Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

J. de Vries, An involution of associated points, in: KNAW, Proceedings, 15 II, 1912-1913, Amsterdam, 1913, pp. 1263-1270

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl) > 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

For, on account of the uniform continuity of the correspondence between M and R, to a sequence of points of M possessing only one limiting point, a sequence of points of R likewise possessing only one limiting point, must correspond, and reciprocally. On this ground the given correspondence already admits of an extension to a one-one transformation of the cube with its boundary in itself of which we have still to prove the continuity in the property that a sequence $\{g_m\}$ of limiting points of M converging to a single limiting point g_{mo} , the sequence $\{g_{i,j}\}$ of the corresponding limiting points of R converges likewise to a single limiting point. For this purpose we adjoin to each point g_m , a point m_ν of M possessing a distance $< \varepsilon_r$ from g_{mr} , the distance between g_r , and the point r_r corresponding to m, likewise being $\langle \varepsilon_{\nu}$, and for v indefinitely increasing we make ϵ , to converge to zero. Thus $\{m_i\}$ converging exclusively to $g_{m\omega}, \{r_i\}$ hkewise possesses a single limiting point $g_{i\omega}$, and also $\{g_{i\nu}\}$ must converge exclusively to $g_{r\omega}$.

On account of the invariance of the number of dimensions 1) we can enunciate as a corollary of theorem 10:

THEOREM 11. For m < n the geometric types η^m and η^n are different.

As, however, for normally connected sets in general the notion of uniform continuity is senseless, the *indeterminateness of the number* of dimensions of everywhere dense, countable, multiply ordered sets, as expressed in theorem 9, must be considered as irreparable.

Mathematics. — "An involution of associated points." By Prof. JAN DE VRIES.

(Communicated in the meeting of February 22, 1913).

§ 1. We consider three pencils of quadric surfaces (a^2) , (b^2) , (c^2) , the base curves of which may be indicated by a^4 , p^4 , γ^4 . By the intersection of any surface a^2 with any surface b^2 and any surface c^2 an *involution of associated points*, I^8 , consisting of ∞^3 groups, is generated. Any point outside α^4 , β^4 , γ^4 determines one group.

Through any point A of a^4 passes one surface b^2 and one surface c^2 ; these quadrics have a twisted quartic $(A)^4$ in common, intersected by the surfaces of pencil (a^2) in ∞^1 groups of seven points A' completed by A to groups of the $I^{\mathfrak{g}}$. The points of the three base curves are singular.

¹) Comp. Math. Annalen 70, p. 161.

The locus of the quartic $(A)^4$ corresponding to the different points A of a^4 is a surface which may be indicated by **A**. The curves $\varrho^4 = (b^2, c^2)$ passing through a given point B of β^4 lie on a c^2 meeting a^4 in eight points A; so B lies on eight curves $(A)^4$, i. e. β^4 is an eightfold curve of **A** and the same result holds for γ^4 . A quadric b^2 meets a^4 in eight points A and contains therefore eight curves $(A)^4$; moreover it has with **A** the eightfold curve β^4 in common. We conclude from this that **A** is a surface of order 32.

§ 2. The lines joining two points P, P' belonging to the same group of I^s form a complex Γ ; we are going to determine its order.

The curves $\varrho^4 = (b^2, c^2)$ generate a bilinear congruence ¹). Any line is chord of one ϱ^4 ; the points Q, Q' determined on the lines mthrough M by the ϱ^4 with m as chord lie on a surface $(Q)^5$ with M as threefold point; the tangential cone in M projects the ϱ^4 passing though M.

The two surfaces a^2 passing through Q and Q' cut m in two other points R, R'. The locus (R) of the points R, R' has in M a sevenfold point, any plane μ through M cutting $(Q)^5$ in a curve μ^5 with threefold point M and the surface a^2 through M in a conic μ^2 ; so the seven points Q common to μ^2 and μ^5 and differing from Mbring seven points R in M. So (R) is a surface of order nine with sevenfold point M.

The curve ϱ° common to (R) and μ cuts μ° in $9 \times 5 - 7 \times 3 = 24$ points S differing from M, which can be arranged into two groups. In any point of the first group MS is touched by an a^2 . So these points lie on the polar surface M° of M with respect to the pencil $(a^2)^2$. Consequently the first group counts $3 \times 5 - 3 = 12$ points.

In any point S of the second group a point R coincides with a point Q'; then the point Q coincides with R' in a second point S and both points S lie on the same a^{2} ; so these points are associated and belong to the same group of I^{s} . So the plane μ contains six pairs P, P' collinear with M; in other words: the pairs of points of the involution I^{s} lie on the rays of a complex of order six.

§ 3. The complex cone of M contains the seven rays joining M to the points M' belonging with M to the same group of I^s . So

¹) We have treated this congruence in a paper "A bilinear congruence of inisted quartics of the first species", These Proceedings, vol. XIV, p. 255.

²) The polar surface of (y) with respect to $a_x^2 + \lambda a'_x^2 = 0$ is generated by means of this pencil and the pencil of planes $a_y a_x + \lambda a'_y a'_x = 0$; so it is represented by $a'_y a'_x a^2_x = a_y a_x a'_x^2$.

M is sevenfold on the locus of the pairs P, P' collinear with M, and this locus is a twisted curve $(P)^{19}$ passing seven times through M. The curve $(P)^{19}$ is common to the surfaces $(Q)^5$ and $(R)^9$, intersecting each other moreover in the curve of order 15 common to $(Q)^5$ and the polar surface M^3 ; so the residual intersection consists of 11 lines. The lines are singular chords of the bilinear congruence¹)

of the curves $q^4 = (b^2, c^2)$, i.e. any of these lines contains ∞^1 pairs (Q, Q'); these lines are not singular for I^s , as these quadratic involutions have only one pair in common.

Amongst these 11 lines we find two chords of β^4 and two chords of γ^4 . So the complex Γ^6 contains three congruences (2, 6) and three congruences (7, 3) the rays of which are singular chords of a bilinear congruence (ϱ^4).

There are 120 lines g each of which contains ∞^1 pairs of the I^{s} , i.e. the common bisecants of the base curves α^4 , β^4 , γ^4 taken two by two. A common bisecant of α^4 and β^4 forms, in combination with a twisted cubic, the intersection of an α^2 and a b^2 ; evidently any pair of the involution determined on it by the pencil (c^2) is a pair of I^{s} . So this involution admits 120 singular chords.

The curve $(P)^{1^{\circ}}$ cuts each of the base curves in 20 points, as the surface $(Q)^{\circ}$ corresponding to M has 20 points Q in common with α^{4} ; the surface α^{2} containing the corresponding point Q' also contains Q, i.e. Q, Q' is a pair of the I° .

The three polar surfaces of M with respect to the pencils (a^2) , (b^2) , (c^2) intersect each other in M and 26 points more; in any of these points R the line MR is touched by three surfaces a^2 , b^2 , c^2 . So R is a coincidence $P \equiv P'$ of the I^s , the bearing line passing through M. So the twisted curve $(P)^{12}$ admits the particularity that 26 of its tangents concur in the sevenfold point M.

§ 4. If M describes a plane λ , the three polar surfaces generate three projective nets. The locus of the points of intersection consists of the plane λ and a surface Δ containing all the coincidencies of the I^{s} .

We deduce from

$$\begin{vmatrix} A_x^3 & A_x'^3 & A_x''^3 \\ B_x^3 & B_x^3 & B_x''^3 \\ C_x^3 & C_x'^3 & C_x''^3 \\ C_x^3 & C_x'^3 & C_x''^3 \end{vmatrix} = 0$$

that this surface is of order eight.²)

11

q

¹⁾ loc cit.

²⁾ This result is in accordance with a theorem of Mr. G. Aguglia (Sulla super-

$126\hat{6}$

The coincidencies of the involutions Γ^* lie on a surface Δ^* passing through the base curves a^4 , β^4 , γ^4 .

The surface Δ^s also contains the three curves of order 14 containing the points of contact of surfaces of two of the pencils.

The three polar surfaces generate three projective pencils if M describes a line l. These surfaces generate the line l and moreover a twisted curve σ forming the locus of the coincidencies $P \equiv P'$, the bearing lines of which rest on l. If the three pencils are indicated by

 $A^{\mathfrak{s}}_{x} + \lambda A^{\mathfrak{s}}_{x} = 0$, $B^{\mathfrak{s}}_{x} + \lambda B^{\mathfrak{s}}_{x} = 0$, $C^{\mathfrak{s}}_{x} + \lambda C^{\mathfrak{s}}_{x} = 0$, the twisted curve under consideration can be deduced from

$$\begin{vmatrix} A_x^3 & B_x^3 & C_x^3 \\ A_x'^3 & B_x'^3 & C_x'^3 \\ A_x'^3 & B_x'^3 & C_x'^3 \\ A_x'^3 & A_x'^3 & A_x'' \end{vmatrix} = 0.$$

So the degree of this curve is $6^2 - 3^2 - 1 = 26.^1$ The line *l* bears 8 coincidencies, so it is an eightfold secant of d^{26} .

§ 5. We now consider the locus of the points P' associated to the points P of the line l. The curve α^4 contains 32 points P', as l intersects \mathbf{A}^{32} in 32 points. So any surface α^2 contains these 32 points and moreover the two sets of seven points P' associated to the two points common to α^2 and l. So the groups associated to the points of a line lie on a *twisted curve of order* 23, intersecting each of the three base curves in 32 points. In its points on Δ^8 the line l meets its curve λ^{23} ; so l eightfold secant of λ^{23} .

A plane φ through l meets λ^{ss} in 15 points not lying on l; as these points are associated to 15 points P of l, the locus of the associated pairs lying in a plane is a curve of order 15.

This curve, φ^{15} , has threefold points in the 12 traces of the curves α^4 , β^4 , γ^4 on φ . The curve (A^4) corresponding to any of these traces meets φ in three other points, each of which forms with A a pair of the I^s .

§ **6.** The sets of seven points P' associated to the points P of a plane φ lie on a surface Φ^{23} intersecting φ according to the curve φ^{15} containing the pairs P, P' lying in φ and to the curve d^8 of the coincidencies lying in φ .

The curve $(A)^4$ corresponding to the point A of α^4 (§ 1) meets φ

ficie luogo di un punto in cui le superficie di tre fasci toccano una medesima retta, Rend. del Circolo Mat. di Palermo, t. XX, p. 305).

¹⁾ AGUGLIA, l. c. p. 321.

in four points associated to A; so Φ^{23} passes four times through the base curves a^4 , β^4 , γ^4 . This is in accordance with the fact, that each trace of a base curve is threefold on φ^{15} and onefold on σ^8 .

The curve d^8 contains 18 concidencies the bearing lines of which lie in the plane, for the curve d^{26} (§ 4) corresponding to a line lof φ meets l eight times. These 18 coincidencies lie on φ^{15} ; so φ^{15} and d^8 touch one another in 18 points. Moreover they have 36 points in common in the 12 traces of the base curves; each of the remaining 48 common points belongs as coincidence to a group of the I^8 containing still one more point of φ^{16} .

§ 7. The plane φ contains a finite number of associated triplets. As these triplets have to lie on φ^{15} we determine the order of the locus of the sextuples of points P'' associated to the pairs P,P' of $\dot{\varphi}^{15}$. The surface \mathbf{A}^{32} passes eight times through β^4 , γ^4 and one time through a^4 . As φ^{15} has threefold points in the 12 traces of the base curves it meets \mathbf{A}^{32} elsewhere in $15 \times 32 - 4 \times 3 - 2 \times 4 \times 3 \times 8 = 276$ points forming 138 pairs P, P' corresponding to 138 points P'' of a^4 . A surface a^2 cuts φ^{15} in the four threefold points A and in 9 pairs P, P' more, each pair of which determines six points P'' on a^2 . So the locus under discussion has $138 + 6 \times 9 = 192$ points with a^2 in common and is therefore a curve φ^{96} . Of its points of intersection with φ a number of 48 lie in the points common to φ^{16} and d^8 indicated above. Evidently the remaining 48 traces of φ^{96} are formed by 16 triplets of the I^8 . So any plane contains sixteen triplets of associated points.

§ 8. If the bases of the pencils (a^2) , (b^2) , (c^2) have the line g in common, three surfaces a^2 , b^2 , c^2 intersect each other in *four* associated points; so we then get an involution I^4 of associated points.

Any point A of the curve a^3 completing g to the base of (a^2) belongs to ∞^1 quadruples. These quadruples lie on the twisted cubic $(A)^3$ common to the surfaces b^2 , c^2 passing through A and they are determined on $(A)^3$ by the pencil (a^2) .

In the same way any point B of the base curve β^{s} and any point C of the base curve γ^{s} belongs to ∞^{1} quadruples.

We determine the order of the locus **A** of the curves $(A)^3$. By means of the points A the surfaces of (b^2) and (c^2) are arranged in a correspondence (4, 4), any surface b^2 or c^2 containing four points A: so the surface **A** is of order 16.

In any plane through g the pencils (b^2) , (c^2) determine two pencils

in (4, 4)-correspondence with the traces B and C of β^3 and γ^3 lying – outside g as vertices. So \mathbf{A}^{16} is cut according to g and to a curve ζ of order eight with fourfold points in B and C.

So, the triplets of points associated to the points of one of the base curves lie on a surface of order sixteen, passing eight times through g and four times through each of the other two base curves.

§ 9. Any point G of g also belongs to ∞^1 quadruples. If G is to be a point common to three cubic curves (a^2b^2) , (b^2c^2) , (a^2c^2) the surfaces a^2 , b^2 , c^2 must admit in G the same tangential plane.

We now consider in the first place the locus Φ^4 of the curve (a^2b^3) , intersection of surfaces a^2 , b^2 touching one another in G. Any plane φ through g cuts these projective pencils (a^2) , (b^2) according to two projective pencils, the vertices of which are the traces A and B of a^3 and β^3 outside g. These pencils of lines generate a conic passing through G, the lines AG and BG determining with g two surfaces a^2 , b^3 touching φ in G. So g is double line and G is threefold point of Φ^4 .

In the same way the pencils (a^2) and (c^2) determine a second monoid ψ^4 . The monoids Φ^4 and ψ^4 have the base curve α^2 and the line q to be counted four times in common; the residual intersection, locus of the three points associated to G, is of order nine. The cubic cones iouching the monoids in G intersect in g and in five other edges; so G is *fivefold point* of the curve $(G)^{\circ}$. Any plane through q cuts Φ^4 and ψ^4 according to two conics passing through G and a point A; in each of the two other points of intersection three homologous rays of three projective pencils with vertices A, B, C concur. So g is cut, besides in G, in two more points G^* , each of which forms with G a pair of associated points. So the pairs of the I^4 lying on g are arranged in an involutory correspondence (2, 2), i. e. g bears four coincidencies: This proves moreover that g is a seven fold line of the locus **G** of the curves $(G)^{\circ}$; for in the first place any point G is fivefold on the corresponding $(G)^{9}$ and it lies furthermore on two suchlike curves corresponding to other points of q.

The curve (a^2b^2) meeting γ^3 in a point *C* rests in two points *G* on *g*; so *C* lies on two curves $(G)^9$, i.e. γ^9 is double curve of **G**. The curve (a^2b^2) contains the two triplets of points associated to the points of intersection *G* with *g*. Moreover it has in common with the surface **G** in each of these two points *G* seven points and two points in each of the eight points in which it rests on α^3 and β^3 . So we find that **G** is of order 12. So, the points associated to the 1269

points of g lie on a surface of order twelve, passing seven times through g and twice through each of the base curves.

If the point G of g lies on a^3 , the surfaces a^2 admit in G a common tangential plane, the plane through g and the tangent t in G to a^3 ; so these surfaces determine on the curve (b^2c^2) touching t in G an I^3 of associated points. The cone k^2 projecting a^3 out of G cuts any curve (b^2c^2) through G in a triplet of associated points; therefore these points lie on the intersection of k^2 with the monoid χ^4 containing all these curves. So, for any of the six points common to g and a base curve, $(G)^9$ breaks up into a twisted cubic and a twisted sextic.

Any common transversal d of g, a^3 , β^3 and γ^3 forms with g the partial intersection of three surfaces a^2 , b^2 , c^2 with two more points in common; these two points form a group of the I^4 with any pair of points of g.

The transversals of g, α^3 , and β^3 generate a scroll of order six with g as fivefold line; for the cubic cones projecting α^3 and β^3 out of any point G of g admit g as double edge and intersect each other in five lines of this scroll. On g this scroll has 10 points in common with γ^3 , so it cuts γ^3 outside g in 8 points. So, the base lines g, α^3 , β^3 , γ^3 admit eight common transversals and therefore eight pairs of points belonging to ∞^2 groups of the I^4 .

Evidently the eight lines d lie in the surface Δ^{s} of the coincidencies; of this surface g is a *fivefold line*.

§ 10. The pencils (a^2) , (b^2) determine a bilinear congruence of twisted cubics ϱ^3 . In general any ray *m* of a pencil (M, μ) is bisecant of one ϱ^3 ; the locus of the points *Q*, *Q'* common to *m* and this ϱ^3 is a curve $(Q)^4$ with a double point in *M*. In the manner of § 2 we introduce as auxiliary curve the locus of the points *R*, *R'* still common to *m* and the surfaces c^3 through *Q* and *Q'*. The surface c^2 through *M* cuts $(Q)^4$ in *M* and in six points *Q*; so *M* is a sixfold point of the curve (R) and this curve is of order eight.

The polar curve of M with respect to the pencil of intersection of (c°) and μ intersects $(Q)^{4}$ in M and $4 \times 3-2 = 10$ other points, lying also on $(R)^{\circ}$. So $4 \times 8-2 \times 6-10 = 10$ points are arranged in associated pairs. So, the pairs of points of the involution I^{4} lie on the rays of a complex of order five.

Any point G of g is associated to two points of g, the points common to g and to the curve $(G)^{\circ}$ corresponding to G. So g is a singular line of the I° ; the pairs of points lying on it generate an involutory (2,2).

83

Proceedings Royal Acad. Amsterdam. Vol. XV.

1270

Also the 27 common bisecants of α^3 , β^3 , γ^3 taken two by two – are singular lines of the I^4 . A common chord of α^3 , β^3 bears ∞^1 pairs of points determined on it by the pencil (c^2) .

§ 11. We now consider the locus λ of the points P' associated to the points P of a line l. To the points common to l and each of the surfaces \mathbf{A}^{16} , \mathbf{G}^{12} correspond respectively 16 points of a^3 and 12 points of g. Any surface a^2 contains these 28 points P and moreover the two triplets corresponding to the points common to a^2 and l. So the locus λ is a curve of order 17.

As *l* contains eight coincidencies $P \equiv P'$ it is an eightfold secant of the curve λ^{17} ; so any plane φ through *l* contains 9 points P'associated to points of *l*. So, the pairs of associated points lying in a plane generate a curve of order nine.

The curve $(G)^{\circ}$ corresponding to the trace G of g meets φ in four points; so G is a *fourfold point* of the curve φ° . In an analogous way the nine traces A_k , B_k , C_k of the base curves are *double points* of φ° .

The intersection δ^8 of φ and the surface of coincidencies has a fivefold point in G. So φ^9 and δ^8 intersect each other in $9 \times 8 - -4 \times 5 - 9 \times 2 = 34$ points differing from the traces of the bases. To these points belong the points of contact of the curves, corresponding to coincidencies of the I^4 the bearing lines of which are contained in φ .

In order to determine their number we consider the three pencils of conics common to φ and $(a^2), (b^2), (c^2)$. The polar curves of these pencils with respect to a point P describing a line l generate three projective pencils $(a^3), (b^3), (c^3)$. The first and the second generate a curve c^5 with G as node and passing through the three base points A_k of a^3 and the double points of the three pairs of lines. The curve b^5 generated by the pencils (a^3) and (c^3) also contains these points. So b^5 and c^5 admit 25 - 4 - 3 - 3 = 15 points of contact of three corresponding conics forming therefore coincidencies of the I^4 with a bearing line lying in φ .

So $\varphi^{\mathfrak{g}}$ and $\mathfrak{d}^{\mathfrak{g}}$ have four coincidencies in common the bearing lines of which intersect the plane φ .