Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

F.A.H. Schreinemakers \& Prooije, D.J. van, The system sodium sulphate, manganous sulphate and water at 350, in:
KNAW, Proceedings, 15 II, 1912-1913, Amsterdam, 1913, pp. 1326-1328

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'
$F^{\prime \prime}$ is the same (namely, $F^{\prime} \rightleftarrows$ vapour $F^{\prime \prime}$) ΔW and ΔV are also the same for both systems. The curves $a^{\prime \prime} D$ and $a^{\prime} K^{\prime}$ must, therefore meet in the P, T-diagram in the point l.

A corresponding property holds when a corresponding point l is situated on the four-phase curve, or on the melting point curve of the complex $F+F^{\prime}$.

Hence, if the sublimation line, the four-phase line or the melting, point line of the complex $F+F^{\prime}$ is in a part a congruent and in a part a transition curve, the curve of the complex in the P, T-diagram will meet in its transition point the comesponding curve of that compound which is being converted.

If there are two transition points, many cases may present themselves, according to their situation, the compound converted etc., which we will not discuss bere any further.
(To be continuect).

Chemistry. - "The system sodium sulphate, manganous sulphate and water at $35^{\circ}{ }^{1}$). By Prof. F. A. H. Schrenemakers and D. J. van Prooite.

In this system occur as solid phases, which can be in equilibrium at 35° with saturated solutions: anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the hydrate $\mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ and the two anhydrous double salts:
$\mathrm{D}_{0.10}=\left(\mathrm{Mn} \mathrm{SO}_{4}\right)_{9} .\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)_{10}$ and $\mathrm{D}_{1.3}=\mathrm{Mn} \mathrm{SO}_{4} .\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)_{3}$.
The double salts previously dessribed:

$$
\mathrm{MnSO}_{4} \cdot \mathrm{Na}_{2} \mathrm{SO}_{4}, 2 \mathrm{H}_{2} \mathrm{O} \text { and } \mathrm{Mn} \mathrm{SO}_{4} \cdot \mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}
$$

have not been found by us, whereas on the other hand those now noticed have not been described up to the present. Moreover, the accurate preparation and solubility of the salts previously described are but insufficiently known, so that it is difficult to decide whether these are perhaps metastable or whether the presence of two metastahle salts was, perhaps, due to accident.

The equilibria occurring at 35° are indicated schematically in the figure; the two double salts are represented by the points $D_{9.10}$ and D_{13}, the salt $\mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ is represented by the point Mn_{1}. The isotherm consists of four branches, namely

[^0]$a b$ the saturation line of $\mathrm{Na}_{4} \mathrm{SO}_{4}$.
\[

$$
\begin{array}{lllll}
b c & " & " & " & " \\
\mathrm{D}_{13} \\
c d & " & " & " & " \\
\mathrm{D}_{110} \\
d e & " & ., & " & "
\end{array}
$$ \mathrm{MnSO}_{4} \cdot \mathrm{H}_{1} \mathrm{O}
\]

The exact position of these branches can be drawn with the aid of the determinations recorded in table I.

TABIE I.
Composition in $\%$ by weight of the solutions saturated at 35° and of the residues.

Solution		Residue		Solid phase
$\% \mathrm{MnSO}_{4}$	$\% \mathrm{Na}_{2} \mathrm{SO}_{4}$	$\% \mathrm{MnSO}_{4}$	\% $\mathrm{Na}_{2} \mathrm{SO}_{3}$	
39.45	0	-	-	$\mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
33.92	5.23	43.84	- 4.50	"
33.06	7.97	50.85	23.22	$\mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}+\mathrm{D}_{910}$
32.76	7.71	49.35	14.71	"
32.92	7.42	43.49	7.76	"
31.05	9.20	39.21	28.73	D_{910}
27.67	10.76	33.44	21.81	"
22.14	14.28	37.44	35.46	"
14.58	20.01	31.06	35.50	"
13.96	21.91	24.51	40.65	$\mathrm{D}_{910}+\mathrm{D}_{13}$
12.19	22.49	18.63	47.18	D_{13}
10.45	23.41	18.40	49.53	"
7.43	26.58	18.53	55.45	"
5.69	29.31	17.02-	55.00	"
5.11	30.52	9.11	61.58	$\mathrm{D}_{13}+\mathrm{Na}_{2} \mathrm{SO}_{4}$
2.96	31.33	1.46	67.40	$\mathrm{Na}_{2} \mathrm{SO}_{4}$
0	33	-	-	-"

From the table it is shown that the composition of the solution saturated with $\mathrm{Mn} \mathrm{SO}_{ \pm} . \mathrm{H}_{2} \mathrm{O}+\mathrm{D}_{9.10}$ has been determined three times.

In order to be able to deduce the composition of the solid sub- •
stances with which the solutions are saturated, the composition of such a solution has been determined and in addition that of the correlated residue.

As shown in the table, four solutions of branch $c d$ and their correlated residues have been determined besides the two terminal points; if these are introduced into the figure and the conjugation lines are drawn, these intersect the side $\mathrm{MnSO}_{4}-\mathrm{Na}_{2} \mathrm{SO}_{4}$ in a point indicating 48.89% of $\mathrm{Mn} \mathrm{SO}_{ \pm}$and consequently 51.11% of $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The double salt $\mathrm{Mn} \mathrm{SO}_{4} . \mathrm{Na}_{2} \mathrm{SO}_{4}$ contains, however, 51.53% of MnSO_{4}, therefore, 48.47% of $\mathrm{Na}_{2} \mathrm{SO}_{4}$, so that the solid substance with which the solutions of branch $c d$ are salurated cannot be the double salt $\mathrm{MnSO}_{4} . \mathrm{Na}_{2} \mathrm{SO}_{4}$ or one of its hydrates. If from the composition ($\%$ by weight) of the point of intersection we calculate the molecular composition we find: $\left(\mathrm{MnSO}_{4}\right)_{9}\left(\mathrm{Na}_{2} \mathrm{SO}_{4}{ }_{10}=\mathrm{D}_{9.10}\right.$.

As shown in the table, four solutions of branch bc and their correlated residues have been determined bestes the two terminal points b and c, these four conjugation lines intersect the side $\mathrm{Mn}_{1} \mathrm{SO}_{4}-\mathrm{Na}_{2} \mathrm{SO}_{4}$ in a point indicating the composition of the double salt: MnSO_{4} $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)_{3}=\mathrm{D}_{13}$. This double salt contains 26.16% of MnSO_{4} and consequently 73.84% of ${ }^{\prime} \mathrm{Na}_{2} \mathrm{SO}_{4}$.

The behaviour of both double saits in regard to water is shown at once in the figure if we connect therein the apex W with the points $D_{1.3}$ and $D_{9.10}$. As the line W. $D_{1.3}$ intersects the curve $b c$ and the line W. D $_{9.10}$ the curve $c d$, it is evident that at 35° both double salts are soluble in water without decomposition.

[^0]: $\left.{ }^{1}\right)$ Marignac and Geiger, A. Min. [5] 9. 15. Mag. Phaim, 1127.

