tg}^{2} \varphi\right) d x^{2}+\ldots \\
=-C d P+D d T+\cdots \cdot \cdot \tag{4}\\
\frac{1}{2}\left(r+2 \operatorname{tg} \varphi \varphi+\operatorname{tgg}^{2} \varphi\right) d x^{2}+\cdots=A d P-B d T+\cdots \cdot \tag{5}
\end{gather*}
$$

We now allow the straight line $Z F Z_{1}$ in fig. 1 (IV) to coincide with the line $X F Y$ of this figure. As $X F Y$ is the tangent in the point F at the liquidum line of the heterogeneous region passing through l, this is determined by:

$$
(\alpha y+\beta s) d x+(a s+\beta y) d y=a d x+b d y=0 .
$$

Hence, if in fig. 1 (IV) the line $Z F Z_{1}$ coincides with the line $X F Y, a+b \operatorname{tg} \rho=0$.
If we substitute this ralue of tg_{g} in (4) and (5) we get:

$$
\begin{align*}
-\frac{1}{2 b^{2}} Q d x^{2}+\ldots & =-C d P+D d T+\ldots \tag{b}\\
\frac{1}{2 b^{2}} S \cdot d x^{2}+\ldots & =A d P-B d T+\cdots \tag{7}
\end{align*}
$$

In this Q and S have the same value as in cominunication (II), namely:

$$
\begin{gathered}
Q=2 a b d-a^{2} c-b^{2} c \\
S=a^{2} t+b^{4} r-2 a b s=\left(r t-s^{2}\right)\left(a^{2} r+2 a\left(\beta s+\beta^{2} t\right)\right.
\end{gathered}
$$

At first, we may limit ourselves to terms recorded in (6) and (7); from this we find:

$$
\begin{equation*}
\frac{d P}{d T}=\frac{B}{A} \frac{Q-\mu S}{Q-\lambda S} . \tag{8}
\end{equation*}
$$

- in which μ and λ have the same significance as in communication (II), namely

$$
\lambda=\frac{C}{A} \text { and } \mu=\frac{D}{B}
$$

and further:

$$
\begin{equation*}
d P=\frac{B}{2 b^{2}} \cdot \frac{Q-\mu S}{B C-A D} \quad d x^{2} \quad d T=\frac{A}{2 b^{2}} \cdot \frac{Q-\lambda S}{B C-A D} \cdot d x^{2} \tag{9}
\end{equation*}
$$

wherein, as in the previous occasion, we take $B C-A D>0$.
Let us first take a P, x-diagram such as in fig. 2 (IV) and 3 (IV). As $B=H-\dot{\eta}$ is always positive, $d P$ has the same sign as $Q-\mu S$. In communication (II) we have seen that $Q-\mu S$ is negative when the boiling point line, of the solutions saturated with F passing through F is curved in the point F towards O. The point O here represents the component occurring in the vapour. The boiling point line then has a form like the curve aFl in fig. 1 (II). $d P$ now being negative, the P, x-curve must have a form like $c F^{v} d$ in fig. 2 (IV).

If the boiling point line of the solations saturated with F is curved in the point F away from the point O so that it presents a form like curve $a F b$ in fig. 2 (II), $Q-\mu S$ will be positive. From the value of $d P$ from (9) it now follows that the P, x-curve must have a form like curve $c F^{\prime} d$ of fig. 3 (IV).

In order to tind the T, r-curve in the vicinity of the point F we must distinguish two cases.
$V>v$ or $A>0$. If $Q-2 S$ is negative, the saturation curve of F under its own vapour pressure is curved in the vicinity of F towards O and, therefore, has a form like curre alFb in fig. 1 (II); $d T$ is now negative and the T^{\prime}, x-curve has a form like curve $c F^{\prime} d$ in fig. 2 (IV). If $Q-\lambda S$ is positive the saturation line of F^{T} under its own vapour pressure will have a form like $a F b$ in fig. 2 (II); $d T$ from (9) is now positive and the T, x-curve has a form like $c F^{\prime} d$ in fig. 3 (IV).
$V<v$ or $A<0$. If $Q-\lambda S$ is negative the saturation curve of f under its own vapour pressure will have a form like curve aff in fig. $4(\mathrm{II})$; $d T$ from (9) is now positive and the T, x-curre, has consequently a form like curve $c F^{\prime \prime} d$ in fig. 3 (IV). If $Q-i S$ is positive the saturation curve of F under its own vapour pressure will have a form like curve aFb in fig. 3 (II); $d T$ from (9) is now negative so that the T^{\prime}, c-curve lias a furm like curve $c F^{\prime \prime} d$ of tig. 2 (IV).

Proceedugs hoyal Acad. Amsterdam. Vol. XV ,

From the value of $\frac{d P}{d T}$ from (8) it follows that this is not equal to $\frac{B}{A}$; the P, T-curve corresponding with the straight line $X F T$ of fig. 1 (IV) will, therefore not meet, in fig. 4 (IV), the melting point line $F d$ in 7 . Whereas, as we have stated previonsly, all the P, T curves in fig. 4 (IV) meet the meling point line of F in the point F this is no longer the case when the straight line $Z Z Z_{1}$ in fig. I (IV) - coincides with $X F Y$.

In order to determine this P, T-curve in the vicinity of F more closely we eliminate $d x^{2}$ from (6) and (7); we then get:

$$
\begin{equation*}
a_{1} d x^{3}+\cdots=(A Q-C S) d P-(B Q-D S) d l^{\prime}+b_{1} d x d P+c_{1} d x d T+\ldots \ldots \tag{10}
\end{equation*}
$$

In this equation, as $d P$ and $d T$ are according to (9) of the order $d x^{2}, d x d P$, and $d x d T$ are of the order $c x^{3}$; the terms omitted are all of the order $d x^{4}$ and higher. We now substitute in (10) the value of $d x$ which we can deduce from (7) namely:

$$
\begin{equation*}
d x+. .=a_{2} \sqrt{A d P-B d T}+. . . \tag{11}
\end{equation*}
$$

so that (10) is converted into

$$
\begin{align*}
a_{3}(A d P-B d T)^{2 / 2}= & (A Q-C S) d P-(B Q-D S) d T+ \\
& +a_{2}(A d p-B d T)^{1 / 2}\left(b_{1} d P+c_{1} d T\right) \tag{12}
\end{align*}
$$

in which the terms omitted are of an order higher than d $4 x^{3}$. For (12) we write:
$(A Q-C S) d P-(B Q-D S) d T=\left(b_{2} d P+c_{2} d T\right)(A d P-B d T)^{1 / 2}$.
or:

$$
\begin{equation*}
\left(a_{4} Y-b_{4} X\right)^{2}=\left(b_{2} Y+c_{2} X\right)^{2}(A Y-B X) \tag{13}
\end{equation*}
$$

In order to investigate (14) we take a straight line $a_{4} Y-b_{4} X=\delta$, in which δ is infinitely small so that this line is situated parallel to, and in the immediate vicinity of, the tangent in the point F. Its points of intersection with (14) are given by:

$$
a_{4} Y-b_{4} X=\delta \text { and }\left(b_{2} Y+c_{2} X\right)^{2}(A Y-B X)=d^{2}
$$

This is satisfied by;

$$
\begin{equation*}
Y=a_{5} \cdot \delta^{2 / 2} \quad \text { and } \quad X=b_{5} \quad \delta^{1 / 3} \ldots \ldots . \tag{15}
\end{equation*}
$$

hence: $a_{4} a_{5}-b_{4} b_{5}=0$ and $\left(b_{2} a_{5}+c_{2} b_{5}\right)^{2}\left(A a_{5}-B b_{5}\right)=1$
or :

$$
\begin{align*}
& \frac{b_{5}{ }^{8}}{a_{4}{ }^{3}}\left(A b_{4}-B a_{4}\right)\left(b_{3} b_{4}+c_{2} a_{4}\right)^{2}=1 \tag{16}\\
& \frac{a_{5}^{3}}{b_{4}{ }^{3}}\left(A b_{4}-B a_{4}\right)\left(b_{2} b_{4}+c_{2} a_{4}\right)^{2}=1 \tag{17}
\end{align*}
$$

As X and I do not change their sign when J does so, it follows
that the P, T curve has in point F a cusp so that we find at both sides of the tangent in H^{\prime} a branch of this curve. Now $a_{4}=A(Q-2 S$ $b_{4}=B(Q-\mu S)$

$$
A b_{4}-B a_{4}=(B C-A D) S
$$

so that $A b_{4}-B a_{4}$ is positive. From (16) and (17) it now follows that b_{5} and $A(Q-2 S)$ have the same sign, and the same applies to a_{5} and $B(Q-\mu S)$.

In connection with (15) follows:

$$
\begin{align*}
& \tilde{d} T \text { of } Y \text { bas the same sign as } A(Q-2 S) \tag{18}\\
& d P " Y \Rightarrow \quad " \quad . \tag{19}
\end{align*}
$$

what agrees with (9).
We will now consider some cases.
$V>v$ hence $A>0$ and $\lambda>0 ; Q-\lambda S<0 ; Q-\mu S<0$. From

$$
\begin{equation*}
\frac{d P}{d T}=\frac{A}{B} \cdot \frac{Q-\mu S}{Q-\lambda S}=\frac{A}{B}\left[1+\frac{(\lambda-\mu) S}{Q-\lambda S}\right] \tag{20}
\end{equation*}
$$

it follows that $\frac{d P}{d T}$ is smaller than $\frac{B}{A}$. (From our assumption $B C-A D>0$ follows namely $2-\mu>0$): If in fig. 1 the line $d_{1} F c$ represents the tangent at the point F of the not drawn melting point line, the P, T-curve $X F T$ will, in its turning point F, have a tangent like the dolted line in fig. 1 passing through F. From (18) and (19) and also from (9) it follows that $d P$ and $d T$ are negative, so that the curve $X F Y$ in fig. 1 must proceed from F towards lower temperatures

fig. 1. and pressures. The latter may be found also by other means. For this we take the minimum melting point of the compound $I r$, therefore the temperature T_{F} of fig. 1; as $Q-\lambda S<0$, the saturation line of F under its own vapour pressure has at this temperature a form like curve $a f b$ in fig. 1 (II) in which we must also imagine the tangent $X F Y$ to be drawn. As this tangent has only one point in common with the saturation curve, namely the point of contact F, a vertical line passing in fig. 1 through the point f may intersect the curve $X F Y$ in the point F^{\prime} only.

We now take a temperature $T^{\prime \prime}$ somewhat lower than $T_{F^{\prime}}$; if
now in fig. 1 (II) we also imagine to be drawn the saturation line under its own vapour pressure of this temperature $T^{\prime \prime}$, we notice that this intersects the line XFY in two points. In fig. 1 , therefore, a vertical line corresponding with the temperature T^{\prime} mustintersect the curve $X F Y$ in two points.

If we take a temperature $T^{\prime \prime}$ sonewhat higher than T_{F} we find that the vertical line corresponding with this temperature does not intersert the curve $X F Y$ in fig. 1.

We now take the boiling point line of the compound F of the pressure $P_{F^{\prime}}$, that of a somewhat lower pressure P^{\prime} and that of a somewhat higher pressure $P^{\prime \prime}$. As $Q-\mu S<0$ it follows that that of the pressure P_{F} has a form like curve $a F^{\prime} b$ of fig. 1 (II) in which, however, we must imagine the arrows to point in the opposite durection. From a consideration of these boiling point lines it follows that in fig. 1 curve $X P Y$ is intersected by a horizontal line corresponding with the pressure P_{F} in F only, and in two points by a horizontal line corresponding with the somewhat lower pressure P^{\prime}.
$V>v$ therefore $A>0$ and $2>0 ; Q-2 S<0 ; Q-\mu S>0$.
From (8) it follows that $\frac{d P}{d T}$ is negative, from (9) and also from (18) and (19) that $d T$ is negative and $d P$ positive. In fig. $2 d_{1} F d$ again represents the tangent at the point F of the not drawn melting point line; the dotted line passing through the point F is the tangent in the cusp F of curve $X F Y$.
The fact that the curve XFY proceeds from F towards lower temperatures ahd higher pressures may be deduced also in the following manner. From a consideration of the saturation lines under their own

Fig. 2. vapour pressure of the temperature T_{F}, the somewhat lower temperature $I^{\prime \prime}$, and the somewhat higher temperature $T^{\prime \prime}$, it follows that curve $X F Y$ in fig. 2 is intersected by the vertical line correspouding with the temperature T_{k} in F only and in two points by the rertical line corresponding with the somewhat lower temperature $T^{\prime \prime}$.
As $Q-\mu S>0$, the boiling point line of the solutions saturated with F has, at the pressure P_{F} a form like curve aFb of fig. 2 (Il) in which, however, the arrows must be imagined to point in the opposite direction. If we imagine in this figure the tangent $X F Y$,
notice that the latter, besides the point of contact F, has another points of intersection in common with curve aFb, which both srtain to a lower temperature than T_{F}. The horizontal line in fig. 2 esponding with the pressure P_{F} must therefore intersect the curve Y, besides in F, also in two other points to the left of point the one point of intersection must lie on the branch $X F$, the r on the branch $Y F$.
' now we-take the boiling point line of a somewhat lower pres: P^{\prime}, this will be intersected in fig. 2 (II) in two points by the $X F Y$. Hence, the horizontal line in fig. 2 corresponding with pressmre P^{\prime} must intersect curve $X F \Gamma$ in two points.
he boling point line of a somewhat higher pressure $P^{\prime \prime}$ is intered by the line $X F E$ in four points, of which two lie on the : $X F$ and two on the part $Y F$ of this line. The horizontal line esponding with this pressure $P^{\prime \prime}$ in fig. 2 intersects therefore b of the branches $X F$ and $Y F$ in two points.
f in fig. 2 (II) we take a straight line $\angle F Z_{1}$ whose direction ers but little from the tangent $X F Y$ this will intersect the boiling at line of the pressure P_{F} not only in F but also in three other ats namely two on $F Z_{1}$ and another on $H^{\prime} Z$. The horizontal line fig. 2 corresponding with the pressure P_{F}, therefore, intersects curve $Z F Z_{1}$ in F and further the branch $Z F$ in one and the nch $\dot{Z}_{1} F$ in two points. Hence, on branch $Z_{1} F$ must occur a nt with a maximum and another with a minimum vapour pressuro $V>v$ therefore $A>0$ and $\lambda>0 ; Q-\lambda S>0 ; Q-\mu S>0$. from (20) follows: $\frac{d P}{d T}$ positive and greater than $\frac{B}{A}$; from (9) and , from (18) and (19) follows $d P$ and $d T$ positive. The curve $X P Y$ st therefore have a form as drawn in fig. 3 wherein $c_{1} F c l$ again resents the tangent in the point F at the omitted melting point 3; the dotied line passing through F represents the tangent in the p F at curve $X F Y$.

Fig. 3.

The fact that curve XPY in fig. 3 must proceed from F towards higher temperatures and pressures is again evident from a consideration of the saturation line of the temperature T_{F} under its own vapour pressure, and of the boiling point line of the solutions saturated with F of the pressure P_{F}. For both curves have in this case a form
like in fig. 2 (II) so that the tangent $X F Y$ besides meeting the curve aFl in the point F, also mersects this m two other points. In harmony with fig. 3 we find that the vertical line corresponding with the temperature T_{F} must intersect the curve $X Y F$ in two points above F, and the horizontal line corresponding with the pressure P_{F} must intersect this curve in two points at the left of F.

From a consideration of the straight lines whose direction differs but little from the tangent $X F Y$ it follows that their P, T-curves in tig. 3 must exhibit on the one brancla proceeding from F, a point with a maximum temperature and one with a maximum pressure, and on the other branch, besides two similar points, also one with a minimum temperature and a minimum pressure.

The deduction and further consideration of the other cases Imust leave to the reader.

We can also determine the course of the saturation lines under their own vapour pressure and of the boiling point lines of the solutions saturated with solid matter; which has been discussed in the previous communications, in a different manner.

For the stability requires that if we convert a system, at a constant temperature, into another having a smaller volume the pressure must increase; if converted into one with a greater volume the pressure must decrease.

We may also perceive this in the following manner. At the pressure P exists the system S which is converted at the pressure $P+d P$ into the system S^{\prime}. We represent the ζ of the system S, at the pressures P and $P+d P$ by ζ_{P} and $\zeta_{P+d P}$, that of the system S^{\prime} by ξ_{P}^{\prime} and $\zeta^{\prime}{ }_{P+d P}$.

As at the pressure P the system S is the stable one, it follows that $\zeta_{p}<\zeta^{\prime} p$.

As at the pressure $P+c l P S^{\prime}$ is the stable one it follows that $\zeta^{\prime} P+d P<\zeta_{P+d I}$. If we represent the volumes of S and S^{\prime} at the pressure P by V and V^{\prime} the latter condition can also be expressed by :

$$
\xi_{P}^{\prime}+V^{\prime} d P<\zeta_{P}+V d P .
$$

From this now follows in connection with the first condition:

$$
V^{\prime} d P<V d P
$$

hence, $V^{\prime}<V$ if $d P$ is positive and $V^{\prime}>V$ if $d P$ is negative.
The volume $V^{\prime \prime}$ of the system S^{\prime}, is, at the pressure $P+d P$, like $V^{\prime}+\frac{d V^{\prime}}{d P} d P^{\prime}$, in which $\frac{d V^{\prime}}{d P}$ is negative; from this now follows:
$V^{\prime}<V$ if $d P$ is positive and $V^{\prime \prime}>V$ if $d P$ is negative,

Hence, if we compare two systems S and S^{\prime} which are converted into each other, at a coustant temperature, by a small alteration in pressure, it follows from the foregoing that:

If S exists at a higher pressure than S^{\prime}, the volume of S is smaller, if S exists at a lower pressure than S^{\prime}, the volume of S is greater than that of S^{\prime}. And reversally:
if S has a smaller volume than S^{\prime} it exists at a higher, if it las a greater volume than S^{\prime} it exists at a lower pressure than S^{\prime}.

We may express this also a follows:
a system S is corverted by increase 11 pressure into a system with a smaller and on reduction in pressure into a system with a greater volume. And reversally:-
if a system S is converted into another with a smaller volume, the pressure must increase, and if converted into one with a greater volume the pressure must decrease. We may then compare the volumina of the two systems either both under their own pressure or both under the pressure of the system S, or both nonder the pressure of the system S^{\prime}.

It is evident that a similar consideration applies to two systems S and S^{\prime} which, at a constant pressure, are converted into each other by a small change in temperature. For the case in question, the equlibrium : solid + liquid + gas we may also deduce the above rules in a different manuer. For this, we take at the temperature T and the pressure P a complex consisting of n quantries $F+m$ quantities $L,+q$ quantities G. We now allow a reaction to take place between these phases at a constant T and P wherein
$(n+d n)$ quantity $F+(m+d n)$ quantity $L^{\prime}+(q+d q)$ quantity G^{\prime} is formed aud in which L^{\prime} and G^{\prime} differ butinfinitesimally from L and G.

The increase in volume Δ in this reaction is then determined by:

$$
v d n+V d m+V_{1} d q+m \frac{\partial V}{\partial x} d x+m \frac{\partial V}{\partial y} d y+q \frac{\partial V_{1}}{\partial x_{2}} d x_{1}+q \frac{\partial V_{1}}{\partial y_{1}} d y_{1} .
$$

As the total quantity of each of the three components remains unchanged in this reaction we have:

$$
\begin{aligned}
& \alpha d n+x d m+v_{1} d q+m d x+g d v_{1}=0 \\
& \beta d n+y d m+y_{1} d q+m d y+g d y_{1}=0 \\
& d n+d m+d q=0 .
\end{aligned}
$$

After elimination of $d n$, $d m$, and $d g$ we find:
$m\left\{\left(y_{1}-\beta\right) A+(\beta-y)(A+C)\right\} d x-m\left\{\left(u_{1}-\alpha\right) A+(u-x)(A+C)\right\} d y$
$\left.\left.-q_{i}^{(}(y-\beta) A_{1}+(\beta-y)\left(A_{1}+C_{1}\right)\right\} d_{1}+q_{i}(x-a) A+\left(\alpha-v_{1}\right)\left(A_{1}+C_{1}\right)\right\} d y_{1}$ $=\left\{\left(x_{1}-\alpha\right)(y-\beta)-(x-\alpha)\left(y_{1}-\beta\right)\right\} \Delta$
which for the sake of brevity we write:

$$
m A_{y} d x-m A_{x} d y-q A_{y_{1}} d x_{1}+q A_{x_{1}} d y_{1}=E . \Delta
$$

We will choose the new system $F+L^{\prime}+G^{\prime}$ in such a manner that it is in equibrium at the temperature T and the pressure $P+d P$. Then, as follows from our previous communications, $d x, d y, d x_{1}$ and $d y_{1}$ are determined by:

$$
\begin{aligned}
& {[(x-\alpha) r+(y-\beta) s] d x+[(x-\alpha) s+(y-\beta) t] d y=A d P} \\
& {\left[\left(x_{1}-\alpha\right) r+\left(y_{1}-\beta\right) s\right] d x+\left[\left(x_{1}-\alpha\right) s+\left(y_{1}-\beta\right) t\right] d y=(A+C) d P}
\end{aligned}
$$

and two corresponding equations which determne $d x_{1}$ and $d y_{1}$.
From this we find:

$$
E\left(r t-s^{2}\right) d x=-\left(s A_{x}+t A_{y}\right) d P \quad E\left(r t-s^{2}\right) d y=\left(r A_{x}+s A_{y}\right) d P
$$

$E\left(r_{1} t_{1}-s_{1}{ }^{2}\right) d w_{1}=\left(s_{1} A_{x_{1}}+t_{1} A_{y_{1}}\right) d P E\left(r_{1} t_{1}-s_{1}{ }^{2}\right) d y_{1}=-\left(r_{1} A_{x_{1}}+s_{1} A_{y_{1}}\right) d P$.
After substitution we find:
$m \frac{r A^{2}{ }_{x}+2 s A_{x} A_{y}+t A^{2} y}{r t-s^{2}}+q^{r_{1} \bar{A}^{2} x_{1}+2 s_{1} A_{v_{1}} A_{\eta_{1}}+t_{1} A^{2}{ }_{y_{1}}} r_{r_{1} t_{1}-s_{1}{ }^{2}}=-E^{2} \frac{\Delta}{d P}$
so that Δ and $d P$ must have the opposite sign.
In the above relation Δ represents the change in volume if both systems are compared at the same pressure P; if, when the new system is taken at the pressure $P+d P$, the change in volume is represented by Δ^{\prime}, we get:

$$
\Delta^{\prime}=\Delta+\frac{d V_{t}}{d P} \cdot d P
$$

in which V_{t} represents the total volume of the new system at the pressure P. From this follows that Δ^{\prime} and Δ have always the same sign and Δ^{\prime} and $d P$ always the opposite one.

Let us now consider the system $F+L+G$ at a constant temperature, namely the saturation line of F under its own vapour pressure and its conjugated vapour line. These are respresented in fig. 7 (I), 11 (I), 12 (I) and 13 (I) by the curves $M a m b$ and $M_{1} a_{2} m_{1} b_{1}$.

We now take the system $S=F+L+G$ which is stable at the pressure P and the system $S^{\prime}=F+L^{\prime}+G^{\prime}$ which is stable at the pressure P^{\prime}. If now the rolume of S^{\prime} is smaller than that of S, P^{\prime} will be greater than P; if the volume of S^{\prime} is greater than that of S, P^{\prime} will be smaller.

Reversally, if P^{\prime} is greater than P the volume of $S^{\prime \prime}$ is smaller than that of S; if P^{\prime} is smaller than P the volume of S^{\prime} will be greater.

All this applies, as we have noticed previously, if S and S^{\prime} can be converted into each other and when P and P^{\prime} differ but little.
We now omit from the system S the vapour so that we retain $l+L$ only. We now can distinguish two chief cases, depending on whether a phase reaction is possible, or impossible, between the three phases of the system $F+L+G$.
A. No phase reaction is possible The three phases form the apexes of a three phase triangle such as, for instance, $F a a_{1}$, in fig. 4 (I). We may further distinguish three other cases, namely

1. $F+L$ is converted by a change of pressure in the one direction into $F+L^{\prime}+G^{\prime}$ and by a change of pressure in the other direction, into $F+L^{\prime \prime}$, Hence on change of pressure in the one direction vapour is formed, but not when in the other direction.
2. $F+L$ is converted by a change of pressure in the one direction into $F^{\prime}+L^{\prime}+G^{\prime}$, and by a change of pressure in the other direction into $F+L^{\prime \prime}+G^{\prime \prime}$. Hence, vapour is formed on increase as well as on decrease of pressure.
3. $F+L$ is converted by a change of pressure in the one direction into $F+L^{\prime}$ and by a change in the other direction into $F+L^{\prime \prime}$. Hence, no rapour is formed either on increase or on reduction of pressure. The case cited in 1 is the one generally occurring, those mentioned in 2 and 3 only occur exceptionally.
B. A plase reaction is possible. The three phases are now represented by three points situated on a straight line. The system $F+L$. can then be converted by a change in volume unaccompanied by a change of pressure, into the system $F+L+G$. So long as these three plases are adjacent, neither the pressure nor the composition of liquid or vapour is altered by a change in volume; all that happens is a reaction between the three phases. As regards this reaction. we can now distinguish three cases:
4. $F \rightleftarrows L+G$.

In the graphic representation, the point F is siluated between the points L and G. On a change in volume in the one direction sold matter is deposited; when m the other direction this disappears.
2. $F+L \rightleftarrows G$.

In the graphic representation the point G is now stuated between the points F and \dot{L} : On change in volume in the one direction, gas is formed; when a change takes place in the other direction the gas disappears.
3. $F+G \rightleftarrows L$.

In the graphic representation the point L is now situated between the points F and G. On change in volume in the one direction, liquid is formed, when in the other direction this disappears. If, in one of the_ reactions sub A and B vapour is formed, the volume will as a rule become larger and if vapour disappears it will become smaller. The reverse, however, may also occur as will be perceived in the following manner. In order to convert $F^{7}+L$ into $F+L^{\prime}+G^{\prime}$ we first of all form from L a little of the vapour G^{\prime}; the liquid L
,is hereby converted into a somewhat diffèrent liquid $L^{\prime \prime}$. Now, so-as 10 convert $L^{\prime \prime}$ into L^{\prime} either solid F must dissolve in $L^{\prime \prime}$ or crystallise from the same. If now this solution or crystallisation of F is accompanied by a great decrease in volume, this may exceed the increase of volume occurring in the generation of the vapour; the system $F+L$ is then converted with decrease in volume into $F+L^{\prime}+G^{\prime}$.

Such a conversion may be particularly expected in points of the saturation line under its own rapour pressure which are adjacent to the point F. The liquid then differs but little in composition from the solid substance F so that in order to slightly alter the composition of the liquid large quantities of solid substance must either dissolve or else crystallise out. Moreover, if in this case the solid substance F melts with increase in volume, the latter will increase on - addition of F and decrease on the separation of the same. If F melts writh decrease in volume, the volume will decrease on addition of F and increase when this substance is deposited.

Hence, in the case of points of the saturation line of F under its own vapour pressure situated in the vicinity of F, the system $F+L$ can be converted with decrease in volume into $F+L^{\prime}+G^{\prime \prime}$:
I. if in that conversion solid matter separates and if this melts with increase of volume ($V>v$).
2. if in that conversion solid matter dissolves and if this melts with decrease of volume $(V<v)$.

We may now apply the above considerations in different ways. If, for instance, we take the change in volume along the saturation line under its own vapour pressure as known, we may determine the change in pressure ; if the value of the latter is linown we may determine the change in rolume. We now merely wish to demonstrate that these views support our previous considerations. We first take the case when all the points of the saturation line under its own rapour pressure are removed comparatively far from the point F, so that the two-phase complex $P+L$ is converted with increase in volume into the three-phase equilibrium $F+L^{\prime}+G^{\prime}$.

We represent the equilibrium $F+L+G$ by the three-phase triangle $F a a_{1}$ of fig. 3 (1) or 4 (1); the two-phase complex $F+L$ is then represented by a point of the line F la.

As,' according to our assumption the system $F+L$ which exists at the pressure P, is converted with increase in volume into the three-phase equilibrium $F+L^{\prime}+G^{\prime}$ existing at the pressure P^{\prime}, the new pressure P^{\prime} must be smaller than P.

From a consideration of fig. 3 (I) or 4 (I) it follows at once, that the new liquid L^{\prime} must be situated in such a way that the new
conjugation line $F L^{\prime}$ is situated at the other side of $F a$ than the point a_{1}. From all this it follows that, on reduction in pressure, the conjugation line solid-liquid turns away from the vapour point, and that on increase in pressure it turns towards the same.

We notice at once that this is in conformity with the change in pressure along the saturation line under its own vapour pressure in fig. 7 (I) and 11 (I).

For if we allow the conjugation line solid-liquid to turn away from m towards M or along maM or along mbM, it always turns towards the vapour point while the pressure increases. We now take the case when the saluration line of F under its own vapour pressure is situated, in part, adjacent to the point F. We now distinguish two cases depending on whether the substance F melts with increase or decrease in volume.
$V>v$. The substance melts with increase in volume. For these points of the saturation line under its own vapour pressure which are removed far from the point $l{ }^{\prime}, F+L$ will be converted into $F+L^{\prime}+G^{\prime}$ with increase of volume; for points in the vicinity of $F, \vec{F}+L$ may pass into $F+L^{\prime}+G^{\prime}$ with decrease in volume, provided that, as stated above. much solid matter is deposited in this converision.

We have already seen abore in what direction the conjugation line solid-liquid turns when $F+L$ is converted with increase in volume into $F+L^{\prime}+G^{\prime}$; we may now readily dednce that this conjugation line will turn in the opposite direction if that conversion takes place with decrease in volume. Hence, we find the following: we take from the three-phase equilibrium $F+L+G$ the two-phase complex $F+L$; if $F+L$ is converted into $F+L^{\prime}+G^{\prime}$ with increase of volume the conjugation line solid-liquid on reduction of pressure turns away from the vapour point; at an increased pressure it turns towards the rapour point.

If $F+L$ is converted into $F+L^{\prime}+G^{\prime}$ with decrease in volume the conjugation line solid-liquid turns in the opposite direction.

Let us now consider the saturation line of fig. 12 (I) under its own vapour pressure of which a part is adjacent to the point l and which, as we have seen before, applies to the case when the substance l ' expands on melting ($V>v$). We draw throngh F two tangents at this curve Mm ; we will call these points of contact R and R^{\prime}.

- As seen from the figure, the conjugation line solid-liquid now moves, on increase in pressure, on the branch $R M R^{\prime}$ towards the vapour point; on the branch $R m R^{\prime}$, however, it moves away from the vapour point. In connection with the above, it now follows that the conversion of $F+L$ into $F^{\prime}+L^{\prime}+G^{\prime}$ is accompanied.
on the branch $R M R^{\prime}$ with an increase and on branch $R m R^{\prime}$ with a decrease in volume.

In the points of contact themselves where both branches amalgamate, the case sub A 3 now occurs. Let us take the two-phase complex $F+$ liquid R. We now see that, on increase as well as on reduction in pressure, the conjugation line F-liquid R gets outside the new three-phase triangle so that no vapour can be formed:-

Let us now see what happens in a similar point of contact R if the pressure changes but infinitesimally. At this infinitesimal change of pressure, the liquid then moves at an infinitesimal rate along the tangent $F R$ either towards or away from F. The only thing what happens is that in the liquid a little F is dissolved, or else crystallised from the same, without any vapour being formed.

If now a substance F melts with increase in volume and, therefore, in this case also dissolves with increase in rolume, it will crystallise out on increase in pressure and get dissolved on reduction of the same. This also is in harmony with the change in pressure along the saturation line under its own vapour pressure in the point R of fig. 12 (I): on elevation of the pressure the liquid moves, starting from R, from the point F; this signifies that solid matter is being deposited. On reduction of pressure the liquid moves from R towards the point F; this means that solid matter is being dissolved.
The fact that in a point of contact R no vapour takes part in the reaction may be also demonstrated in the following manner. We again take at the pressure P a system S consisting of:
n quantities $P+m$ quantities $L+q$ quantities G;
at the pressure $P+d P$ is formed thereof the system S^{\prime} consisting of:
$(n+d n)$ quantities $F+(m+d m)$ quantities $L^{\prime}+(q+d q)$ quantities G^{\prime}
From the three relations ahready employed for this and which indicate that the quantity of each of the three components remains the same in this conversion we can deduce:

$$
\begin{aligned}
& E d n=-m\left\{\left(y_{1}-y\right) d x-\left(x_{1}-x\right) d y\right\}-q\left\{\left(y_{1}-y\right) d x_{1}-\left(x_{1}-x\right) d y_{1}\right\} \\
& E d q=m\{(\beta-y) d x-(\alpha-x) d y\}+q\left\{(\beta-y) d x_{1}-(\alpha-x) d y_{1}\right\} \\
& E d m=m\left\{\left(y_{2}-\beta\right) d x-\left(x_{1}-\alpha\right) d y\right\}+q\left\{\left(y_{1}-\beta\right) d x_{1}-\left(x_{1}-\alpha\right) d y_{1}\right\}
\end{aligned}
$$

in which all the letters have again the same meaning as before.
If now we proceed at the pressure P from the system $F+L$ we must call $q=0$; we then obtain:

$$
\begin{aligned}
& E d n=-m\left\{\left(y_{1}-y\right) d x-\left(x_{1}-x\right) d y\right\} \\
& E d q={ }^{m}\{(\beta-y) d x-(\alpha-x) d y\} \\
& E d m={ }_{m}\left\{\left(y_{1}-\beta\right) d x-\left(x_{1}-\alpha\right) d y\right\} .
\end{aligned}
$$

Hence, as a rule $d n, d m$ and $d q$ are not 0 ; if, however, we can draw through the point x, y of the saturation curve under its own vapour pressure a tangent passing through the point F we find

$$
\frac{d y}{d x}=\frac{\beta-y}{\alpha-x} .
$$

hence $d q=0$, whereas $d n$ and $d m$ differ from nil. It means that no vapour takes part in the reaction so that the system $F+L$ is converted into another system $7+L^{\prime}$ devoid of vapour.

We have noticed previously that the saturation line of the substance F under its own vapour pressure which passes through the point F can have a form like the curve $F a b$ of fig. 2 (II). At a somewhat lower temperature this curve still possesses about his

Fig. 4. . - the branch $m R$, the conjugation line F-liquid turns toward's the vapour point, from R to R^{\prime} away from the vapour point and from R^{\prime} to a and further on it again turns towards the vapour point. The same applies to the branch $m X X^{\prime} b$ on which, in the points X and $X^{\prime \prime}$, the direction of the rotation of the conjugation line gets reversed. The conversion of $F+L$ into $F+L^{\prime}+G^{\prime}$ then takes place on branch $m R$ and m, Y (n nd $m \mathrm{Y}$) with increase in volume, on branch $R R^{\prime}$ (and X^{\prime}) with decrease in volume and on branch $R^{\prime} a$ (and $X^{\prime} b$) again with increase in volume. In the point of contact R now appears the case sub $\mathcal{A} 2$ and in the point of contact R^{\prime} the case cited sub $A 3$. Let us take for instance the two-phase complex $F+$ liquid R. We now notice that on increase as well as on decrease in pressure the conjugation line F-liquid R gets situated within the new three-phase triangle so that $\vec{j}+$ liquid R is converted into $F^{\prime}+L^{\prime}+G^{\prime}$.

On an infintesimal change in pressmre, nothing takes place in the points l^{\prime} and R^{\prime} bat a solution, or a crystallisation of sold mater. As f mello widh merrase in volnme and in this case also disoulve
with increase in volume, crystallisation will occur at an increased and solution at a reduced pressure. This is, moreover, in conformity with the change in pressure in the points R and R^{\prime} along the saturation line under its own vapour pressure.

The same considerations as the above-cited may be also applied to the case when the substance F melts with decrease in volume.
(To be continued).

Chemistry. - "The dynamic Allotropy of sulphur?". (Fifth communication. ${ }^{1}$) By Dr. H. R. Kruyr. (Communicated by Prof. P. van Romburgh.)
(Communicated in the meeting of January 25, 1913).
As point 5 of the résumé of my third paper on the above subject I wrote in 1909:
"Es wurden neue Untersuchungen uber den Einfluss des S_{μ} auf 'den Umwandlungspunt $\mathrm{S}_{\mathrm{t}} \stackrel{\longrightarrow}{ } \mathrm{S}_{\text {mon }}$ in Anssicht gestellt".

In connection therewith I wrote ${ }^{2}$) in July 1911:
"Dr: van Klooster of Groningen has this year started that investigation and although the provisional result. is only of a qualtative character as yet it may be taken for granted"
Nevertheless, Messrs. Smirs and de Leruw pablished, in these Proceedings (XIV, p. 461), an investigation concerning this question.
In the Zeitschr. f. Electrochemie ') 1 communicated, in connection with some other questions regarding sulphur, that the above investigation had been continued and brought to a close, also to what conclusions it had led and that a detailed communication would soon appear; recently it appeared as the fourth communication in this series

Meanwhile, Dr. de Irefur (Proc. XV p. 584) has contradicted the above cited conclusions and condemned the still unpublished investigations in advance.

Although I should have every reason not to talke any notice of that paper, two reasons in particular have induced me to repeat and extend

[^0]
[^0]: ${ }^{1}$) For the previous communications see Zeitschr. F. physik. Chem. viz. I : 64, bll (1908) ; Il: 65, 486 (1909); III: 67; 821 (1909) and IV; 81, 726 (1913).
 ${ }^{2}$) Chem. Weekbl. 8, 643 (1911).
 3) Z. f. Elektrochemie 18, 581 (1912!.

