Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

J. de Vries, An involution of associated points, in:

KNAW, Proceedings, 15 II, 1912-1913, Amsterdam, 1913, pp. 1263-1270

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

For, on account of the uniform continuity of the correspondence between M and R, to a sequence of points of M possessing only one limiting point, a sequence of points of R likewise possessing only one limitung point, must correspond, and reciprocally. On this ground the given correspondence already admits of an extension to a one-one transformation of the cube with its boundary in itself of which we have still to prove the continuity in the property that a sequence $\left\{y_{m v}\right\}$ of limiting points of M converging to a single limiting point $g_{\text {mas }}$, the sequence $\left\{g_{1}\right\}$ of the corresponding limiting points of R eonverges likewise to a single limiting point. For this purpose we adjoin to each point g_{m}, a point m_{ν} of M possessing a distance $<\varepsilon$, from $g_{m,}$, the distance between g_{2}, and the point r_{ν} correspondmg to m, likewise being $<\varepsilon_{v}$, and for v indefinitely increasing we make ε, to converge to zero. Thus $\{m$,$\} converging exclusively to g_{m \omega s},\left\{\nu_{\nu}\right\}$ hkewise possesses a single limiting point g_{20}, and also $\left\{g_{i \prime}\right\}$ must converge exclusively to $g_{r \omega}$.

On account of the invariance of the number of dimensions ${ }^{1}$) we can enunciate as a corollary of theorem 10:
Theorem 11. For $m<n$ the geometric types η^{m} and r^{n} are dafferent.
As, however, for normally connected sets in general the notion of uniform continuty is senseless, the indeterminateness of the number of dimensions of everywhere dense, countable, multiply ordered sets, as expressed in theorein 9, must be considered as irreparable.

Mathematics. - "An involution of associated points." By Prof. JAN de Vries.
(Communicated in the meeting of February 22, 1413).
\$1. We consider three pencils of guadric surfaces $\left(a^{2}\right),\left(b^{2}\right),\left(c^{2}\right)$, the base curves of which may be indicated by a^{4}, p^{4}, γ^{4}. By the intersection of any surface a^{2} with any surface b^{2} and any surface c^{3} an involution of associated points, I^{8}, consisting of ∞^{3} groups, is generated. Ańy point outside $\alpha^{4}, \beta^{4}, \gamma^{4}$ determines one group.
Through any point A of α^{4} passes one surface b^{2} and one surface c^{2}; these quadrics have a twisted quartic $\langle A\rangle^{4}$ in common, intersected by the surfaces of pencil $\left(a^{2}\right)$ in ∞^{1} groups of seven points A^{\prime} completed by A to groups of the I^{s}. The points of the three base curves are singular.

[^0]The locus of the quartic ($A)^{4}$ corresnonding to the different points A of \boldsymbol{a}^{4} is a surface which may be indicated by \mathbf{A}. The curves $\varrho^{1}=\left(b^{2}, c^{2}\right)$ passing through a given point B of β^{4} lie on a c^{2} meeting a^{4} in eight points A; so B lies on eight curves $(A)^{4}$, i. e. β^{4} is an eightfold curve of \mathbf{A} and the same result holds for γ^{4}. A quadric b^{2} meets a^{1} in eight points A and contains therefore eight curves $(A)^{4}$; moreover it has with \mathbf{A} the eightfold curve β^{4} in common. We conclude from this that \mathbf{A} is a surface of order 32.
\$2. The lines joining two points P, P^{\prime} belonging to the same group of I^{s} form a complex Γ; we are going to determine its order.

The curves $\rho^{4}=\left(b^{2}, c^{2}\right)$ generate a bilinear congruence $\left.{ }^{1}\right)$. Any line is chord of one ϱ^{4}; the points Q, Q^{\prime} determined on the lines m through M by the ρ^{4} with m as chord lie on a surface $(Q)^{5}$ with M as threefold point; the tangential cone in M projects the ρ^{4} passing though M.

The two surfaces a^{2} passing through Q and Q^{\prime} cut m in two other points R, R^{\prime}. The locus (R) of the points R, R^{\prime} bas in M a sevenfold point, any plane μ through M cutting (Q) ${ }^{3}$ in a curve μ^{5} with threefold point M and the surface a^{2} through M in a conic μ^{3}; so the seven points Q common to μ^{2} and μ^{5} and differing from M bring seven points R m M. So (R) is a surface of order nine with sevenfold point M.
The curve ρ^{9} common to (R) and μ cuts μ^{5} in $9 \times 5-7 \times 3=24$ points S differing from M, which can be arranged into two groups. In any point of the first group $M S$ is touched by an a^{2}. So these points lie on the polar surface M^{3} of $M L$ wilh respect to the pencil $\left(a^{2}\right)^{2}$). Consequently the first group counts $3 \times 5-3=12$ points.
In any point S of the second group a point R coincides with a point Q^{\prime}; then the point Q coincides with R^{\prime} in a second point S and both points S lie on the same a^{2}; so these points are associated and belong to the same group of Γ^{3}. So the plane μ contains six pairs P, P^{\prime} collinear with M; in other words: the pairs of points of the involution 5^{s} lie on the rays of a complex of order six.
§ 3. The complex cone of M contains the seven rays joining M to the points $M M^{\prime}$ belonging wilh M to the same group of I^{8}. So

[^1]M is sevenfold on the locus of the pairs P, P^{\prime} collinear with M, and this locus is a twisted curve $(P)^{19}$ passing seven times through M.
The curve $(P)^{19}$ is common to the surfaces $(Q)^{5}$ and $(R)^{9}$, intersecting each other moreover in the curve of order 15 common to $(Q)^{5}$ and the polar surface M^{3}; so the residual intersection consists of 11 lines. The lines are singular chords of the bilinear congruence ${ }^{1}$) of the curves $\rho^{4}=\left(b^{2}, c^{2}\right)$, i. e. any of these lines contains ∞^{2} pairs (Q, Q^{\prime}); these lines are not singular for I^{8}, as these quadratic involutions have only one pair in common.

Amongst these 11 lines we find two chords of β^{4} and two chords of γ^{4}. So the complex Γ^{6} contains three congruences $(2,6)$ and three congruences (7,3) the rays of which are singular chords of a bilinear congruence $\left(Q^{4}\right)$.

There are 120 lines g each of which contains \propto^{1} pairs of the I^{8}, i.e. the common bisecants of the base curves $a^{4}, \beta^{4}, \gamma^{4}$ taken two by two. A common bisecant of \boldsymbol{a}^{4} and β^{4} forms, in combination with a twisted cubic, the intersection of an a^{2} and a b^{2}; eridently any pair of the involution determined on it by the pencil (c^{2}) is a pair of I^{8}. So this involution admits 120 singular chords.

The curve $(P)^{19}$ cuts each of the base curres in 20 points, as the surface $(Q)^{5}$ corresponding to M has 20 points Q in common with a^{4}; the surface a^{2} containing the corresponding point Q^{\prime} also contains Q, i.e. Q, Q^{\prime} is a pair of the l^{8}.

The three polar surfaces of M with respect to the pencils (${ }^{(} a^{a}$), $\left(b^{2}\right),\left(c^{3}\right)$ intersect each other in M and 26 points more; in any of. these points R the line $M R$ is touched by three surfaces a^{2}, b^{2}, c^{2}. ' So R is a coincidence $P \equiv P^{\prime}$ of the Λ^{8}, the bearing line passing through M. So the twisted curve $(P)^{19}$ admits the particularity that 26 of its tangents concur in the sevenfold point $M /$.
§4. If M describes a plane λ, the three polar surfaces generate three projective nets. The locus of the points of intersection consists of the plane λ and a surface Δ containing all the coincidencies of the I^{B}.
4 We deduce from

$$
\cdot\left|\begin{array}{ccc}
A_{x}^{3} & A_{x}^{\prime 3} & A_{x}^{\prime 3} \\
B_{x}^{3} & B_{x}^{2} & B_{x}^{\prime 3} \\
C_{x}^{3} & C_{x}^{\prime 3} & C_{x}^{\prime / 3}
\end{array}\right|=0
$$

that this surface is of order enght. ${ }^{\circ}$)

[^2]The coincidencies of the involutions Γ^{8} lie on a surface \triangle^{8} passing through the base curves $\alpha^{4}, \beta^{4}, \gamma^{4}$.
The surface \triangle^{s} also contains the three curves of order 14 containing the points of contact of surfaces of two of the pencils.
The three polar surfaces generate three projective pencils if M describes a line l. These surfaces generate the line l and moreover a twisted curve δ forming the locus of the coincidencies $P \equiv P^{\prime}$, the bearing lines of which rest on l. If the three pencils are indicated by

$$
A^{3}{ }_{x}+\lambda A^{12} x_{x}=0 \quad, \quad B^{3}+\lambda B^{13}{ }_{x}=0 \quad, \quad C^{0} x+\lambda C^{13} x=0,
$$

the twisted curve under consideration can be deduced from

$$
\left|\left|\begin{array}{ccc}
A_{x}^{3} & B_{x}^{3} & C_{x}^{3} \\
A_{x}^{\prime 3} & B_{x}^{3} & C_{x}^{33}
\end{array}\right|=0\right.
$$

So the degree of this curve is $6^{2}-3^{2}-1=26 .{ }^{1}$)
The line l bears 8 coincidencies, so it is an eightfold secant of d^{28}.
§5. We now consider the locus of the points P^{\prime} associated to the points P of the line l. The curve α^{4} contains 32 points P^{\prime}, as l intersects A^{33} in 32 points. So any surface a^{2} contains these 32 points and moreover the two sets of seven points P^{\prime} associated to the two points common to a^{2} and l. So the groups associated to the points of a line lie on a twisterd curve of order 23, intersecting each of the three base curves in 32 points. In its points on Δ^{8} the line l meets its curve λ^{23}; so l eightfold secant of λ^{33}.

A plane φ through l meets λ^{23} in 15 points not lying on l; as these points are associated to 15 points P of l, the locus of the associated pairs lying in a plane is a curve of order 15.

This curve, φ^{15}, has threefold points in the 12 traces of the curves $a^{4}, \beta^{4}, \gamma^{4}$ on φ. The curve (A^{4}) corresponding to any of these traces meets φ in three other points, each of which forms with A a pair of the I^{8}.
§ 6. The sets of seven points P^{\prime} associated to the points P of a plane p lie on a surface Φ^{33} intersecting φ according to the curve φ^{15} containing the pairs P, P^{\prime} lying in φ and to the curve d^{8} of the coincidencies lying in φ.

The curve $(A)^{4}$ corresponding to the point A of $\alpha^{4}(\$ 1)$ meets φ

[^3]in four points associated to A; so $\boldsymbol{\Phi}^{23}$ passes four times through the base curves $a^{4}, \beta^{4}, \gamma^{4}$. This is in accordance with the fact, that each trace of a base curve is threefold on φ^{15} and onefold on δ^{8}.
'The curve \boldsymbol{d}^{8} contains 18 councidencies the bearing lines of which lie in the plane, for the curve $d^{20}(\$ 4)$ corresponding to a line l of φ meets l eight times. These 18 coincidencies lie on φ^{15}; so φ^{15} and d^{8} touch one another in 18 points. Moreover they have 36 points in common in the 12 traces of the base curves; each of the remaining 48 comınon points belongs as coincidence to a group of the I^{8} containing still one more point of φ^{15}.
§7. The plane φ contains a finite number of associated triplets. As these triplets have to lie on φ^{15} we deternine the order of the locus of the sextuples of points $P^{\prime \prime}$ associated to the pairs P, P^{\prime} of $\dot{\varphi}^{15}$.

The surface \mathbf{A}^{32} passes eight times through β^{4}, γ^{4} and one time through a^{4}. As ψ^{15} has threefold points in the 12 traces of the base curves it meets A 35 elsewhere in $15 \times 32-4 \times 3-2 \times 4 \times 3 \times 8=276$ points forming 138 pairs P, P^{\prime} corresponding to 138 points $P^{\prime \prime}$ of a^{4}. A surface a^{2} cuts p^{15} in the four threefold points A and in 9 pairs P, P^{\prime} more, each pair of which determines six points $P^{\prime \prime}$ on a^{2}. So the locus under discussion has $138+6 \times 9=192$ points with a^{2} in common and is therefore a curve ρ^{96}. Of its points of intersection with φ a number of 48 lie in the points common to φ^{16} and d^{8} indicated above. Evidently the remaining 48 traces of φ^{96} are formed by 16 triplets of the I^{8}. So any plane contains sixteen triplets of associated points.
\$8. If the bases of the pencils $\left(a^{2}\right),\left(b^{2}\right),\left(c^{2}\right)$ have the line g in common, three surfaces a^{2}, b^{2}, c^{2} intersect each other in four associated points; so we then get an involution l^{4} of associated points.

Ang point A of the curve a^{3} completing g to the base of (a^{2}) belongs to ∞^{1} quadruples. These quadruples lie on the twisted cubic $(A)^{3}$ common to the surfaces b^{2}, c^{2} passing through A and they are determined on $(A)^{3}$ by the pencil $\left(a^{2}\right)$.

In the same way any point B of the base curve β^{3} and any point C of the base curve γ^{3} belongs to ∞^{1} quadruples.

We determine the order of the locus \mathbf{A} of the curves $(A)^{3}$. By means of the points A the surfaces of $\left(b^{2}\right)$ and $\left(c^{2}\right)$ are arranged in a correspondence (4,4), any surface b^{2} or c^{2} containing four points A : so the surfice \mathbf{A} is of older 16.

In any plane through g the pencils $\left(b^{2}\right),\left(c^{2}\right)$ determine two pencils
in (4,4)-correspondence with the traces B and C^{\prime} of β^{3} and γ^{3} lying outside g as vertices. So A^{16} is cut according to g and to a curve of order eight with fourfold points in B and C.

So, the triplets of points associated to the points of one of the base curves lie on a' surface of order siateen, passing eight times through g and four times through each of the other two base curves.
§9. Any point G of g also belongs to ∞^{1} quadruples. If G is to be a point common to three cubic curves $\left(a^{2} b^{2}\right),\left(b^{2} c^{2}\right),\left(a^{2} c^{2}\right)$ the surfaces a^{2}, b^{2}, c^{2} must admit in G the same tangential plane.

We now consider in the first place the locus \boldsymbol{D}^{2} of the curve $\left(a^{2} b^{2}\right)$, intersection of surfaces a^{2}, b^{2} touching one another in G. Any plane $o p$ through g cuts these projective pencils $\left(a^{2}\right),\left(b^{3}\right)$ according to two projective pencils, the vertices of which are the traces A and B of a^{3} and β^{3} outside g. These pencils of lines generate a conic passing through G, the lines $A G$ and $B G$ determining with g two surfaces a^{2}, b^{3} touching q in G. So g is donble line and G is threefold point of Φ^{4}.

In the same way the pencils $\left(\alpha^{2}\right)$ and $\left(c^{2}\right)$ determine a second monoid $\boldsymbol{\psi}^{4}$. The monoids $\boldsymbol{夕}^{4}$ and $\boldsymbol{\psi}^{4}$ have the base curve α^{2} and the line g to be counted four times in common; the residual intersection, locus of the three points associated to G, is of order nine. The cubic cones rouching the monoids in G intersect in g and in five other edges; so G is fivefold point of the curve $(G)^{3}$. Any plane through g cuis \bar{W}^{4} and ψ^{4} according to two conics passing through G and a point. A; in each of the two other points of intersection three homologous rays of three projective pencils with vertices A, B, C concur. So g is cut, besides in G, in two more points G^{*}, each of which forms with G a pair of associated points. So the pairs of the I^{4} lying on g are arranged in an involutory correspondence $(2,2)$, i. e. g bears four coincidencies: This proves moreover that g is a sevenfold line of the locus \mathbf{G} of the curves $(G)^{\circ}$; for in the first place any point G is fivefold on the corresponding ($G)^{\circ}$ and it lies furthermore on two suchlike curves corresponding to other points of g.
The curve ($a^{2} b^{2}$) meeting γ^{3} in a point C rests in two points G on g; so C lies on two curves $(G)^{3}$, i.e. γ^{8} is donble curve of \mathbf{G}. The curve ($a^{2} b^{3}$) contains the two triplets of points associated to the points of intersection G with g. Moreover it has in common with the surface G in each of these two points G seven points and two points in each of the eight points in which it rests on \boldsymbol{a}^{3} and β^{3}. So we find that \mathbf{G} is of order 12. So, the points associuted to the
points of g lie on a surface of order twelve, passing seven times through g and twise through each of the base curves.
If the point G of g lies on a^{3}, the surfaces a^{2} admit in G a common tangential plane, the plane through g and the tangent t in G to a^{3}; so those surfaces determine on the curve $\left(b^{2} c^{2}\right)$ touching t in G an I^{3} of associaled points. The cone k^{2} projecting α^{3} out of G culs any curve ($b^{2} c^{2}$) through G in a triplet of associated points; therefore these points lie on the intersection of k^{2} with the monoid χ^{4} containing all these curves. So, for any of the six points common to g and a base curve, $(G)^{9}$ breaks up into a twisted cubic and a twisted sextic.

Any common transversal d of g, a^{3}, β^{3} and γ^{3} forms with y the partial intersection of three surfaces a^{2}, b^{2}, c^{2} with two more points in common; these two points form a group of the Γ^{4} with any pair of points of g.

The transversals of g, a^{3}, and β^{3} generate a scroll of order six with g as fivefold line; for the cubic cones projecting a^{3} and β^{3} out of any point G of g admit g as double edge and intersect each other in five lines of this seroll. On g this scroll has 10 points in common with γ^{3}, so it cuts γ^{3} outside g in 8 points. So, the base lines $g, \alpha^{3}, \beta^{3}, \gamma^{3}$ admit eight common transversals and therefore eight pairs of points belonging to ∞^{2} groups of the I^{4}.

Evidently the eight lines d lie in the surface Δ^{8} of the coincidencies; of this surface g is a fivefold line.
\$ 10. The pencils $\left(a^{2}\right)$, $\left(b^{2}\right)$ determine a bilinear congruence of twisted cubics 0^{3}. In gereral any ray m of a pencil (M, μ) is bisecant of one φ^{3}; the locus of the points Q, Q^{\prime} common to m and this φ^{8} is a curve $(Q)^{4}$ with a double point in M. In the manner of \$ 2 we introduce as auxiliary eurve the locus of the points R, R^{\prime} still common to m and the surfaces c^{2} through Q and Q^{\prime}. The surface c^{2} through M cuts $(Q)^{4}$ in M and in six points Q; so M is a six ${ }^{*}$ fold point of the curve (B) and this curve is of order eight.

The polar curve of M with respect to the pencil of intersection of $\left(c^{2}\right)$ and μ intersects $(Q)^{4}$ in M and $4 \times 3-2=10$ other points, lying also on $(R)^{8}$. So $4 \times 8-2 \times 6-10=10$ points are arranged in associated pairs. So, the pairs of points of the involution I^{4} lie on the rays of a complex of order five.

Any point G of g is associated to two points of g, the points common to g and to the curve $(G)^{9}$ corresponding to G. So g is a singular line of the 7^{4}; the pairs of points lying on it generate an involutory (2,2).

Also the 27 common bisecants of $a^{3}, \beta^{3}, \gamma^{3}$ taken two by two are singular lines of the l^{4}. A common chord of α^{3}, β^{3} bears ∞^{1} pairs of points determined on it by the pencil (c^{2}).
§11. We now consider the locus λ of the points P^{\prime} associated to the points P of a line l. To the points common to l and each of the surfaces $\mathbf{A}^{16}, \mathbf{G}^{12}$ correspond respectively 16 points of a^{3} and 12 points of g. Any surface a^{2} contains these 28 points P and moreover the two triplets corresponding to the points common to a^{2} and l. So the locus λ is a curve of order 17.

As l contains eight coincidencies $P \equiv P^{\prime}$ it is an eightfold secant of the curve λ^{17}; so any plane φ through l contains 9 points P^{\prime} associated to points of l. So, the pairs of associated points lying in a plane generate a curve of order nine.

The curve $(G)^{\circ}$ corresponding to the trace G of g meets φ in four points; so G is a fourfold point of the curve φ^{9}. In an analogous way the nine traces A_{k}, B_{k}, C_{k} of the base curves are double points of φ^{9}.

The intersection \boldsymbol{d}^{8} of φ and the surface of coincidencies has a fivefold point in G. So φ^{9} and d^{8} intersect each other in 9×8 -$-4 \times 5-9 \times 2=34$ points differing from the traces of the bases. To these points belong the points of contact of the curves, corresponding to coincidencies of the I^{4} the bearing lines of which are contained in φ.

In order to determine their number we consider the three pencils of conics common to p and $\left(a^{2}\right),\left(b^{2}\right),\left(c^{2}\right)$. The polar curves of these pencils with respect to a point P describing a line l generate three projective pencils $\left(a^{3}\right),\left(b^{3}\right),\left(c^{3}\right)$. The first and the second generate a curve c^{5} with G as node and passing through the three base points A_{k} of a^{5} and the double points of the three pairs of lines. The curve b^{5} generated by the pencils (a^{3}) and (c^{3}) also contains these points. So b^{5} and c^{5} admit $25-4-3-3=15$ points of contact of three corresponding conics forming therefore coincidencies of the I^{4} with a bearing line lying in φ.

So \mathscr{q}^{9} and d^{8} have four coincidencies in common the bearing lineq of which intersect the plane ρ.

[^0]: ${ }^{1}$) Comp. Math. Annalen 70, p. 161.

[^1]: ${ }^{1}$) We have treated this congruence in a paper " A bulinear congruence of twisted quartics of the first species", These Proceedings, vol. XIV, p. 255.
 ${ }^{2}$) The polar surface of (y) with respect to $a^{2}{ }_{\alpha}+\lambda \alpha^{\prime 2}{ }_{a}=0$ is generated by means of this pencil and the pencil of planes $a_{y} a_{x}+, a_{y}^{\prime} \alpha_{x}^{\prime}=0$; so it is represented by $a_{y}^{\prime} a_{x}^{\prime} \alpha_{x}^{2}=a_{y} a_{x} \alpha^{\prime,}{ }_{x}$.

[^2]: ${ }^{2}$) loc cit.
 ${ }^{2}$) Thus result is in accordanee with a theorem of Mr. G. Agtgila (Sulla super-

[^3]: ficie luogo di un punto in cui le superficie di tre fasci toccano una medesima retta, Rend. del Circolo Mat. di Palermo, t. XX, p. 305).

 1) Agualia, l. c. p. 321.
