Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

Winkler, C., On localised atrophy in the lateral geniculate body causing quadrantic hemianopsia of both the right lower fields of vision, in:
KNAW, Proceedings, 15 II, 1912-1913, Amsterdam, 1913, pp. 840-850

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'
3. Mess's Smpts and de laisur write: ${ }^{1}$) "Why in refercnce to these experiments Cones and Goldscinniny give 195° for the point of transition in the "Chemisch Weehblad", and $17 \mathbf{0}^{\circ}$ in, the "Zeitschrift firr physihal. Chemie" is quite unaccountable." The difficulty disappears immediately when one refers to the said paper"); it then appears that the following sentence has escaped Mess's Surts and dr Leevw's notice. "Wir setzen hier vorlaufig 170°, doch beatsichtigen wir" auf die genaue Bestimmung deser Temperatur noch spater zurückzukommen. In der Figur steht irtumlich 195°." ${ }^{\text {a }}$

I will refer again to the transition : retrgonal tin \rightleftarrows rhombic tin as soon as the investigations announced in my above paper shall be concluded.

Utrecht, November $1912 . \quad$ van $^{\prime}$ 't Horf-Laboratory.

Physiology. - "On lucalised atrophy in the lateral genicalate body causing quadrantic hemianopsin of both the right lower fields of vision". By Prof. C. Winhder.
(Communicated in the meeting of November 30, 1912).
Ln 1904 Bemvor and Conarr ${ }^{4}$) observed blindness in the upper quadrants of both the left fields of vision by an invalid, who after dealh proved to be the bearer of a focus in the right hemisphere, through which the surroundings of the calcarine fissure, from the occipital pole to the confluence with the parieto-occipital fissure were destroyed.

This observation is one of the few, in which quadrantic-hemianopsia responded to a focus, which chiefly destroyed the cortex, although the optic radiation, as shown in the drawings of Brevor and Coscurr, here too was not spared in the least, on the contrary it was destroyed to an important extent (especially the medio-ventral part).

Beivor and Cormer pointed out, that ahready at that time in the literature there was sufficient ground to suggest, that foci in the dorso-lateral division of the strala sagittaha of the occipital lobe can canse blindness in the lower quadrants of the crossed optic fields. On the other hand foci in the ventro-medial division of these strala

[^0]

Fig. 1. Lateral surface of the left hemisphere in quadrantic-hemianopsia of both the right lower fields of vision.

ig. 2. Medial surface of the same hemisphere. (The lines indicate the place of Medial surface of the same hemisphere. (The lines indicate Ite
the sections, drawn with the same number on Plate II and III).

Fig. 11. Medial surface of the right hemisphere, with a defect in the proximal part of the G. cuneus, lingualis, fusiformis and occipito-temporalis.
(The lines indicate the place of the sections, drawn with the same number on Plate II and III).

Fig. 17. Basal surface of the left hemisphere with a defect in the ventral occipital convolutions. (Cf. Psych en Neur. Bladen. 1910 p. 1-16 Plate IV. fig. 1-6. Plate V. fig. 12),

[^1]
 owne intivis.

sagittalia can cause quadrantic hemianopsia in the crossed upper fields of vision (Henschen, Fórster, Wilbrand ete.) ${ }^{\text {² }}$)

Non Monahow ${ }^{2}$) proceeds still more in the here taken direction. If the dorsal division of the occipital lobe (Upper Cuneus, $\mathrm{O}_{1}-\mathrm{O}_{\mathrm{s}}$) incl. the dorsal part of the optic radiation is destroyed, then exclusively the dorsal layer of the lateral medullary capsule of the lateral geniculate body degenerates, and of this body the fronto-medial part.
. On the contrary after destruction of the ventral convolution of the occipital lobe (ventral lip of the calcarine fissure, the Gyrus lingualis, the Gyrus occipito-(emporalis) it gives rise to a secondary degeneration of the ventral divison of the geniculo-cortical radiation and degeneration of the ventro-lateral part (cauda) of the lateral geniculate body.

The projection of the retina on the cortex could no longer be interpreled as simple as Henschen lad taught us. It was not limited only to the surroundings, of the calcarine fissure and had to be regarded from a different point of view.

It had to be borne in mind that in cach laieral geniculate body there was already a first field of projection for the two homonymous retinal halves. Another projection, secondary to this, took place through the geniculo-cortical radiation, which united this body with the cortex. But in a particular way.

As long as the dorsal division of the radiation and the capout of this body did not slow secondary change, the vision in the lower crossed quadrants of the fields of vision was intact. (Beevor and Cominer).

As long as the ventral divison of the radiation and the cauda of the body lacked these changes, the vision in the upper crossed quadrants of the fields of vision conld reman intact.

The radiation from this body spreads itself however to a greater area of the cortex than to the surroundings of the calcarine fissure only. Without donbt also the upper Cuneus, $O_{1}-O_{3}$, i. e. the whole

[^2]of the nccipital pole has to be taken in account as an Monakow desires, but most probably even more.

The retinal projection on the cortex, secondary to that of the lateral geniculate body is therefore without doubt much more com--plicated than Hmschen had figured to himself.

In 1909 I myself ${ }^{2}$) could prove that the geniculo-cortical radiation and the geniculate body reacted differently. if by dorsally situated foci the dorso-lateral division of the strata sagittalia was cut through, than they did, if ventrally situated foci destroyed the ventro-medial division of these strala in the occipital pole. In the first case, with incomplete quadrantic hemianopsia of the lower fields of vision, the dorsal division of the radiation and the medial part of the geniculate body was greatly, but not allogether degenerated.

In the second case the degeneration took place in the ventral division of the radiation and the cauda of the body. Both degenemations were incomplele. At present I can communicate two new cases, this time of complete partial atrophy of the lateral geniculate body (cauda or caput), of which one with exquisite quadrantic hemianopsia, and through which I am obliged to extend even more than Monakow did, the areae of the cortex for the lateral geniculate body.

I.

Nephritis. Attack of unconsciousness on Dec. $9^{\text {th }} 1910$, followod by transitory sensory aphicsia, alexict and permanent quandrantic hemianopsia in the lower right fields of vision. which in July 1911 is tested through the oph. thalmologist. In January 1912 second insull, whuch causes death. Autopsic: Old haemorrhagic cyst in the Gyrus temporalis II and the Gyrus angularis, sectioning completely the dorsal optic radiations. Fresh bleeding immediately next to this in the dorsal strata sagittalia.

Miss C. P. S....., 37 years, is the eldest of 9 children, of which $\tilde{5}$ are still living. The mother of this family died 50 years old of apoplexy, the father 75 years old of nephrilis. Mental or nervous diseases did not exist in the family.
No abusus alcoholicus, no syphils. Before this present illness she had nothing to complain of.

On the 9 th of December 1910, stse all at once fell unconscious, remained unconscious for 10 days. After coming to, she spoke will much difficulty, she could not find the words, asked lor "scur" (zuur) when she meanl "butter milk" (karnemelk), etc.

She soon regained a certain quantity of words, although she did not understand everything allight, but even now (July 1911) she names with difficulty the objects, which she recognises well. Especially proper names and nouns she often uses in the wrong way, Moreover after the allack she could nơl read, partially, as she says, because she soon grew tired, partially because she did not understand much of what she read.

[^3]Lastly after the attack she had been paralysed on the right side, but the taimeness had passed off completely after three weeks.

Afterwards she often had been giddy, in March, on the $4^{\text {th }}$ of June and on the $15^{\text {th }}$ of June; but this always happened at the beginning of the menses, which were very irregular after the attack. She noticed that after the attack she did not see very well to the right: it seemed as if white spols were there. 'The electric light on the market-place semed to hang lower than formerly to her, and now and then it was, as if brown spiders hung in front of the right eye. Since the $9^{\text {th }}$ of December she sees worse through the right eye She also often complains of headáche, vomitting at the same tine. Moreover the urine contains 4% albumen and many cylinders covered with cpithelium of the kidneys.

On account of these complaints she was brought into my ward of the University Hospital (Binnen-Gasthuis).

The patient looks very ill, is a woman of mudde height. Anaemic. Much arteriosclerosis. Somewhat enlarged heert. The second tone over the valvula aortae is Joud. Pulse 90-120

Her attitude is active, she takes interest in hei surioundmgs, is well otientated in time and in space. sleeps calmly, eats sufficiently. She can walk and makes every movèment.

Nowhere on the trunc or extremities any toouble of motility or sensibility is to be found Except a lowered abdominal reflex at the right side, all the retlexes of the extıemities are within normal limits. No sign of Babinski. There are impediments in speach. She understands simple commands without an yexception and follows them out. Her abundance of words is unlimited but she often misspeaks herself. Most of the objects are well named; they are always well recognised. Now and then she has to think long over them and after a!l uses the wrong word for them.

She recognises every letter of the alphabel and pronounces them correctly. "Also short words. She can read loud, but she reads paraphatically and the longer words are regularly badly reproduced. She does not comprehend the reading or -only. insufficiently. To comprehend the reading she repeats it several times loudly and then as a rule she does not understand il , she forgets many things. Yet she can do light work. She manages her little affair in pottery. - The smell is not affected.

The pupils are equally wide, the right one does not react on light as correctly .as the left. She camot converge and the reaction of the pupils by convergenco is not to be seen.
. The vision of the right cye is $1 / 6$; of the lefl eye $1 / 2$.
There is quadrantic hemianopsia in both the iower quandrants of the right fields of vision (s. figure).

Dr. Smi't, the ophthalmologist writes aboul the fundus oculi: "There is no -trace of papillitis On the right the bordets of the papilla are clearly limited, but there have been bleedings and there is still some vedema of the retina (retinitis albuminuriva). On the left the papilla is also clearly limited, bul here too are rests of haemorthages.

There is exquisite hemianopsia in the lower quadrants of the right fiedls of vision. That the macula vision is lost in the right anoptic sector is probably due to the bad vision of that cye.
The eye-movements, especially by their turning to the right and more so of the left eye, are limited. The lefl eye deviates to the tempotal side. It is impossible to direct boll eyes to one point.

The hearing has not been strongly disturbed, certainly not on one side only. A ticking watch can be heard on both sides at a distaice of 1 Meter.

Field of vision on July $6^{t^{2}} 1911$.

The diagnosis was made of nephritis with retinitis albuminurica and a focus in the left Gyrus angularis, cutting through the dorsal strata sagittalia.

July the $11^{\text {th }}$ she left the hospital. On the $10^{\text {th }}$ of January 1912 she was brought in unconscious and died three days later.

The account of the section shows: Hypertrophia cordis with nephritis interstitialis chronica and a focus in the left hemisphere, in the Gyrus temporalis II and the Gyrus angularis. The brown coloured focus spreads itself out in a straight direction along the distal third of the fissura t_{1}, and follows this along its ascending branch. The dorsal bounder of the Gyrus temporals II and the ventral Gyrus angularis are sunken in (s. fig. 1 and 2). On the section the focus proves to be a cyst with orange coloured walls, sectioning the strata sagittalia, in the neighbourhood of the retro-lenticular internal capsule and sectioning them completely in more distal slides (fig 6 and 7). More distally, it soon retracts from the strata.

There is however a second fresh focus in the strata sagittalia, an haemorhagy of bright colour, consisting of scarcely altered blood corpuscles (See fig. 7 in y).

In resuming the clinical data, it is not to be doubted that the second fresh focus caused the letal ending insult on the $10^{\text {th }}$ of January 1912 and that the first apoplectic cyst responds to the insult of the $9^{\text {th }}$ of December 1910, which brought forth the quadrantic hemianopsia as well as the secondary degenerations.

The importance of this observation lies in the first place in the fact, that a quadrantic hemianopsia of both the right lower fields of vision, noted with all possible precaution, is caused by a focus cutting "completely" through the dorso-lateral division of the strata sagittalia. Therefore too the secondary degenerations are of great importance. They lasted for 13 months and
made alterations proximally in. the lateral geniculate body and distally in the occipital lobe.

As the reproduction of the $W_{\text {eigerr- }}{ }^{3}$ ar preparation ${ }^{1}$) (fig. 6 and 7) and photo 1 and 2 show, the two foci are thus situated that the older cuts the dorsal division of the strata sagittalia over the whole width.

This ficus - the important one of the two - reaches close up to the lateral geniculate body (fig 6, pointed out by the first line through fig. I and. ${ }^{2}$) and stretches, cutting through the strata sagittalia, along the dorsal boundary of the comu inferius and posterius (fig. 7, pointed out by the first following line through fig. ${ }^{-1}$ and 2), where the fresh focus too is found. It ends about 2 cm . proximally from the distal end of the cornu posterius. Nowhere the ventro-medial division of the strata is affected directly by the focus. In fig. 6 and in fig. 7, this is intact.

According to the destruction by the focus, totally different fibre-syslems are affected and a massive degeneration towards the orcipital pole takes place.
The degenerated mass of fibres has been drawn on a more distally situated section (s fig. 8, line 8 through fig. 1 and 2) 1 c.m. distally from the focus ${ }^{1}$). In this is visible, that the tapetum-fibres are very soon restored after their transsection, showing nearly a normal tapetum and forceps posterior round the very wide ventricle. In a less degree this is also the case with the stratum sagittale internum. It has fewer fibres than normal, and between them are spread degenerated fields in different spots. But the loss of fibres in the stratum sagittale externum is enormous. No normal fibres are to be found in it. This mighty black layer in Weigert-Pal preparations is here replaced by a while band, as well in the dorsolateral as in the ventro-medtal division.

Smaller white stripes, coming from the degenerated band round the ventricle penetrate to far into the medullary cones of the convolutions, surrounding the calcarine fissure, also to the praecuneus and to the gyrus angularis. The gyri occi-pito-temporalis and fusiformis have suffered least.

The massive degenerated ring round the ventricle is always tound distally from the ventricle-end till the occipital pole. About $1 / 2$ c.m. behind this end (s. fig. 9 , line 9 from fig. 1 and 2) the distal point of the restored stratum sagittale internum is still louched and lies as a black island wilhin the while degenerated mass of the stratum sagittale externum, while nearly all the medullary cones of the convolutions are degenerated and only fibrae arcuatae seem to be left.
The praecuneus has suffered least. In the section, which falls about 1 cm . from the occipital pole (s. fig. 10, last line throught fig. 1 and 2) it is likewise. From the massive centre degeneraled stripes penetrate in every connolution.

All this proves that perception in the upper fields of vision is still possible, notwithstanding the stratum sagittale externum in the occipital pole is missing. If thereforc the fibres, used for visual perception are to be looked for in that layer, as seems probably to me,

[^4]those which are spared here, do not at all belong to the occipitall pole, but they must issue from far more proximal parts of the Gyrus occipito-temporalis.

This conclusion is the more valuable, if we look at the influence which the focus has had on the geniculo-cortical radiation and on the lateral geniculate body.

To make this clear I have drawn in fig. 4 a normal section of the surroundings of this body and in fig. 3 a cell-preparation ${ }^{3}$) of the same, to make compaison possible.
In these figures one sees the lateral geniculate body, which shows on frontal spections the form of a shoe (s. fig. 3) and in which can be distinguished a dorsomedial part: the caput, and a latero ventral one: the cauda.
Within its own fibre-capsule covering the whole of it, (s. fig. 4) layers of fibres - laminae modullares - are alternately followed by layens of cells. The cells in the ventral layers are large, those in the dorsal ones much smaller, although, especially in the capital part large cells penctrate in these dorsal layers. The size of the dorsal cellis differs a great deal between themselves. Many of them are very small.

In the normal fibre preparation the cauda contrasts but little against the caput, because the radiation of the optic tract has already begun in this proximal section.
'On the dorsolateral side the lateral geniculate body is covered by the triangular area of Wernicke through which the geniculo-cortical radiation penetrates. In the dorsal part of this area (s. fig. 4) the fibre-direction is totally different from the transverse sectioned fibres of ats ventral part
A rather thick layer of very thin subependymal fibres surtounds the area of Wernicike against, the ependym of the ventricle. As soon as the geniculo-cotical radiation has freed itself from this area, it opens its way in elegant curvings through the fionto occipital bundle and the retro-lenticular division of the internal capsule to the stratum sagittale externum. So it seems at least, although nobody will dare to make a decided conclusion about the origin of these fibres, crossing liere in all directions.

If we compare the above descubed area of the nommal brain with an identical of our quadrantic hemianopsia, it then follows, (not to mention the degenerations in the fronto-occipital bundle, in the mere proximally situated pats of the corona radiata, etc) that the dorsal layers of the geniculo-cortical radiation, and more in particular of the atea of Wernicic, are totally degenerated. The ventral division of this fibre-area on the other hand, is not much injured, nether is the neigbbouring dorsal and ventral part of the proper medullary capsule of the lateral geniculate body (s. fig. 6). In the cauda of the body, we find intact laminae medullares. In the caput (in its dorso medial part) the proper medullary capsule is dorsally and ventrally gone as well as the striae medullates All the cells of this caput are (s. fig. 5) vanished, the dorsal as well as the large ventral ones. The layers in which they were situated are to be seen as thick layers of glia. The whole body

[^5]is reduced to almost half its normal size ${ }^{1}$), but in its cauda the small dorsal an l the large ventıal cells (s. flg. 6) ane completely intact; there too the striac medullares as well as the proper capsule are on the whole untouched.

The conclusion is readily made: the possibility of sight in the upper quadrants is due to the conservation of the cells and fibres in the cauda of the lateral geniculate body, their projection on the cortex being preserved by the ventral layer of the area of $W_{\text {ernicke }}$ and of the geniculo-cortical radiation.

But where do these cells find their projection on the cortex? Not in the occipital pole which in my opinion was totally separated by the focus from the lateral gemeulate body, as is shown by the complete degeneration of the stratum sagittale externum and all the medullary cones of the occipital convolutions (only fibrae arcuatae remained). Perhaps from the gyrus occipito-temporalis, its medulla being bur partly cut through by the focus (s. fig. 7). Distally from it (s. fig. 9) the medullary cones of the temporal circonvolutions were normal, those of the occipital lobe (s. fig. 9) were degenerated. Proximally from it this convolution with normal medullary cone contributed to the forming of ihe intact ventral division of the strata sagittalia.

The answer to the question where the field of projection of the lateral cells of this body was situated, was bronght to me by a very remarkable right hemisphere, given to me by Professor Bоик. He had found it by accident in the corpse of a woman of whose antecedents nothing was known.
II.

This right hemisphete carries the rests of a vely old pathological process, which has reduced on the transition of the basal temporal and occipital lobe all the convolutions with their medullary cones to a thin membrane. When the pia mater was removed it was torn near the cuneus. (s. fig. 11). The occipital pole is intact On the middle of the cunens the defect begins with a sharp edge. The proximal end of the coneus, of the gyrus linguals and of the gytus fusiformis, as well as the modial part of the gyrus occipito temporals (as far as near to the f. llimea) ate replaced by a thin membrane (s. fig. 11, 13, 14, 15 and 16).

The sories of sections show the following ${ }^{2}$). The lirst remarkable alteration is drawn in fig. 16 (pointed out by the line 16 on fig. 11 and comparable with fig. 9 of the first observation). Therice the distal end of the defect has been cut. finstly in A in the depth of the fiss calcarina. There the cortex is gone and the
${ }^{1}$) The enlargement is smilar to that of the normal figure. (s. fig. 3).
d) In older to give an easy survey the sections aue reversed and drawn as if they came flom a left hemispliere.
medulla of the circonvolution lics uncovered. The line of Gennari ends on both sides sharply against the defect, is not atrophied, even mightier than usual and formed by thicker fibres; secondly in B, where ventrally from the f. parieto-occipitalis the medulla of the cunens lies uncovered and in C . where the defect begins in the gyrus fusiformis.

- In the white matter opposite the fissura calcarina a triangular degenerated field is to be seen. It is siluated for the greater pat ventrally, but also a bit laterally round the sectioned distal end of the strata sagittalia
In figure 15 (pointed out by line 15 of fig. 11 and comparable to fig. 8 of the first observation, the defect is found distally from the confluence of the fiss. calcarima and f. pariëlo occipitalis. All the basal convolutions are missing.

Chuneus, lingualis, fusiformis, as well as the medial border of the ventticle are entirely gone. The medial medullury cone of the g. occipito temporalis lies unco vered. The degenerated field is larger, lies partly in the ventral, partly already in the latero-dorsal division of the stratum sagittale internum, but also in the stratum sagitale externum, especially there where the ventral division of it passes into the lateral. For the rest the stratum sagiltale externum is seen quite distinctly here (in fig. 8 totally gone), a proof that this area consists of more fibres than the geniculo-cortical radiation only (all gone in fig. 8).

In fig. 14 (pointed oul by line 14 of fig. 11 and comparable to fig. 7) the splenium corporis callosi is sectioned.

Except a rest of the Cornu Ammonis no convolutions are to be found ventrally from the cornu inferius. 'the greater part of the gyrus occipito-temporalis is gone. The intact ventral strata sagittalia, as were found in fig. 7 are missing. The degenerated field (due to the defect) lies laterally and dorsally from the ventricle in both the strala sagittalia.

A great part of the dorsal slratum sagittale externum is intact. In fig. 7 exactly this large layer was lotally destroyed and therefore also the geniculo-cortical radiation to the occipital lobe.

In fig. 13 (pointed out by the lines 13 of fig. 11, comparable to fig. 6) the retro-lenticular area is sectioned ${ }^{1}$).
As if this section were the negative of that reprodaced in fig. 6, one hardly finds here normal fibres in fields, which were there the best preserved In the ventral part of the geniculo-cortical radiation and of the area of Werniche all the fibres are gone. The ventral and lateral part of the proper capsule of the lateral geniculate body scarcely consist of normal fibres, the striae medullares in the cauda are gone, and the body is reduced to half its normal size.

On the other land the dorsal part of the geniculo cortical radiation and the area of Wervicika, the dorso-medial proper capsule and the striac medullares in the caput of the geniculate body are only relatively changed ${ }^{1}$).
'The same reverse is shown in the cell-preparations of the body itself. Lateroventral, in the cauda of the body not one cell is to be found.

Thick layers of neuroglin, where once the cells were alternate with less thick ayers of neuroglin (now representing the striae), but all cells, the dorsal as well as the ventral, have disappeared. On the other hand, the dorso-medial part, the caput of this ganglion contains well ranged cell layers, small dorsal ones as

[^6]well as a number of ventral large cells. This geniculate body is in every respect the negative of fig. 5 .

The result of this observation is clear enough: The important defect in the occipital lobe above mentioned, was not sufficient to produce an atrophy of the dorso-medial division of the lateral geniculate body. The couda on the other hand lost all the cells and fibres. From our first observation we learned that the cauda remained uninjured, when the focus (s. fig. 6 and fig. 7) totally destroyed the dorsal layer of the strata sagitalia. There (according to the spot of degeneration in our second observation in fig. 14) the geniculocortical radiation from the ventral occipital convolutions is already situated dorsally from the corma inferius.

Moreover on the same sections in our first observation the ventral strala sagittalia are intact, and exactly these are completely missing in the second (s. fig. 13). New was to me the exquisite total loss of all the cells and fibres, either in the lateral, either in the medial half of the geniculate body, as is found in both these observations, alhough I possess many other partial atrophies of it after occi-pital-lesions.

Generally spoken, lesions of the medio-ventral occipital convolutions cause atrophy of the latero-ventral part of the geniculate body, but in my cases it has never been a total one.

As long as the gyrus occipito-temporalis proximally from the calcarine fissure is uninjured, not all the laterally situated fibres disappear, but cells otten remain in the rentral, occasionally also in the dorsal layers. ${ }^{1}$) Only after the knowledge of such extremes as above described, I have learned to appreciate the incomplete atrophies. Wedges turning their base to the dorsal part of the geniculate body, fall out. Their localisation differs by the place of the focus, alhough they never touch the dorso-medial part of it, as long as the focus only destroys the ventro-medial occipital convolutions.

In this way e.g. must be considered the ventral occipital focus with atrophy in the canda of the lateral geniculate body, described by myself in 1910. At present I complete this observation referring to the same figures in orler to describe that geniculate body exactly.

III.

A basal defect in the left hemisphere ('s. fig. 17, also Psych. and Neurol. Bladen 1910, p. 16 more precisely the photos on plate IV and fig 12 on plate V) elimi-

[^7]nates the O_{3}, the gyrus lingualis and fusiformis to the confluence of the calcarine fissure with the parieto-occipital fissure (s. Psych Bladen Pl. IV, fig. 6). Also a part of the gyrus occipito-lemporalis, lying more proxmally, is injured.
Through this lesion the ventral division of the geniculo-cortical radiation as well as that of the area of Weracer is degencrated, but in less degree its most ventral layer (cl. Ps. Bladen, Pl. V, fig. 12)

The geniculate body belonging to this is drawn in fig, 18. It is smaller than normal, but not as far reduced as in both the former observations. The proper capsule is not changed dorso-medtally and the same can be said of its cells, dorsal as well as the rentral ones, belonging to the caput of the ganghon.

The cauda is for the greater part alrophied but not the most laterally situated divison of it There, ventral and dorsal cells ate to be seen witlin an almost normal capsule. Between caput and cauda, not or only little changed, one fipids in the middle a part, where ill is detroyed; the dorsal and ventral cells, the strine medullares, the proper fibres and the proper capsule.

In this case an example is shown of an incompiete atrophy of the cauda of the lateral geniculate bods, incomplete because the focus did destroy the ventral occipital convolutions, but had not touched the gyrus occipito-temporalis far enough proximally. Therefore the most ventral layers of the geniculo-cortical radiation and the most lateral parts of the cauda remained free from degenerative alrophy.

Recapitulating I come to the following conclusions:

1. Vison in the upper quadrants of the field of vision is possible, notwithstanding the total loss of all the cells and fibres in the medial (caput) division of the crossed lateral geniculate body, as long as the cells and fibres of the canda (origin of the ventral geniculo-cortical radiation) are intact.
2. It is not sufficient that the ventral occipital convolulions are destioyed to make all the cells disappear out of the lateral (canda) division of the geniculate body. This only occurs when more proximally situated parts of the gyrus occipito-temporalis are destroyed.
3. The cortical areae belonging to the lateral geniculate body are not only limited to the cortex of the occipital lobe.

Chemistry. - "On the occurrence of metnls". in the liver". By Prof. L. van Itallim and Dr. J. J. van Eck. (Communicated by Prof. Einthoven).
(Communicated in the meeting of November 30, 1912).
In the analysis of organs as to the presence of metallic poisons, we found in the liquid obtained after destruction of 170 grams of liver, kidney and heart, in addition to traces of arsenic and copper, as much zine as corresponds with 80 mgs . of zinc oxide per kilogram of organs. As there was no reason to suppose that a poisoning

[^0]: ${ }^{1)}$ These Proc. XV, p. 677.
 ${ }^{2}$) Chem. Weekblad 1, 437 (1904), special p. 449.
) Zeitsclır. für physikal. Chemie 50, 225 (190t), special p. 236, note 2.
 b) G. E. Becvor and James Collier. A contribution to the study of the cortical localisation. A case of quadranlic hemianopsia wilh pathological examination. Brain. I904. XXVI p. 153.

[^1]: toceedings Royal Aca1. Amsterdam. Vol XV,

[^2]: ${ }^{1}$) S. E. Henschen. Pathologie des Gehirns. Upsala 1890-94 and 1903 Cif Surles centres optiques cérébranx. Rev. gén d'Ophth. Paris 1894. Revue critique de la doctrine sur le centre cortical de la vision Cóongr. int. de Médecine. Paris 1900 La projection de la rétine sur la partie corticale calcarine. Sem. med. 1903.

 Wibbrandi Hemianopische Gesichtsfeldformen. Wiesbaden. 1890.
 Wilbrandy und Sínger. Neurologie des Auges. 3 Bde 1900/1904.
 Forsser. Unorientirtheit, Rindenblindheit, Andeulung von Scelenblindheit. Arch. f. Opth. 1890 and Wilbrandrt. Doppelversorgung der Macula lutea and der b'örster'sche t'all von doppelseitiges homonyme: Hemianopsie. Beitr. zur Augenheilkunde (Festschr. für Förster.)
 ${ }^{\text {8 }}$) Von Monakow. Gehirnpathologie. 1905. S. 757.

[^3]: 1) C. Winkler. De achterhoofuskwab en de half-blindhed. Psych. en Neurol. Bhaden. 1910 Bl. 1-16.
[^4]: ${ }^{1}$) Al these figures have been druwn with the greatest care; they are enlarged $21 / 2$ times and reduced to $7 / 12$ of their size at the reproduction. Photos would have shown the same things, but drawings are more instructive as combinations of several sections are possible.

[^5]: ${ }^{1)}$. The cell-preparations of this body have been drawn will the camera of Zeiss; they are enlarged 20 times and reduced to $7 / 12$ of their size by the reproduction. Idem with the retro-lenlicular area.

[^6]: ${ }^{1}$) Here, as well as before, purposely I do not point out several other degenerations. Tu make things still less complicated I do not even mention the influence upon the pulvinar of both these foci.

[^7]: 1) Nearly the same can be said of dorsally situated foci (mutatis mulandis) which section the optic radiation cilther close to the geniculate body or füther olf. I shall refer to this later on.
