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In the investigalion of the liver of a new-born calf were found,
per kilo, 31 mgs. of copper and 81.1 mgs. of zinc.

From the results obiained the following conclusions may be drawn :

1. Arsenic is not a normal constituent of the human liver.

2. Copper and zine appear to occur regularly in the human liver.

3. They are already deposited in the liver during the foetal siage
and, as vegards copper, even in a larger quantity than in the fol-
lowing period.

4. Otherwise, there seems to exist no relation between the copper
and zinc contenl of the liver and the age, sex, occupation and place
of residence.

5. The figures given by Lmnmany for the copper conlent are com-
parvatively low. His maximum fignre of 5 mg. per kilogram of liver
i, as a rule. exceeded in Holland.

Pharmaceutical Laboratory
University, Leiden.

Chemistry. — “Hquilibria i fernary systems. [1”. By Prof,
SCHRRINEMAKERS.

(Communicated in the meeting of November 30, 1912).

In the previous communication we have observed the changes
when at a constant temperature there is a change of pressure, and
from this deduced the saturation lines of a solid substance # under
their own vapour pressure. We will now Dbriefly consider the case
that, at a constant pressure, there is a change in temperature. At
a constant temperature a reduction of pressure causes an expansion
of the gas region and a contraction of the liquidum region; under
a constant pressare the same happens on elevating the temperature.

A system that exhibits at a constant temperature a maximum
vapour pressure (minimum), has al a constant pressure a minimum
boiling point (maximum). .

At a constant temperature, the influence of the pressure on the
situation and form of the saturation lne of ['1s generally small
unless at temperatures close to the melting point of F, at a constant
pressure the influence of the temperature is usually much greater
and the movement of the line, therefore, much more rapid. Yet, as
a rule, the liguidum line will move wmore rapidly than the saturation
line unless indeed the latler is on the point of disappearing.

At a constant temperalure, the saturation line of [ may disappear
on increasing or reducing the pressure; this depends on whether, on
melting, an increase or a decreasc of the volume takes plare Under
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a constant pressure it disappears at an elevation of temperature only.

From all this it follows that most of the diagrams described above
which occur at a constant temperature on reduction of pressure
will also. as a rule, form at a constant pressure by an elevation of
temperature. At a constant temperature, the lignid and the gas of
the three-phase equilibrinm 74 L 4 (7 each proceed along an
isothermic-polybaric curve which we have called the saturation line
of I under its own vapour pressure and the vapour line appertaining
thereto.

Under a constant pressure, the liquid and the gas of the three-
phase equilibrium F 4 L - ¢ each proceed along a polythermic-
isobaric curve. As these solutions saturated with F can, at a given
pressure, be in equilibrium with vaponr and consequenily boil at
that temperature we will call these lines the boiling point line of
the solutions saturated with /# and the vapour line appertaining
thereto.

The sataration line of /7 under its own pressure may be circum-
phased [fig. 7 (I) and 11 (I)]") as well as exphased [fig. 12 (I} apd
13 (I)]. The same applies to the boiling point line of the solutions
saturated with £, with this difference, however, that fig. 13 (I)
does not occur. The saturation line of F under its own vapour
pressure exhibits a pressure maximum and minimum ; the boiling
point line of the solutions saturated with /' a temperature maximum
and minimum. These are, however, so situated that the arrows of
the figs. 7 (I), 11 (I) and 12 (I) should point in the opposite
* direction.

We will refer later to these curves in various respects.

We can also unite these boiling point lines with their correlated
vapour lmes for different pressures, in a same plane. We then
oblain a diagram analogous to fig. 14 (I) in which the arrows,
however, must point in the opposite direction. If the pressure axis
is taken perpendicularly to the plane of drawing, the spaceal
vepreseniation gives two planes, namely the boiling point plang of
the solutions saturated with I7 and the correlated vapour plane.

We will now consider stil in another way the saturation lines
under their own pressure and the boiling point lines of the liquids
saturated with a solid substance.

We assume that a solid substance I of the composition «, 5, and

1) The number (I) placed behind a figure signifies that a figure from the frst
communication is intended.
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1—a—B is in equilibrium with a liquid L of the composition 2, y
and 1—a—y and with a vapour L of the composition x,, y, and
1—a,—y,. We call the volumes of these phases v, V, and 7,
their entropies %, H, and H,, their thermodynamic potentials §, 2
and 7.

As equilibrium conditions we find -

0Z 0Z
2~ =0 5o — (=03, =}

0z, 02,
L—lm—dg ! - A= ()
0z oz, 0z 0z,

Py _é—;—l- en E = a—%—
From this we find:
[(w—a) » + (1—B)] do + [(8 —a)s + (y—B)] dy = AdP—BaT" . ()
[(2,—a)r, + (v, = B)s,] dry + [(w,—a)s, + (y,— B 1 dy, = A,dP - B,dT'(3)
rde + sdy = ».d, 4 s, dy, + <6V1 —a—I{ a -—((—jﬂ—-y—i)dT 4)
T O oz, Oz

%, d=z

oV, 3V (OH, OH\
sdv + tdy = s,de, + t,dy, + (W — 5;) aP— (—— —5, ) ©®
° J1 D b

If we only want a relation between dr, dy, dP, and d7' then
from the previous equations we deduce:

e =) + (y - Bsl dv + [(y—ea)s + (y—B)t]dy = AdP—BdT . (6)

l(r,— ) + (y,—y)sldar + [te,— s + (y,—))dy = CAP—DdT . (7)

In this:

oV oV 0H 0H
A=V—v+ (a—2) . 4 (15‘—1/)@ B=H—n+ (a—-ﬂ,)é—w— -+ (ﬁ—y)ﬁ

C=V,— V—{—(n;—ml)g—;—}-(y—yl) STVD:HI— H+ (m—ﬂ'l)-g‘?i;i"f' (3/—2/1)%5-[.
In order to obtain the saturation line of the solid substance I
under its own vapour pressure we call in (6) and (7) dI'=0; we
then obtain :
[(e—a)r+ @ —B sl de + (e —a)s + [y — B ] dy = 4dP  (8)
[(@,—2)» + (g, —y) s] de + [(w,—2)s -+ (y,—y) t] dy = CdP (9)
'The correlated vapour line is obtained: by interchanging in these
relations the gquantities velating to vapour and liquid. In order that
the pressure in a point of the saturation line under its own pressure
may become maximum or mirimum 7 in (8) and (9) must be = 0.

Hence :
56
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[(@ —a)r + (y—P)slda + [(w~a)s + (y —B)¢] dy = 0. (10)
(&, —2) 7 + (y,—9) s} do + [(&,—2) s + (y,—)t] dy = 0. (1)

This means that in this point the saturation line under its own
vapour pressure comes into contact with the isothermic-isobaric satu-
ration line of ¥ (10) and with the liquidum line of the heterogeneous
region LG {(11).

We can satisfy (10), and (11) by:

y=B_vy L ay
r—a &,

This means that the three points represeniing the solid substance
I, the liquid and the vapour are situated on a straight line. Hence,
we find that on a saturation line of a solid substance 1 under its
own vapour pressure, {he pressure is maximum or minimum when
the three phases (/, L, and () are represented by points of a straight
line, or in other words, when between the three phases a phase
reaction is possible.

If we imagine before us the equation of the correlating vapour
line we notice that when the pressure in a point of the. saturation
line under its own vapour pressure is at its maximum or minimum,
this must also be the case in the corresponding point of the correlated
vapour line. It then also follows that the correlated vapour line, the
vapour saturation line of 7/ and the vapour line of the heterogeneous
region LG meet in this point.

The previous remarks apply, of course, also to the boiling point
line of the solutions saturated with F; in (6) and (7) dP must then
be supposed = 0.

Hence we conclude:

When solid matter, liquid and gas have such a composition that
between them a phase reaction is possible (the three figurating points
then lie on a straight line) then, on the saturation line of the satu-
rated solutions under its own pressure, the pressure is at its maximum
or minimum; on the boiling point line this will be the case with
the temperature. The same applies to the vapour lines appertaining
to these curves. In each of these maximum or minimum points the
three curves come into contact with each other.

The properties found above have been already deduced by another
way in the first communication.

We will now investigalé the saturation line of 7 under its own
vapour pressure in the vicinity of point JF. First of all, itis évident
that one line may pass throngh point F.

For if in (8) we call z=a and y = it follows that dP=0;

(9) is converted into:



857
[(@,—a)r 4 (g, = B) sl da + [(s,—a) s + (y,—P) t] dy = 0. (13)

. dy . .
We thus find a definife value for g‘l; at the same time it appears
& .

from (13) that in point [ the saturation line under its own vapour
pressure and the liquidum line of .the heterogeneous region LG
meet each other. It further appears from (13) that the tangent to
the saturation line in F under its own vapour pressure and the line
which connects the points F with the vapour phase are conjugated
diagonals of the indicatrix in point F. (The same applies, of course
to the boiling point line of the saturated solutions). '

If accidentally, not only the liquid but also the vapour still has
the composition £, therefore, when not only =« and y =8, but
also #, = ¢ and y, =B, then g{- becomes indefinite.

In this case, however a maximum or minimum vapour pressure
appears in the ternary system LG; we will refer to this later.

From (6) and (7) we deduce for # =« and y = 8:

(BC—AD) dT
4

This relation determines the change in temperature d71° around
point #; this is always differing from O unless one chooses du and
dy in such a manner' that the second member of (1) becomes nil.
According to (13, this signifies that, starting from %, one moves
over the tangent to the liquidum line of the heterogeneous region L (X

We now choose dx and dy along the line which connects the
point [ with the vapour phase; for this we put:

? de = (v,—a) di. and dy = (y,~B)dr . . . . (1)

We then obtain from (14)

(BO—AD) dT=(V—0) (e, ~a)* + 2 (8,—0) (1, —) s +- (3,—B)* § &1 (16)

In this we have replaced 4 by the value V—u, which 4 obtains
for ==« and y =p. -

Let us investigate the sign of:

K=BC — AD=(II—%)C— (V—-2v) L.

Now, C is the increase in volume when a quantity of vapowr is
generated from an indefinitely large quantity of liquid; D is the
inerease in -entropy in this reaciion. Hence so long we are not too
close to temperatures at which eritical phenomena ocenr between
liquid and vapour, C is as a rule large’ in regard to (V—v); H—q
and D are quantities of about the same kind. If now V <w, then
K is for certain positive; if, however, V" > », then K is, as arule,

={@—a)r + (1, —Psda + i@, —a)s - (y;—3)Gdy (14
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also still positive on account of the small value of V —» inregard
to (. We wll, therefore, in future always pul K positive; should
it become negative the necessary alterations can readily be introduced.

We now distinguish two cases.

a. V>wv, d7 and dX have the same sign;

b. V<, dT and d) have the opposite sign.

Now, it follows from (15) that dA >> 0 signifies that one is moving
from point [ towards the vapour phase. From this we conclude:

The part of a saturation line passing through the point F' of the
substance I under its own vapour pressure and situated in the
vieinity of 77 moves at an increase of temperature:

a. if V>, towards the vapour phase appertaining to point A

b. als 7 < v, away from the vapour phase appertaining to point £

From (6) and (7) instead of (16) we can deduce also:

KaP = (H—) {(x,—a)' » + 2 (2, — ) (y, —B) s + (y,—P)* 2. (17)

From this we conclude: ’

The part of a boiling point line of the saturaled solutions of /
sitnated in the vicinity of /7 moves, on increase of pressure, always
more towards the vapour phase appertaining to point 7.

In order to get a better knowledge of the saturation line of F
under its own vapour pressure which passes throngh the point F
and of the boiling point line of the saturated solntions of F we will
also introduce in our formulae.terms with de*, dzdy, and dy*. In
order to simplify the calculations a little we will assume provisionally
that the vapour consists of one component only.

We, therefore call in our previpus formulae z, =0 and y, = 0.
Our equilibrium conditions (1) then are converted into:

BZ 07

Z - "% Yoy az/

=Z. . . ... (18

04
Z+a +[?a =& . . . .. .19
Y
We now write for (18), 7’ bemg kept constant:

1 o v
(m+ys)dw+(ms+yt)dy+~( tog )dw +
+(+%a +Ja)dde+ (t+%a +u )dl/ =
v v ~
(V——V——.@W—-ya'/>dl7-}-.... N 1))
From (19) follows:
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(ar+3s) do + (as+8t) dy + %(ag—r -+ Bgi) da® +
s 0¢ 1/ 0s ot .
+(“a+5&)flmdy+g(a@+5@)dﬂ + ..
:(U—Vl———aa—v-—-ﬁf—)z)dl’-i— ..... R 18
oz oy

Let us now deduce (21) from (20) after having substituted in (20)
t=a and y=p: we find:

1 1
?1-.d.'c'-'-[—sd.'vdg/+—é~tdy“—|—...:AdP+... .. (29

in which the coefficients of dP.dx and dP.dy are nil, whereas
for the sake of Dbrevity we write the coefficient of dP in (21)
—(d -4 C). A and C then have herein the same values as in our
former equations. Then, however, we assume ¢ = ¢, y = 8,2, =0,
and = 0.

From (22) follows d/’ of the order d2* and dy*, here from (21)
at” first approximation :

l (er 4 Bsyde 4+ (s +-Bt)dy =10 . . . . (23)

In connection with (13) it appears from this that the liquidum
line passing through point /' and the saturation line of /7 under its
own vapour pressure come into contact with each other.

If we eliminate dP from (21) and (22) we obtain:

(ar + 89 do + (as + B0 dy + L(a% L z)u +
& T
b, g% 2 Vdedy 43 (> 1 8% 1 ;z)w——omi
+(aa—m+ a—w—}—s—{— .s)ay-{-g(aazl—{—ﬂgg-/—k + 2t ) dy* =0 (24)

. : ¢
in which 2=~
A -
For the liquidum line passing through point F' we find:

or 0
(o4 80 o e+ B0 dy + 3 (G485 +o+7 ) do

0s 0t 0s 0t .
+(ogtpg o )asty + 3 (ag 485 o) dr=0. 2

For the sake of brevity we write (24) and (25) as follows:
caX F Y e X @A XY K+ FT=0 . (26)
. aX + Y 4 4 eX* - dXY F4e¥Y*=0. . . . (2D
Equation (26) now relates to the saturation line, under its own
pressure, passing through F, (27) on the liquidum line of the hete-
rogeneous region LG passing through F.
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Now the curvature of (27) is given by:
2abd—a’e—b%
Sl (28)
(a® + %)Y
that of curve (26) by:
20bd—a’e—b*c— Au’t ~|—Jb”r—-2abs)
(a* 4 b)) '
As (28) and (29) have the same denominator we, in order to
compare the curvatures of both curves, only want the numerators.
For the sake of brevity we wrile:
2abd —a’e — 0 =Q. . . . . . . (30)

. (29)

and
2abd — a*e — ¢ — A(at + D'r — 2ab)=Q—AS . (31)
If, by means of the known values of @ and { we calculate the
value of S we find:
S = (vt — s?) (a®r 4 2 efs 5~ B)

hence, S is always positive. .

In order to find the direction of the curvature we calculate the
coordinates & and % of the cenire of the curved circle and ascertain
al which side of the tangent this centre is situated.- Therefore, we
call the origin of the coordinate system the pomt which in this case
represenis the vapour, 0. We now find the following: the liquidum line
is curved in the point F towards O when Q< O; it is curved in
I away from Quif Q> 0.

A consideration of @ shows thal this can be positive as well as
negative; hence, the liqudum line can be curved in £, away from
0 as well as towards O.

In order to find the saturation line under its own vapour pressure
we will consider two cases. .

Owmg to the small value of V —w, A will generally have
a large positive value. In Fig. 1, wherein for the moment we
disregard the curve d’JF¢, the liquidum line is represented hy dFe;
the point O is supposed to be somewhere to the left of this curve
dFe so that this is curved towards O; () is consequently negative.

ad X “
[24
a & &
e/
g £ ¢
Fig. 1. " Tig. 2
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- From this it follows al once that @ — AS is also negative and that
the saturation line under its own vapour pressure, namely the curve
Fab, must possess a curvature stronger than that of the liquidum
line. It further follows from our previous considerations that they
must intevsect also the line O somewhere between O and F so
that they must exhibit a form as indicaled schematically in fig. 1.
The change in pressure along this curve is delermined in F by (22),
from which it follows, that, starting from 7, P is positive whether
towards @ or towards 0. The pressure in I 1s, therefore a mini-
mum one and increases in the direction of the arrows. The solution
with maximum vapour pressure is, of course, in this case situated
on the intersecting point of this curve with the line OF.

We will now disregard the liquidum line dZFe of fig. 1 and sup-
pose it to be replaced by d’#e¢’ which is curved in another direc-
tion: @ is, therefore, positive so that @ — A.S can be positive as
well as negative. If the liquidum line is not curved too strongly
(@ —AS will be negative and the saturation line under its own
vapour pressure again exhibils a form like the curve aFb of Fig. 1.
[t however the liquidum line is curved very strongly and A is not
too large, then @ —2 S can also become positive, so that both
curves in I are bent in the same direction. This has been assumed
in Fig. 2 wherein dFe¢ represents the liquidum line and aFb the
saturation line under its own vapour pressure. As in this case, Qis
larger than @ — AS it follows, as assumed in Fig. 2, that in the vicinity
of I the curve df'e must be bent more strongly than the ecurve a Fb.

V< w. A has, therefore, generally a large negative value. In the
same way as above we find that Figs. 3 and 4 can now appear.
The safuration line under its own vapour pressure is again represented
by aFb, the liquidum line by dFe. In Fig. 3 are united two cases,

s

a

N

& 4 F
e € €
Fig. 3 Fig. 4.

namely a liquidum line dFe curved towards O and another d'Fe
carved in the opposite direction. We must remember also that the
line OF must intersect the saluration line somewhere in a point
situaled &t the other side of & than the point 0. 4 now being
negative, it further follows from (22) that the pressure of A must
now decrease {owards a as well as towards §; hence, the arrows
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again indicate the direclion in which the vapour pressure increases.

The previous considerations’ relate to the saturation line under its
own vapour pressure; in a similar manner we may likewise inves-
tigale the boiling point line of the saturated solulions. We must then
. . . oD _-D
in (26) replace A by w in which pu= B=HE

Instead of @—A.S we must then consider @—p S. u is now always
positive and as regards absolute value smaller than A. Further we
must replace AdLP in (22) by BdZ. As, moreover, the line OF must
intersect the boiling point line of the saturated solutions in a point
between O and F, we re-find the cases represented in figs. 1 and 2
in which af'b now represents the boiling point line of the saturated
solutions. If, however, the arrows must indicate Lhe direction of an
increasing temperature one must imagine them to point in the

opposite direction.

If we compare the values of Q--A.S and Q—pu .S in regard to
each other, we may search for the different situations of the satu-
ration line under its own pressure, and for the boiling point line of
the saturated soluticns in regard to each other, in the vicinity of
point F. 1 will, however, not go in for this now ; I will, however, refer

in the vicinity of the point F.

to it when discussing the value of o

Whether all conceivable combinations are actually possible is diffi-
cult to predict. Perhaps a solution might be found by introducing
the condition of equilibrium of vaN DER WaaLs and expressing the
different quantities in the @ and b of vaN DER Waars, which must
then be considered as functions of # and y.

We will now deduce the vapour saturation lines under their own
pressure and the boiling point lines of the saturated solutions yet in

another manner.

-11 -
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In order to find the saturation line, under its own pressure. of a
definite temperature 7' we take the vapour- and the liguidum surface
of this temperature 7'; we then obtain fig. 5 in which the pressure
axis is taken perpendiculavly to the component triangle ABC. The
liquidum surface is represenied by the drawn, the vapour plane by the
dotted lines. If the vapour conlains only two of the components the
vapour side reduces itself to a curve siinated in one of the border
planes ; if it contains but one single component it reduces itself to
a single point. Like in our former considerations, we further assume,
provisionally, that in the liquidum side occurs neither a maximum,
minimum, nor a stationary point.

We further take, at the assumed temperature 7' and an arbitrary
pressure P, a saturation line of the solid substance F. If we alter
the pressuve, 7' remaining constant, this saturation line changes its
form. If, to the component triangle, we place perpendicularly the
P-axis and if on this we place the different saturation lines we get
an isothermic-polybaric saturation surface of . This surface may lie
as in fig. 6 or 7; the component triangle has been omitted from
both figures. the arrows point in the direction of increasing pressure.
That both cases are possible is evident from what follows:

V' >v. At the assumed temperature 7' the substance [ will
melt at a definite pressure. Because the substance melts with increase
of volume the saturation line of Z will appear on elevation of

Vi
_P] P

£
Fig. 6. Fig. 7.
pressure, so thar we obtain a surface like in fig. 6, namely with the
convex side directed downwards.

V< v At the assumed temperature 7' the solid substance F
will also melt at a definite pressure. Because on melting there is
now a decrease of volume, the saturation line of F will now appear
on reduction of pressure. We thus obtain a surtace like in fig. 7,
namely with the concave side directed downwards.

The surfaces of figs. 5, 6, and 7 are isothermic-polybaric; they,
therefore, apply only to a definite temperature; if this is changed
those surface alter their form and situation. On elevation of tempe-
rature the liquidum and vapour surfaces of fig. 5 shift upwards likewise
the surface of fig, 6. On elevation of temperature, the surface of fig. 7

-12 -
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moves, however, downwards; as V is smaller than » the correlated
melting pressure will fall on increase of the melting temperature of Z.

As a small change in the melting point usually causes a very
great change in pressure both suvfaces of figs. 6 and 7 will generally
move much more rapidly than the vapour and liquidum side of
fig. 5.

V'>wv. We now suppose the saturation line of fig. 6 to be
introduced also in fig. 5, to begin with we assume the point I of
the saturation surface to be far below the liquidum side. All points
of the section of both surfaces now represent liquids saturaled with
solid # and in equnilibrium with vapour, consequently the system
F 4 L+ G As the points of tue section all appertain o the same
temperature, this section is therefore the previously recorded satu-
ration line of the solid substance /' under its own vapour pressure.
If we project this section on the component triangle we obtain a
curve surrounding point F' like the drawn curves in fig. 7 (I) or
fig. 11 (I). It is also evident that the pressure must increase in the
direction of the arrows of these figures. We now again imagine in
fig. 5 the section of liquidum surface and saturation surface ; with each
point of this section corresponds a definite point of the vapour surface.
On the vapour surface is situaled, therefore. a curve indicating the
vapours in equilibrium with the solutions saturaled with £7; this
curve 1s the vapour line appertaming to the saturaton line under
its own vapour pressure. If this curve is prciected on the component
triangle we obtamn a carve surrounding point I such as the dotted
curve of figs. 7 /1) or 11 (I). -

If the temperature 1s increased the liquidum. gas. and saturation
surfaces of /' move upwards; as the latter surface, however, moves
more rapidly than the first, there occurs a temperature where £
falls on the liquidum surface so that the solid substance [ is in
equilibrium with a liqud of the same composition and with a vapour.
Like van per WaALs in the binary systems. we may call this tem-
perature the minimum melting point of /.

As the plane of contact infroduced in /7 at the saturation surface
is borizontal, the saturation surface must intersect the liquidum surface.
We notice that this section proceeds from /7 towards the direc-
tion of the vapouar surface. If we project this curve on the com-
ponent triangles we oblain the corve afid of figs. 1 or 2. The curves
de or d'¢ of these figures are the sections of the plane of contact
in A at the saturation surface with the liquidum side; they are
consequently the liqudum lines of the heterogeneous region LG
at this minimum melting point of the substance L.

-13 -
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From a consideration of fig. 5 it immediately follows that the
vapour lines appertaining to the curves aFb of figs. 8 and 2 are
exphased and may, or may not, intersect the saturation line.

If we still increase the temperalure a little. the point F gets above
the liquidum surface and the saturation line of F under its own
pressure becomes exphased. We then obtain fig. 12 (I) in which the
vapour line may. or may not. intersect the saturation curve under
its own vapour pressure.

If we increase the temperature still a little more. the saturation
and the liquidum surface come into contact in a point; it is evident
that on the saturation surface of /7 this point does not coincide with
Zr, but is shifted towards the gas surface. We now have the highest
temperature at which the system /- L 4 G exists. In fig. 12 (I)
both lines contract {0 a point; both points he with /' on &
straight line.

V < ». We now 1magine the saturation surface of fig. 7 to have
been introduced in fig. 5 and in such a manner that the point /7
is situated above the liquidum surface. The section is then again a
saturation line of the substance F under its Own vapour pressure,
which surrounds the point F. In projection we, therefore, again
obtain fig. 7(I) or 11(I) with an exphased or circumphased correlated
vapour line which has shifted towards the side of the vapour surface.

On mmea.smg the temperature the liquudum and vapour surface
shift in an upweud direction but the saturation surface of [ shifts,
however, downwards. At a definite temperature, the minimum melt-
ing point temperature of 7 (point /) arrives at the Liquidum side
and it is now evident that the saturation line uuder its own vapour
pressure has shifted, starting from 7, from the gas surface. In pro-
jection we thus obtain the curves ¢ [/ of fig. 3 or 4. The corre-
lated vapour lire has, of course, shifted towards the side of the
gas surface and muay be either exphased or circumphased.

What will happen al a further increase of temperature will now
be readily understood.

In order to find the boiling point line
of the solutions saturated with Z, for a
definite pressure J/, we take the vapour
surface and the liquidum surface for this
pressure P; we then obtain fig. 8 in which
the temperaipre axis is taken perpendicu-
larly to the component (riangle ABC. The
hqmdum surfare isrepresenied by the drawn,
the vapour surface by the dotted lines, In
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order to act in accordance with our determined assumption that C
is the component with the highest vapour pressure the boiling point
of C has been taken lower than that of 4 and B. .

We now also take a polythermic-isobaric saturation surface of F.
At the assumed pressure P, there exists, for an entire series of
temperatures, at each temperature a definite saturation line of /.
If these are put on a temperalure axis, the polythermic-isobaric
saturation surface is formed which we can represent by fig. 7 in
which however, we must imagine P to be replaced by 7'; we will
call this figure fig. 7a. -

The figs. 7o and 8 apply only to one definite pressure; if this is
altered they change their situation and form. On increase of pressure
both surfaces of fig. 8 move upwards; the saturation surface of the
figure 7a can move upwards as well as downwards. This depends on
whether on melting, there is an increase or decrease of volume.
As however, a change in pressure causes, as a rule. a comparatively
small change in the melting point of a substance, the movement
of the saturation surface of the substance /' will be slower than that
of the two surfaces in fig. 8:

We now imagine the saturation surface of the fig. 7a to be intro-
duced in fig. 8 and in such a manner that the point & lies above
the liquidum side. The section is then the boiling point line of the
solutions saturaled with F'; the correlated vapour line has, as seen
from the figure, shified towards the vapour surface. A l)x'oj‘éé‘tion on the
component ftriangle gives a cirenmphased boiling point line of the
solutions saturated with /" and a circumphased and an exphased vapour
line. We thus again obtain the figures 7 (I) or 11 (I) in which
however, the arrows, indicaling the direction of inereasing tempera-
tures, must be supposed to point in tlie opposite direction.

On further increase in pressure, the point F first arrives at the
liquidum surface, then the liquidum surface comes inlo contact with
the saturation surface of [ from which follow the previously
described boiling point lines of 1ihe saturated solutions and their
correlated vapour lines.

In place of the saturation surface of F we could also have consi-
dered the vapour saturation surface of F and its movement in regard
to the vapour snrface of the system L G. We will refer later to the
vapour saluration surfaces of a solid substance, in connection with
another investigation.

We have already slafed above thal the vapour surface, when the
vapour contains {wo componenis only, reduces itself to a vapour
curve, and to a point when the vapour contains only one component,
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This causes thal many of the properties already meniioned may be’
deduced and expressed in a much more simple manner. I will refer
to this later when discussing the vapour pressures and boiling points
of aqueous solutions saturated with salts and double salts, which in~
some cases have been determined experimentally. ,
(70 be continued).

Chemistry. — “Zquilibria in ternary systems.” 11. By Prof.
SCAREINEMAKERS.

(Communicated in the meeting of Dec. 28, 19192).

[n the previous communications') we have assumed that in the
system liquid-vapour occurs neither a maximum or minimum,
nor a siationary peint; we have also limited ourselves to the appear-
ance of*two three-phase triargles.

We will now discuss first the case that in the ternary system
occurs a point with a minimum vapour pressure. .

Let us imagine that in fig. 1 (1) the liquidum line de¢ and the
vapour line d,e¢, of the heterogeneous region LG surround the sa-
.turation line of Z, so that we get a diagram as in fig. 1. The
saturation line of /7 is here surrounded by the liguiduni region L,
this by the heterogeneous region LG and this in turn by the vapour
region. All liquids saturated with # therefore occur at the stated
P and 7" in a stable condition.

On reduction of pressure, the liquidum region contracts so as to
disappear simultaneously with the heterogeneous region LG in a
point. This point represenis for the stated temperature, the liquid
and the vaponr which, at the minimum pressure of the system liquid
+ gas can be in equilibrium with each other.
This point may occur without as well as within
the saluration line of /. As at lower tempera-
tures the region I'L is generally large, butsmall
at temperatures in the vicinity of the melting
point of F. the said point will appear, at high
temperatures, usually without, and at lower iem-

Fig. 1. peratures as well within as withont the saturation
line of I .

We now first consider the case where the point with a minimum
vapour pressure falls ,outside the saturation line of I, or in other
words thal the liquidum and the helerogeneous region disappear in
a point outside the saturation line of I,

1) These Proc. p. 700 and 852,
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