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ore, around which a wmixtare of ore and prisms of gold-coloured
aegirine-augite columns is formed.

The metamorphoses described above by which gold-coloured pyroxe-
nes with the optical properties of aegirine-augites are formed, appear
to be connected with pneumatolytic processes in magmas rich in alkali.

Finally it may be mentioned here, that to the South of the road
Panarokan Besuki, quite near to mile-post 13, a loose piece of a
leucitite was found with phenocrysts of leucites as large as 4 m.m.,
which certainly had come down from the northern slope of the Ringgit
and consequently may be éxpected there in greater quantities; hitherto
such types of rocks were not recorded from the Ringgit-mountain.

Mathematics. — “FErpansion of a jfunction in series of ABEL's
Junctions p,(z)”. By Prof. W. KArTEYN.

(Communicated in the meeting of February 22, 1913).

1. In the Qeuvres complétes of ABEL') may be found the follow-
ing expansion ‘

i 7D @
e U= = gula)on
1—v 0
wherve .
o)) =1—Clo+ G0 — .o (1

C, representing the binomial coefficients.

These polynomia form the object of the dissertation of Dr. A. A.
Nuranp (Utrecht 1896) and have been treated afterwards by E. Le
Roy in his memoir “Sur les séries divergentes” (Annales de Toulouse
1899).

In this paper I wish to examine when a given function of a real
variable may be expanded in a series of this form

f@) =0, +ap@ teap@+ . . . . .. ()

2. In this article we collect those properties of the polynomia
@ () which we want for our investigation and which we take from
NuLAND's dissertation.

In the first place we have the important relations

1) Oeuvres Completes I p. 284,
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4]

ﬂ“”{pm (@)pn(@)dz = 0 (m == n)

0 Y )
ﬁ‘%)f(m)dm =1 - :

0
In the second place ¢,(z) satisfies the differential equation
2 (@) + (L—e)pu (v) + nipulz) = 0
which also may be written

d
o [we—%p,'(2)] + ne~%py(2) =0. . . . . . (3)
In the third place we have the following properties, which may -

be easily obtained
en(z) = P(@)—@Puga(®) . - . . . . . D)

grp,,'(x)zfpn(a;)—gﬁ,_l(m)i. )

(1) g 1(2)—(@n +1—2)pufe) + nppa(e) = 0. . . (6)
'f'e—za:"(pm (0)de = (—1)» Cpnlim<a) . . . . (7)
. =0 (m>n)
3. If the expansion (1) is possible, the coefficients a, may be
expressed by means of the equations (2)
ap = | e=*f (a)pu(a)de.
0
With these values the second member of (1) reduces to

. S::%rp,,(a;) Ofe “f@)pu@)da. . . . . . . (8)

In order to determine this sum we introduce ¢u(z) in the form
of a definite integral. This definite integral, which has been given
by Le Roy, may be found in the following way.

Denoting by .J,if) the Besselian function of order zero, MAacLAURIN'S
expansion gives easily

— o gm
et 0(2‘/“'”)202%?4’"’(“)' B 1))

e—*et"dat d int .
e and integrating

Hence, multiplying both members by

between the limits 0 and «©
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et —_— 1 oo J;"l
— fe—za"J (2V ax)da = — & — e *a"pn(e)de
n! n/ o m !

0
where the second member may be reduced by means of (7) to

n l'vnl
? (—1)n C s ipn(2).

Therefore we_have
er ” —
@n (z) == ——/ﬂ““ aJ, QYazyde . . . . . (10)
né
0
and

s=?¢ll(f)hff<a>d“orﬁﬁ"%<2 Vag) g

Now, from the equation (9) we obtain

- 280 _ g 0y
o nl
thus

§= ff(a)da J, @ V) I, @ v a3,
0 0
or, putting g instead of @8

s—_—sz(a)da J, @3 ve)J, @3 vaEdd . . . (11
0

0

3.” This double integral may be determined by a theorem of
Hazkur (Math. Axn. Bd. 8 p. 481), who proved that

4 @€

[ro@arf1. 607,69 pa0=9t0
o 0
where § represents a positive value and ¢ (§) a function which
satisfies the conditions of DiricHLET for all values between 0 and oo.
Putting
=2Va, §=2Va ~ pQRVad=f(a)

this theorem gives immediately

=2 [fwda [1, oV eovRBB=Fl) . . )
0 0
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Thus we bhave established the result, that every function f (:1:) -
which satisfies the conditions of Diricaier for all values between
0 and o may be expanded in a series of the form .

F@=a+ap () +6g@+... 05e<o . (1)
where

= f :—« £ (@) p» (¢) dex

0
It is to be remarked that the values f(c-40) and f(c— 0) being
different, the second member reduces to 4 [ f(c 4 0) + f(c 4+ 0)]-

4. We now proceed to give two interesting examples of this
expansion and to show the value of this expansion for the problem
of the momenta.

1
1+
in a series of ABEL’s functions ¢, (2). .

Evidently this function satisfies the conditions of DiricHLET from
2=0 to 2 = o, thus

As a first example suppose it is required to express f(z)=

e AR AU
where
e~ gy (a) da
= ; l4a
. Now the following 1elatlon holds between successive functions ¢:
(At Dt (@)= + 1 — ) gy (@) —ngpuci (@) - . (6)

-

Multiplying this by le ada, and integrating between 0 and o

we obtain

(n + 1) appr = (27 4 1) a5 — nan—; —f‘ia‘:__; Pu (@) da
0

But, as

we have

[ o [
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where the latter integral, which may be written

€

ﬁ”%@%@“

0

vanishes according to (2) if > 0.

Therefore three successive coefficients of this expansion are related
in the following way

r+Dap1 =20+ 1)a, —nay_1 (> 0)

so that all the coefficients may be expressed in ¢, and a,.

Now

P @=1—a

hence

a, = da = 2a,—1

o (i—a e [2—(1+a)] ,
l1+4ea f l1+e

which ploves that all the coeﬁicients'are dependent on the first

o—od 1
f R ( ) — 0,596347 ...
Tde e

These coefficients may also be obtained in another way.
From AseL’s expansion

1

e T =3 @ (2)
1—v 0 -
which holds where
mod v < 1
we see, by putting t
. t =_7i~ -
1— )
that ST
e—.’[l-—-__l___*___i_...__r () # ()+
i Ty Y T aryp
if ) ’
« i ¢ N
mo 1T <l

Multiplying this equation by e—*dt and integrating between the
limits O and oo, we oltain -

1 -
m =a, + o, @, (v) + a, ¢, ("")-"*' .

where
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w

t)l
a :fe—‘m at . . . .. (13)
Y

Comparing this result, with the former, we obtain the interesting

formula -

d tn =t (2)
-t dt = . . . . . (14
Jerargr =55 (4

O 0

which 15 evident 1f we put n =0.
From (13) we see also that

© 3 1 - 1 n >
Dag=1f et— 3| —— dt:fe'i dt=1,
0 142 g \ 14t

0

0
which shows, that the expansion

1+m: % ay (n (@)
holds for 2 =20.

5. As a second example we will expand a discontinuous function.
Supposing f(2) =1 from 2 =0 to =1 and f(@)=0forz>1
we have

f(m):aﬂ+a] P, ("") -+ a,(p,(w)—f—..

1
2 :fe_" vn(a) da .
~
0

This coefficient may be determined in the following way. From
the differential equation

whete

%[w et (@)] +re T (@)=0. . . . 3)

it appears that

z

@ e pn’ () + "fe—x @n(z)de =0 ’
0
therefore, putting # = 1, we have

1,
= ", 0
Qn nefﬁ (l) (n> )
or, according to (5)

%f§m4m~wan (n>0)
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The two first coefficients may be obtained directly, for

1
1
aozfe tdo—1 —~ —
e
0

1
&=~ [r, ()~ 4, ()] =

€ e ’

and

The remaining coefficients are dependent on these. For putting
#=1 1n the recurtent relation
4+ Dot (@ — @+ 1 —2) g @) Fngupr @ =0 . (6)
we get
@+ 1) a1 (1) — 2000 (1) + 2 g1 (1) =0
and, changing n into n 41

rt+2pap(N—20+ Do (D + @+ 1D, (1)=0.
thus, subtracting the former from the latter equation
n+2)apye — (2n +1)app1 + na, = 0.

6. The expansion holding for the value 2 =0, we must, have’,

ap =1

oMg

and remarking that £ =1 is a point of discontinuity
%‘a,,(p,,(l)-:_é.
To prove these equations directly we may remark that

n 1~ 1
f ay = ;? [Pp—1 (1) — @p ()] = " [1 — ¢a (1)]
S0
® 1 )
2ay=———Limg, (1).
1 € n=o
Now, the number n being very large, we have

nlz*  nla’

¢ (@) =1—nz + + w=J, (Vra)

@y @y
and v
. _— . 2 — i 1
Lim @, (x) == LimJ, (V'n7) = Lim l/——_—_— cos (Vn. — —) =0
n=a N=® n=w b ¢ V'nm 4
therefore
(] 1 I3
$o=l

and finally :
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@ 1 1
g, + 2oy =1——+ —=1.
1 e e

The second equation may be obtained as follows.

From the differential equation

d -
T [we=2 @) (€)] + pe—= pp () = 0

we may conclude
1

1
‘1
Of g ) de =~ — Of Py (@) d [0e= @ (@)] =

©)

1 1 1 y
= e g, @ @]+ [ g () de
0

50

] '3’ /2 1 !
e~ 1 opy’ (w) — ;‘/’p (v) |do = — pe ep ) @) €1) = ap pp (1)-
0

Now, the equations (4) and (5) give

0 (2) = ¢, (2) _I(Pp’ (@) — ¢ 1()] .

z—, ¢t (@) =)' (@) [9 (@) — Ppm1 ()]

hence

2
P’ (%) — ; r/flpg (v} = Pp—1 (2) 'P/" (@) — o, (=) (/",u-l-l €

and -
n &

3 [qa ©— 24 <x)] — 0y () ) (0) — P (&) ' (o)

This shows that
1

f
[ 10 @ 0 )= 00 @) o @) o = 2 g, 1)

0

where
1 1

0

1
[rn@ e @de=— [erdo=—14
[4
0

To obtain the second integral, the value of n being very large,

we observe that according to equation
Pn (17/’) = (ﬁn' (4’6') - (p'n+1 («'v).
the functions

(4)
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(/)"’ (‘7") and (P'11—|—1 (‘U)
tend to the same limait.
If, therefore n is very large, the second integral, tends to

1 {

Jorsp@pitas= [penie) =

0 0
) 1
—a¢p. 2(£) T
—_— [.e__q)'_l(lp_)] _*. ﬁ—-x,pnﬁ (w) d.;r _— %Z'
2 0
0

and we obtain

® 1
2ogp1)=—1+—+31.
Thus, ardding to this equation
1
@ Py (1) =1-— ?‘

we get finally the required relation

1
o (1) =1

7 1In, this article we wish to give a second verification of the
former expansion because this leads to a very interesting integral
containing Brsser’s functions. This verification 15 obtamed by direct

summation of
a + a9, (%) + a9, (v) + . .

where

1
Uy — 1 ——~e‘ and ap = ‘]r_i [wn—! (1) — ®¥n (1)]

It appears from the equation (10) that

P (1) = Z—f e-% =1 J, (2V'a) da
0

-

¢n(l) = 7% e~ anJ, (2‘/;‘-) da
9
therefore

Pn-1 (1) — ©On (1) == nﬁlf']o (2 VE) d (e‘“a")

or, after partial integration
89
Proceedngs Royal Acad -Amsteidam. Vol XV
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e [~ — da
i) —a(l)=— [e=arJ, (2Va) —.
AW =)= [0V a

If n =20, the first member has no meaning, as ¢ (1) has not
been determined. The second member however reduces to

o0

e‘ﬁ*ﬁ J, eV é—a_: Qefe—“” J, (2e) da =

0 v

i

EIZ. 2 (—;—) T = —1 =g,

[NierseN, Handbuch der Theorie der Cylinderfunctionen p. 185 (7).
By applying again the equation (10), we have

[pn—1(1)~ (pn(l)](pn("”) — —““"JI(ZV’ )——:ﬁ—ﬁﬁﬂ.fo@ I/B"”)dﬁ
(»)) Ve
0 )
and by summation from n =0 to n =, as
o ongn L —
5 —(T’); = jo (le/aﬁ)

] [+

eﬁa,,(/),,(w):e1+‘j;—“./,(2I/E)gi‘f;—ﬁ‘fo 2V eB) I, (21 P) dB.
0 a
0 0 .

Putting 8* instead of 8 in the latter integral, this reduces to

[+2]

2 frﬁﬂ T, @3V 0BV %) BA3 = e+ J, 21/ an)
0

(Niezsey p. 184); thus

« > — — da
Sap (0)= J T, @y i) T, @)

2
or, changing « into T

%a,,rp,, (@)= |7, (a |/_.;) J, (¢) da.
0

The second member of this equation has different values according
to the value of x, for

-11 -
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» 1 0<e<]
fJo (V@) J, (¢ da) = g 3 z=1
0 0 a}>0

(NieLsen p. 200), and for z =0
fJo (eV'w) J, (@) da = | J,(e) da = 1.
0 0
8. Now we will apply our expansion to the problem of the
momenta. In this problem the question 1s to determine the function
f(y) from the integral equation

o = f :”(y) y" dy.

where @, is a funetion which is given for all positive integral
values of n.
Putting
F@)=ev0(y)
we obtain
an= | e vy 8 (y) dy.
0
Supposing 6 (y) to be a function which satisfies the conditions ot
DyricuLET, we have
@) =0b + b0, @)+ b0, () + ...
50

w0

0y = % bp‘fe—fl vy gp (y) dy.
0 0
Now, this integral has the value zero, when p >>n, therefore

[¢o]

N
w=2 b, feryn g, () dy
Q
- 0
Moreover, according to the equation (7)

n
en=nl = (—1)r b, C;'
0
so, with (10)
fe—x an I, (2 Vy) da

0

% b,

Fy=ev2b,0,G =32
[t} o p

BI2*

-12 -
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If now we expand the function
apP ,
—= e~ X

]).
in a power series, we have, differentialing n times, and putting

g@)=e=3 b,
0

d
D—=—
da
g (2) = Di(e2X)y=e= (D + 1)(,,)’X
—e% 12' (— 1)p Cl:l D—) X
0
where )

DoX=%05.,2
- 5 s—{-};}?
which, for the value =20, gives
D, X = b,

Introducing this value, we obtain

(25}
nl!

g (0) = 2 (— 1P by G = (1) B (—1p8, G =(—1p 2
0 0

n

[} [L¢
2) = 3 (—1)» L an
glo) = S (—1p

and finally

4 > an
Fo) = [1,@Vag) 2 (=1 arde
0 (n))
U
This solution agrees with that of Lz Roy. In his memoir the

discussion of this formula for different values of &, may be found.

Mathematics. — “Some remarks on the coherence type n.” By
Prof. L. E. J. Brouwzr.

In order to introduce the notion of a “coherence type” we shall
say that a set M is normally connected, if to some sequences f of
elements of M are adjoined certain elements of M as their “limiting
elements”, the following conditions being satistied :

1st. each limiting element of f is at the same time a limiting
element of each end segment of f. _

27d, for each limiting element of f a partial sequence of # can
be found of which it is the only limiting element.

34, each limiting element of a partial sequence of f is at the
same time a limiting element of f.

4, if m is the only limiling element of the sequence {m,} and

-13 -



