## Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

## Citation:

Vries, H. de, On loci, congruences and focal systems deduced from a twisted cubic and a twisted biquadratic curve. III, in:
KNAW, Proceedings, 15 II, 1912-1913, Amsterdam, 1913, pp. 890-903

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

We will conclude this communication with the schematic $P I^{\prime}$ figure of the phosphorus; the connection between the unary and the -pseudo-binary systom will be treated in a following publication.

When the calculated critical temperature $422^{\circ}$ for liquid white phosphoras is correct about 18 armospheres follows from the vapour pressure line for the critical pressure. The critucal point is indicated by $h_{1}$, in the duawing. The vapour pressure line of molten red phosphorus exhibits probably a peculiarity that has never bcen met with as yet, viz. two critical points $k_{2}$ and $k_{2}$, the former of which is metastable.

It is of course also possible ceven probable that unmixing takes place in the psendo-system between $p$ and $q$, so in the metastable region. The point $\cdot k$, might, therefore, lie at even lower temperature and pressure than the point $k_{1}$. Possibly the continued investigation may give an indication with regard to this too.
It may finally be pointed out that when we apply Van der Waals's equation,

$$
\log \frac{p_{k}}{p}=f\left(\frac{T_{k}}{T^{\prime}}-1\right)
$$

and write

$$
\log p=-\frac{f T_{k}}{T}+C
$$

3,94 is found for the value of $f$.
This equation does nol represent the observed vapour pressure line as well as the former, the canse of this may be that $f$ is not constiant as has been found indeed with several substances.

Anorg. Chem. Laboratory of the University. Amsterdrm, Nov. 29, 1912.

Mathematics. - "On loci, congruences une" focal systems deduced from a twisted cubic and a twisted biqurdratic curve". IIl. By Prof. Hendrik de Vries.
(Communicated in the meeling of Novenber 30, 1912).
17. If we assume that the line $l$ itself is a ray of the complex without however belonging to the congruence deduced from $\Omega^{s}$, then the two surfaces $\boldsymbol{\Omega}^{\bullet 0}$ and $\Omega$ ' undergo consilerable modifications. The surface $\mathbf{N 2}^{00}$ has no lowering of order; inslead of the regulus, namely, which is the locus of the rays s conjugated to the points of $l$ we now have a quadratic conc (passing likewise through the cone.
vertices) whose vertex $P_{t}$ is the focus of $l$, becanse the two conjugated lines of $l$, which cross each other in general aud exactly therefore generate a regulus, now both pass through $P$; but $P_{l}$ does not lie on $\Omega^{6}$, because $l$ is a ray of the complex, but not of the congruence. A generatrix of the cone therefore intersects $\Omega^{0}$, as formerly a line of the regulus, in six points, from which ensues that $l$ now again is a sixfold line of the surface. And to a plane $\lambda$ through $l$ corresponds as formerly a twisted cubic throngh the cone vertices and which now passes moreover throngh $P_{l}$, because $l$ is a tangent of the complex conic lying in $\lambda$, but which now again intersects $\mathscr{\Omega}^{6}$, except in the cone vertices, in fonrteen points; thus in $\lambda$ lie 14 generatrices of the surface, so that this is indeed of order $6+1 t=20$. The curve $k^{23}$, the section of the cone with $\Omega^{1}$, has also 6 nodal points lying on $k^{3}$, so that $\underline{\Omega}^{20}$ contains 6 nodal generatrices.

The nodal curve of $\boldsymbol{\Omega}^{20}$ undergoes a very considerable modification as regards the points it has in common with $l$. Through such a point namely must go 2 generatrices of the surface lying with $l$ in one plane; but now $l$ is itself a ray of the complex and three rays of the complex can then only pass through one point when the complex cone of that point breaks up into two pencils; so the only points which the nodal curve can have in common with $l$ are the points of intersection of $l$ with the four tetrahedron faces.

These points which in $\$ 15$ we have called $S_{i}$ coincide with the points which were called $T_{2}^{*}$ in the same $\widehat{s}$. Let us assume the plane $l T_{1}$. As now again and for the same reason as before nine of the fourteen generatrices of $\Omega^{20}$ lying in this plame pass through $T_{1}$ ( $\$ 13$ ) the five remaining ones must pass throngh another point $T_{1}{ }^{3}$ lying in $\tau_{1}$ and whose complex conic breaks up into $\tau_{1}$ and the plane $T_{1}{ }^{*} l$; now however this point coincides with $S_{1}$. For the complex cone of $S_{1}$ likewise breaks up into two pencils, of which one lies in $\tau_{1}$, the second in a plane through $T_{1}$ " and $T_{1}$; now however, to this second pencil evidently belongs our ray $l$ and so indeed the complex cone of $S_{1}$ degenerates in this way into $\tau_{1}$ and a plane through $l$; so $S_{1}$ and $T_{1}{ }^{*}$ are identical. To $S_{1}$, regarded as a focus, a ray $s$ through $T_{1}$ is conjugated which lies at the same time on the quadratic cone, thus in other words the ray $P_{l} T_{1}$; the later intersects $\boldsymbol{\Omega}^{0}$ besides in $T_{2}$ in 5 more points and the rays $s$ conjugated to these are the 5 generatcices of $\Omega^{20}$ through $S_{1}=T_{1}^{* *}$ lying in the plane $l I_{1}$; the sixth generatrix through this point conjugated to $T_{1}$ lies in $\tau_{1}$, but not in the plane $l T_{1}$.
So we see that through $S_{1}$ pass five generatrices of $\Omega^{20}$ lying in the same plane; so the four points $S_{i}$ are $\frac{1}{2} .5 .4=10$-fold points
for the nodrl curve; this curve cannot have other points in common with $l$. So it cuts $l$ in four tenfold points (i. e. the 40 points of before have changed into four tenfold ones) and so it is again of order $40+91=131$.

Also the surface $\Omega^{\prime}$ undergoes considerable modifications as the conic lying in a plane 2 must now always touch the line $l$. The complex cone for a point $P$ of $l$ contains the ray $l$; the two tangential planes through $l$ to the cone coincide therefore; from which ensues that for each point $P$ of $l$ the two conics passing through it, coincide. The most intuitive representation of this fact is obtained by imagining instead of the puint of contact of a $k^{2}$ with $l$ two points of intersection lying at infinitesimal distance, if then on $l$ we assume three of such like points, then through 1 and 2 passes a conic and through 2 and 3 an other differing but slightly from it, so that really through point 2 pass two conics. The loci of the conics is thus now again a $\Omega^{4}$ with nodal line $l$, but this line has become a cuspitlal edge, i. e. whereas formerly an arbitrary plane intersected $\Omega^{4}$ along a plane curve with a nodal point on $l$ and only the planes throngh the four points $S_{c}(\$ 15)$ furnished curves with cusps, now every arbitrary plane of intersection contains a curve with a cusp on $l$ (and with a cuspidal taugent in the plane of the cons through that cusp). Furthermore we must notice that as the points $Z_{1}^{\prime *}$ coincide with $S_{1}$, the four nodal points $T_{1}$ will be found on the nodal line itself, thus forming in reality no more a tetraliedion proper, nevertheless the property of the simulaneous circumscription round about and in each other remains if one likes.
18. The curve of intersection of order eighty of $\Omega^{1}$ and $\Omega^{20}$ is agan easy to indicate; it consists of the line $l$ counted twelve times (for a cuspidal edge remans a nodal edge), and of a curve of contact of order 34 to be counted double ( $\$ 15$ ) which has with a plane $\lambda$ through $l$ fourteen points lying outside $l$ in common and therefore twenty lying on $l$; these last however can be no others than the four points $S_{u}$, for otherwise a generatrix of $\Omega^{20}$ would have to. tonch a $k^{2}$ of $\Omega^{4}$ on $l$, which could only be possible (as $l$ itself touches $k^{2}$ ) if a generatrix of $\Omega^{20}$ could coincide with $l$ which is as we know not possible. The curve of contact of $\Omega^{4}$ and $\mathbb{Q}^{20}$ passes thus five times through each of the four points $S_{\text {t }}$ which corresponds to the fact that five generatrices of $\Omega^{20}$ touch in $S_{l}$, the degenerated conic (viz. the pair of points $S_{l}, T_{l}$ ) lying in the plane $l T_{i}$.

The method indicated in $\$ 14$ to determine the number of torsal lines of the first kund undergoes no modification whatever; we can
however control this method here because we have to deal here with a cone instead of a regulus. The first polar surface of $P_{l}$ namely with respect to $\Omega^{6}$ is a $\Omega^{6}$ containing $k^{3}$ one time, and therefore cutting $\Omega^{6}$ along $k^{3}$ counted twise and a residual curve of order $2 \pm$, so that the circumscribed cone at the vertex $P_{l}$ is of order 24 : Now this cone cuts the quadratic cone [ $P_{l}$ ] in 48 edges, so 48 edges of $\left[P_{l}\right]$ touch $\Omega^{6}$ and therefore $k^{13}$. The number of torsal lines of the first kind is thns indeed 48, and that this same number must now be found in general follows from the law of the permanency of the number.

These numbers 6 and 48, as well as the number of points (namely 40) which the nodal curve of $\Omega^{20}$ has in common with $l$ can be controlled with the aid of the symmetrical correspondence of order 70 existing between the planes $\lambda$ through $l(\$ 16)$. To the 140 double planes $\delta$ belong, as we saw before the planes through $l$ and the nodal lines and those through $l$ and the torsal lines of the first kind, together appearing there at a number of $\breve{5} 4$, but representing 60 double planes. The nodal curve of $\Omega^{20}$ has with $l$ only the 4 points $S_{l}$ in common which however count for 10 each and which have the property that five of the six generatrices through each of those points lie in one plane; such a plane is thus undoubtedly a manyfold plane of the correspondence, the question is only how many single double planes it contains. Now there lie in the plane $l T_{1}$, e.g. 9 generatrices through $T_{1}$ cutting $l$ in different points; throngh each of the last pass five other generatrices, and so we find so far 45 planes conjugated to the plane $l T_{1}$.

Now we have moreover the plane through $l$ and the $6^{\text {th }}$ generatrix through $S_{1}$ (lying in $\boldsymbol{r}_{1}$ ); however by regarding, just as we have done at the beginning of $\$ 16$, a plane $\lambda$ in the immediate vicinity of $l T_{1}$ and in which thus five generatrices cut each other nearly in one point of $l$ we can easily convince ourselves that this plane counts for 5 coinciding planes conjugated to $l T_{1}$. To $l T_{1}$ are conjugated $45+5=50$ planes not coinciding with $l \tilde{\nu}_{1}^{\prime}$ and thus 20 planes coinciding with $l T_{1}$; i. e. just as in the general case a plann $\lambda$ through two generatrices cutting each other on $l$ counts for two double planes, sn here each plane $!T_{2}$ containing five such generatrices counts for $5 \times 4$ donble planes; so the four planes $l T_{i}$ represent 80 double planes, and they furnish with the 60 already found the 140 double planes as they ought to.

As by the transition to a ray of the complex all numbers have remained unchanged, the surface $\Omega^{20}$ contains now again 58 torsal lines of the $2^{\text {nd }}$ kind; the $4 \times 131=524$ points of intersection
of $\Omega^{4}$ with the nodal curve of $\Omega^{20}$ lie now however a little differently. The points $T_{1}^{\prime}$ remain 36 -fold for the nodal curve and they therefore furnish $4 \times 72=\mathbf{2 8 8}$ points of intersection, the 58 torsal lmes of the $2^{\text {nd }}$ kind give $\mathbf{5 8}$, the 6 nodal edges give $3 \times 6=\mathbf{1 8}$ other ones; the 4 points $S_{2}=T_{2}{ }^{*}$ however_absorb each of them 40 points of intersection. Let us namely imagine our figure variable and in particular $l$ continuously passing into a complex ray, we then see how the 4 points $T_{2}^{*}$ tend more and more to $S_{l}$, but at the same time how the 40 points of intersection of $l$ with the nodal curve group themselves more and more into 4 groups of 10 in such a way that each group is as it were alitacted by one of the points $S_{i}$; now each of those 40 points counts for 2 , each point $T_{1}^{*}$ for 20 points of those we looked for; so on the moment that $T_{2}{ }^{\text {in }}$ as well as the 10 points of the corresponding group coincide with $S_{\imath}$ this point counts for 40 , so the four logether for 160 and the sum of the forr numbers printed in heavy type is again 524.
19. More considerable are the modifications if finally we now assume that $l$ becomes a ray of the congruence; nothing is to be noticed at $\Omega^{4}$, as $l$ remains a ray of the complex, but the other locus becomes a surface $\Omega^{1 s}$, for which $l$ is only a fivefold line. The regulus of before is namely now again replaced by a cone $\left\lfloor P_{l}\right\rfloor$, but the vertex itself $P$ now lies on $\Omega^{n}$, becanse $l$ is a ray of the congruence, thus itself a generatrix. It even appears twice as a gencratix, for the cone cuts $\Omega^{\prime \prime}$ according to a $k^{22}$ which has now a.o. also a nodal poim in $P_{l}$ and to this nodal point the line $l$ corresponds twice. A generatrix of the cone $\left[P_{l}\right]$ cuts $\Omega^{0}$ in $P_{l}$ and in five other points; so throngh the corresponding focus on $l$ pass five generatrices not coinciding with $l$, i. e. I is a fivefold line.

To a plane 2 through $l$ a twisted cubic is conjugated containing the four vertices of the cones and $P_{l}$ and cutting $\Omega^{2}$ in 13 points more; so in a plane 2 lie besides $l 13$ generatrices, i. e. our surface is a $\boldsymbol{\Omega}^{18}$ of order 18 with a fivefold line $l$.

Among the generatrices of the cone $\left[P_{l}\right]$ there are two touching $k^{12}$ in $P_{2}$ and likewise among the iwisted cubics; the foci of the former are the points of intersection proper of $l$ with two generatrices comeiding with $l$, the planes conjugated to the latter being the connecting planes; thus two particular torsal planes and pinch points (see § 20 ).

The line $P_{l} T_{1}$ is a generatrix of the cone $\left[P_{l}\right]$ and it cuts $\Omega^{6}$ besides in these two pointe in four more; the corresponding four rays $s$ pass througl $S_{i}=T_{i}^{* *}$ and lie in the plane $l T_{i}$ whilst the
ray s conjugaled to $T_{l}$ lies in $\tau_{i}$, but not in $l T_{i}$, so the points $S_{i}$ are $\frac{1}{2} \cdot 4.3=6$-fold points for the nodal curve and others this carve can evidently not have in common with $l$. So it has 24 points united in 4 sixfold points in common with $l$, and as there are in a plane $\varepsilon$ through $l \frac{1}{2} .13 .12=78$ points not lying on $l$ the order of the nodal cuive now amounts to $24+78=102$. The number of nodal points of a plane section of $\Omega^{18}$ amounts thes now to $102+6+10=118$, and from this onsues for the class $18.17-$ $-2.118=70=\varepsilon \beta$; the formula $\varepsilon \delta=2 . \varepsilon \beta-2 . \varepsilon g$ fornishes therefore $\varepsilon \sigma=2.70-2.18=104$ torsal lines of both kinds.

The formula

$$
\varepsilon=p+q-g
$$

now again applied to determine the number of generatrices of the cone $[P\rceil$ touching $k^{12}$ and thus of the number of torsal lines of the first kind gives the following results. The plane of the condition $p$ cuts $h^{12}$ in 12 points; through each of these passes a generatrix of the cone cutting $\Omega^{8}$ besides in $P_{l}$ in four points more; so the number $p$ is equal to 48 , a and likewise $q$. The line of the condition $g$ cuts the cone in two points and through each of these passes a generatrix of that cone, on which lie besides $P_{l}$ five points of $k^{13}$; so $g$ is $=2.20$, and thus $\varepsilon=2.48-2.20=56$. Among these howerer are included the six nodal lines counted twice; the number of torsal lines of the first linad amounts thas to $56-2 \times 6=44$.

To control this we again consider the first polar suifface of $P_{l}$ with respect to $\Omega^{n}$, a $\Omega^{5}$ touching $\boldsymbol{\Omega}^{p}$ in $P_{l}$ and passing through $k^{3}$. The intersection with $\Omega^{1}$ consists therefore of $k^{3}$ counted twice and a residual curve of order $30-2.3=24$ which horvever is projected out of $P_{l}$ by a cone of order 22 ouly, because $P_{l}$ itself is a nodal point of that curve (for $\Omega^{0}$ and $\Omega^{a}$ touch each other in $P_{l}$; this cone has with the cone $\left[P_{l}\right] 44$ generalrices in common, and these tonch $k^{12}$.

The number of torsal lines of the $2^{\text {nd }}$ limed of $\Omega^{19}$ amounts to $104-6-44=54$.

The correspondence of the planes $\lambda$ through $l$ is now of order 52 with 104 double planes. For, in a plane 2 lie besides $l$ thirteen generatrices of $\Omega^{18}$ and through each of the 13 points in which these cut $l$ four others pass; so to each plane $24 \times 13=52$ others are conjugated. The double planes are 1. the planes through the 44 torsal lines of the first kind; 2. the planes throngh the 6 nodal edges, each counted twice; 3 . the 4 planes $l T_{i}$ each counted tivelve times, because in each such like plane 4 generatrices pass through the point $S_{1}$ (comp. § 18); so we find $44+2.6+4.12=104$ double planes.

And as regards finally the number of $4 \times 102=408$ points of intersection of the nodal curve with $\boldsymbol{\Omega}^{4}$, in the four points $l_{i}^{\prime}$ lie again 288 (comp. §18), in the pinch points of the torsal lines of the second kind 54 , in those of the six nodal edges 18 and in the four points $S_{l}$, which are sixfold for the nodal curve, 48 , together $288+54+18+48=408$.
20. The two particular pinch points on $l$ which we have found in the preceding $\$$ were the two foci of the ray of the congruence $l$ and the two torsal planes the two focal planes; for, in these points $l$ was rut by a ray of the congruence at infinitesimal distance. If henceforth with a slight modification in the notation the line $l$ is called $s_{0}$, the focus $P_{0}$, then $P_{0}$, hes on $\boldsymbol{\Omega}^{6}$ and it is in general an ordinary point of this surface. Let us assume the tangential plane in this point and in it an arbitrary line $t$ through $P_{0}$; then this has two conjugated lines crossing each other, and if therefore a point $P$ describes the line $t$, the ray $s$ of the complex conjugated to $P$ will generate a regulus to which also belongs our ray $s_{0}$, a ray of the congruence. As however $t$ is a tangent of $\boldsymbol{\Omega}^{i}$, a second generatrix of the regulus lying at infinitesimal distance from $s_{0}$ will belong to the congruence, however without cntting $s_{0}$. If however, we now imagine the complex cone at point $P_{0}$ and if we intersect it by the tangential plane, we find two lines $t$ which are at the same time lines $s$, viz. rays of the complex, and whose two conjugated lines cut each other. Now the lines $s$ conjugated to the points $P$ of $t$ will describe two cones containing also $s_{0}$, and having their vertices on $s_{0}$ whilst we know out of our former considerations that these vertices are nothing but the foci of the two rays $t$; and now $s_{0}$ will be cut in each of these foci by a ray of the congruence at infinitesimal distance; the two cone vertices are thus the foci of $s_{0}$. So: we find the foci of a ray $s_{0}$ of the congruence by determining the focus $P_{0}$ (lying on $\boldsymbol{\Omega}$ ) of $s_{0}$, by intersecting the complex cone of this point by the tanyential plane in $P_{0}$ to $\boldsymbol{\Omega}^{0}$, and by taking the foci of the two lines of intersection $t$. And the two focal planes are the tangential planes through $s_{0}$ to the complex cones of the foci.

If $P_{0}$ is a point of the nodal curve $k^{3}$ of $\Omega^{0}$ then $s_{0}$ is a double ray of the congruence ( $\$ 12$ ); the complex cone of $P_{0}$ intersects the two tangential planes of $P_{0}$ in twice two rays $t$, so that we now have on $s_{0}$ two pairs of foci and through $s_{0}$ two pairs of focal planes; and as the fucal surface of the congraence is touched by each ray of the congruence in the two foci, so each donble ray will touch the
focal surface four times. The four tangential planes are the focal planes, however in such a way that if one pair of foci is called $F_{1}, F_{2}$ the focal plane of $F_{1}$ is tangential plane in $F_{2}$ and reversely.

Let $P_{0}$ be a point of $k^{4}$, lying as a suggle curve on $\Omega^{0}$; then $s_{0}$ is the tangent to $k^{4}$ in $P_{0}$ and it belongs to the congruence. The complex cone of $P_{0}$ intersects the tangential plane in this point to $\Omega^{\circ}$ according to $s_{0}$ itself and an other generatrix; so of the two foci of $s_{0}$ point $P_{0}$ is one whilst the other is the focus of the second generatrix of the complex cone of $P_{0}$ lying in the langential plane; and of the two focal planes the osculation plane of $k^{*}$ in $P_{0}$ is one, because this really contains two rays of the congruence intersecting each other in $P_{0}$ and lying at infinitesimal distance (viz. two tangents of $k^{4}$ ); so it touches the focal surface in the other focus, i. e. the surface of tangents of $k^{4}$ which is of order 8 envelops the focal surface, and the curve $k^{4}$ itself lies on the focal surface.
The question how the cone vertices $T_{t}$ bear themselves with respect to the congruence, is already answered in $\S 11 ; \boldsymbol{\Omega}^{0}$ intersects the plane $r_{i}$ according to a plane $k^{6}$ and the rays $s$ conjugated to these form a cone of order 9 with the vertex $T_{i}$ and with three nodal edges and three fourfold edges, the latter of which coincide with the three tetrahedron edges through $T_{2}$.

Let us assume an arbitrary point $P$ of $k^{6}$, then to this a ray $s$ through $T_{i}$ is conjugated; now the complex cone of $P$ degenerates into a pair of planes, of which $\tau_{2}$ is one component, whilst the other passes through $T_{i}$, and this degenerated cone cuts the tangential plane in $P$ to $\Omega^{0}$ along the tangent $t$ in $P$ to $k^{\circ}$ and according to an other line $t^{*}$ through $P$. To that tangent the point $T_{2}$ is conjugater as focus, so that for each ray of the congruence through $T_{2}$ this point itself is one of the foci, the other being the focus of the line $t^{*}$.

In order to find the focal plane of the considered rays in the point $T_{2}$ we should have to know according to the preceding the complex cone of $T_{i}$ which is in first instance entirely indefinite; let us however bear in mind that in the general case that complex cone is at the same time the locus of the ray $s$ conjugated to the points of the tangent $t$; then in this case also we can have a definite cone, viz. the cone which replaces the regulus if the line $l$ passes into a complex ray $s$, and which contains in general the four cone vertices and which will contain here, where $T_{1}$ itself is the cone vertex, the three tetrahedron edges through this point. On this cone lie the two rays $s$ conjugated to the two points of $k^{0}$ lying. at infinitesimal distance from each other on $t$, and the plane through these is the focal plane of our ray $s$ in $T_{1}$; but those edges of the qua-
dratic complex cone lying at infinitesimal distance lie of course also on the cone of order 9 (see above); so we can say more briefly that for each ray of this cone $I_{1}$ is one of the foci and the tangential plane to the cone is one of the focal planes.

Each ray of the congruence throngh $T_{2}$, so each generatrix of the cone of order nine with this point as vertex, must have in $P_{2}$ two coinciding points in common with the focal surface; so $T_{2}$ is for the focal surface a naanifold point, however without the cone of order 9 being the cone of contact; for the tangential planes of this cone touch the focal surface in the foci of its generatrices not coinciding with $T_{2}$; the cone of contact in $T_{2}$ is enveloped by the focal planes of this last category of foci.
21. Over against the question which complex rays through $T_{2}$ belong to the congruence, is the other one which complex rays out of $\tau_{2}$ belong to the congruence. In the preceding we have repeatedly come across these rays. Indeed, any surface $\Omega^{20}$ formed by the congruence rays which cut a line $l$ or a complex ray $s$, and any surface $\Omega^{15}$ formed by the congruence rays which cut a congruence rays contained such a ray as we proved above; we shall now show that all these rays form a pencil. To that end we imagine the tangential plane $\rho$ in $T_{2}$ to $\Omega^{\prime \prime}$ and we cut it according to the line $r$ by $\tau_{2}$. We now saw in the preceding that the rays $s$ conjugated to the points of $\tau_{1}$ form a quadratic cone with $T_{2}$ as vertex and containing the three tetrahedron edges through $T_{1}$; if the base curve of this cone lying in $\tau_{i}$ is $k^{3}$, then reversely the points of $k^{2}$ are the foci of the rays $s$ lying in $o$ and passing through $T_{1}$, for the rays $s$ conjugated to the points of a line pass through the focus of that line and the ray $s$ conjugaled to a point of $\tau_{i}$ passes moreover through $T_{i}$.

If a point $P$ describes one of the rays of the pencil [ $T_{1}$ ] lying in $o$, say $s_{0}$, then the rays $s$ conjugated to the points $P$ form the complex cone of the focus $P_{0}$ of $s_{0}$, which point lies on $k^{2}$; this complex cone breaks up however into a pair of planes, viz $r_{2}$ and a plane throngh $P_{0}$ and $T_{1}$, and the line of intersection $t_{l}$ of these two planes is the ray of the congruence conjugated to $T_{1}$, in as far as this point is regarded as a point of the ray $s_{0}$; so the question is how the rays $t_{2}$ bear themselves when $s_{0}$ describes the pencil $\left[T_{i}\right]$ or, what comes to the same, how the planes $T_{i} t_{i}$ bear themselves in those circumstances. We slatl try to find low many of those planes through an arbitrary ray $s_{1}$ pass through $T_{1}$. In each arbitrary plane through $s_{1}$ the complex conic breaks up into two pencils; one has the vertex $T_{i}$, the other a point $T_{i}$; lying in $\boldsymbol{\tau}_{i}$.

In each plane through $s_{1}$ lies however one such point $T_{2}{ }^{2}$; ; but if $S_{1}$ is the point of intersection of $s_{1}$ with $\boldsymbol{\gamma}_{l}$, then also the complex cone of $S_{1}$ breaks up into a pair of planes of which one component is of course again $\tau_{l}$, the other being a plane through $S_{1} T_{2}$; so $S_{1}$ is itself a point $T_{2^{*}}$, and the consequence of this is that $T_{i^{*}}$ describes a conic $k^{* 2}$ which passes in the first place through $S_{1}$ and in the second place, as is easy to see, through the three cone rertices lying in $\boldsymbol{r}_{i}$; for if a plane throngh $s_{1}$ passes also through a second vertex, then the complex conic breaks up into the two pencils at $T_{i}$ and at that second cone veriex.

All rays through a point $T_{i^{*}}$ of $l^{w 2}$ cutting $s_{1}$ are according to the preceding rays of the complex; from this ensucs reversely that the complex cones of all points of $s_{1}$ in $\tau_{i}$ have the same base curve, namely $h^{w^{3}}$. If now the degenerated complex cone of a point of $h^{2}$ is to pass through $s_{1}$, then that point must evidently lie also on $k^{\kappa 2}$ and of such points there exists apart from the three cone vertices lying in $\tau_{i}$, only one; in the pencil [ $T_{i}$ ] there is thus only one ray for which the (degenerated) complex cone of its focus passes through an indicated ray $s_{1}$, i.e. the second components of the complex cones of the foci of the rays of the pencil [ $T_{2}$ ] form a pencil of planes, or the rays of $\boldsymbol{\tau}_{i}$ belonging to the congruence form a pencil.
The axis $a$ of the pencil of planes must of necessity cut the curve $k^{2}$; for, if this were not so. then an arbitrary plane through $a$ would cut $k^{2}$ in two points, and then the complex curve in that plane would break up into three pencils (among which one at $T_{2}$ is always included) instead of into two. This objection does not exist when a cuts the curve $\bar{k}^{2}$ in a point $A$; for then each plane through $a$ culs $k^{2}$ besides in $A$ in only one point $T_{i^{*}}$ more, and $A$ itself is a point $T_{2}{ }^{\text {a }}$ for the plane through $a$ which touches $k^{3}$. The awis a is simply that line which las the property that the complex cones of its points have as contmon base curve the conic $h^{2}$ itself; for, for each plane through $a$ the point $T_{i}^{\prime} l_{j}$ ing on $k^{2}$ must lie at the same time on $k^{* 2}$, so $k^{2}$ and $k^{* 2}$ coincide.
For each ray of the pencil [ $A$ ] lying in $\tau_{2}$ point $A$ is evidently one focus and $\boldsymbol{r}_{l}$ the corresponding focal plane, for each ray is cui in $A$ by an adjacent one of the pencil; the other focus is the second point of intersection $T_{l}{ }^{\text {* }}$ with $k^{3}$ and here the second focal plane passes through $T_{i}$. The focal suriface must therefore touch $\mathrm{r}_{i}$ alony the conic $k^{3}$; the point $A$ itself is however a singular point, for here any plane through $a$ is a tangential plane.

For the tangent in $A$ to $l^{2}$ the two foci coincide evidently with
$A$; the focal planes, however, do not coincide, for one is $\tau_{1}$ and the other connects the tangent to $T_{i}$.
22. Order and class of the focal surface can be immediately determined by means of two dualistically opposite equations of Schublert, viz.

$$
\varepsilon \sigma p^{2}=\sigma p g_{c}+\sigma p h_{e}-\sigma \hat{\sigma p e},
$$

and

$$
\left.\varepsilon \sigma e^{2}=\sigma e a_{p}+\sigma e h_{p}-\sigma \widehat{p e}^{2}\right) .
$$

We conjugate to each ray $g$ of the congruence all other rays as rays $h$, we then obtain a set of $\infty^{4}$ pairs of rays and we can apply to these the two equations just quoted. The symbol $\sigma$ indicates that the two rays of a pair must intersect each other, $\varepsilon$ that they lie at infinitesmal distance and $p^{2}$ that the point of intersection $p$ must lie in two planes at a time, thus on an indicated line; so $\varepsilon \sigma p^{2}$ is evidently the order of the focal surface. The condition $\sigma p g_{e}$ indicates the number of pairs which cut each other, whilst the point of intersection $p$ lies in a given plane and the ray $g$ likewise in a given plane, now there lie in a given plane 14 rays of our congruence, thus 14 rays $g$; each of these intersects the plane of the condition $p$ in one point and through each of these pass 5 more rays of the congruence, $\sigma p g_{e}$ is therefore $14 \times 5=70$, and $o p h_{e}$ means the same and is thus likewise $=70$.

With ope we must pay more attention to the point of intersection of the two rays and to the connecting plane than to the rays themselves; $\overline{\sigma p e}$ indicates namely the number of pairs of rays which cut each other and where the point of intersection lies on a given line and at the same time the connecting plane passes through that line; this number is evidently the third of the three characteristics of the congruence, thus the rank, however multiplied by 2 because each pair of rays of the congruence represents 2 pairs $g h$; so ope is $=80$, so that the order of the focal surface is equal to $70+70-80=60$.
$\varepsilon \sigma e^{2}$ indicates the number of pairs of rays at infinitesimal distance whose connecting plane passes through 2 given points, so through a given line, i. e. the class of the focal surface. Now $\sigma e q_{p}$ indicates the number of pairs of rays whose connecting plane passes through a given point, whilst also the ray $g$ passes through a given point. So there are 6 rays $g$ and in the plane through one of those ray's and the point of the condition $e$ lie besides $g$ still 13 others; $\sigma e g_{p}$

1) Schubert l. c. page 62.
and ooh $h$, are thus each $=6 \times 13=78$, and ope was 80 , so the class of the focal surface $=78+78-80=76$.

I may be permitted to point out in passing a slight inaccuracy committed by Schubert on page 64 of his "Kalkil" where he gives formulae for order and class of the focal surface of a congruence taking the number ope, called by him $c$, only once into account; in Pascair-Scimepp's well known "Repertorimm" vol. II, page 407 we find indicated the exact formulae, with the rank number $r$ counted twice.

In a congruence of rays appear in general $\infty^{1}$ rays whose two foci coincide; these too are easy to trace in our congruence. For, according to $\$ 20$ in order to find the foci of an arbitrary rar so we must apply in the focus $P_{0}$ the complex cone and the tangential plane to $\Omega^{s}$ and intersect these by each other; the foci of the lines of intersection are the foci of $s_{0}$ and the tangential planes through. $n_{0}$ to the complex cones of the foci the focal planes. So as soon as the complex cone of $P_{0}$ touches the tangential plane $\Omega^{\prime \prime}$ along a line $t$, the two foci of $s_{0}$ will coincide in the focus of $t$ and the focal planes will coincide in the tangential plane through $s_{0}$ to the complex cone of the only focus.

The points $P_{0}$ whose complex cones tonch $\boldsymbol{\Omega}^{6}$ are to be found again with the aid of Schubert's "Kalkul". We conjugate the two rayss. along which the complex cone of a point $P_{0}$ of $\Omega^{6}$ cuts the tangential plane in that point, to each other; so we obtain in that manner a set of $\infty^{3}$ pairs of rays and we apply to it the formula:

$$
\left.\varepsilon \sigma p=\sigma g_{e}+\sigma h_{e}+\sigma p^{2}-\sigma p e^{1}\right)
$$

The left member namely indicates the number of coincidences whose points of intersection lie in a given plane, that is thus evidently the order of the curve which is the locus of the points $P_{0}$ to be found. $\sigma g_{c}$ indicates the number of pairs of rays whose component $g$ lies in a given plane; this plane euts out of $\boldsymbol{\Omega}^{n}$ a plane curve $\lambda^{n}$ which possesses no other singularities than three nodes and which is so of class $6.5-2.3=24$, and all the complex rays in this plane envelop a conic; so there lie 48 complex rays $g$ in this plane touching $\Omega^{t}$. If we apply in one ot the points of contact the tangential plane to $\Omega^{\prime \prime}$, then there lies in it one ray $h$; so $\sigma y_{c}$ is 48 and likewise of course $\sigma h_{e}$.

With $\sigma p^{2}$ we must trace the number of pains of rays whose points of intersection lie in two given planes at the same time, thus on a given line; this line intersects $\Omega^{\prime \prime}$ in six points and in the tangential

[^0]Proceedings Royal Acad. Amsterdam. Vol. XV.
plane lie two rays of the complex cone and thus also two pairs ght, because each of the two rays cin be either $g$ or $h$; so $\sigma p^{2}=12$. For ope finaily the point of contact must lie in a given plane, the tangential plane must pass through a given point; so we can either apply the tangential planes in the points of a plane section of $\boldsymbol{\Omega}^{\mathbf{6}}$ and determine the class of the developable enveloped by it, or we can construct the circumscribed cone and calculate the order of the curve of contact. The latter is the simplest; for the curve of contact is the intersection of $\Omega^{6}$ with the first polar suriace of the vertexof the cone and therefore of order $6.5-2.3=24$, because the first polar surface contans the nodal curve $k, \quad$ and the latter counted twice separates itself from it. But the iwo complex rays through the point of contact and in the tangential plane count again for two pairs and so ope $=48$, from which eusues $\varepsilon \sigma p=48+48+12-48=60$ : so there lies on $\Omega^{6}$ a certuin curve $k^{\circ 0}$ of order 60 having the property that the rays s conjuyated to its points have coinciding foci and focal planes.

We can ask how the curve $k^{60}$ will bear itself with respect to the four cone vertices $T_{t}$, where the complex cone becomes undefinite. We now know however out of $\$ 21$ that in the plane $\tau_{\imath}$ only one ray woth coinciding foci lies, viz. the tangent in $A$ to $h^{2}$, so $k^{50}$ will pass once through the four cone vertices. That for that tangent in $A$ to $h^{2}$ the iwo focal planes do not coincide, is an accidental circumstance, which is further of no more inportance; this resull was based namely on the supposition that through an edge of the cone passes only one tangential plane of that cone; however, for the point $A$ the complex cone breaks up iuto a pair of planes whose line of intersection is just the tangent in $A$ to $k^{2}$, the tangential plane through that line to the cone is thus in firstinstance indefinite.
The rays of the congruence with coinciding foci determine a scroll of which we will finally determine the order. To that end the scroll must be intersected by an arbitrary line and we now know that all rays of the congruence meeting a line $l$ form a regulus $\boldsymbol{\Omega}^{20}$ and that the foci of those rays are stituated on a curve $h^{12}$ lying on $\mathbb{Q}^{6}$ and passing singly through the 4 cone vertices. It is clear that to a point of intersestion of $\lambda^{23}$ and $k^{40}$ a ray corresponds with coinciding focl and. cutting $l$. with the exception of the cone vertices; for, to $T_{i}$ is conjugated as regards $h^{60}$ the langent in $A$ to $k^{2}$, on the other hand as regards $k^{13}$ the connecting line of the point of intersection of $/$ and $r_{c}$ with $A$, as we now know. Now $\mathrm{l}^{12}$ is, as we know, the complete intersection of $\underline{\Omega}^{2 n}$ with a regulus; so the complete number of points of intersection of $k^{13}$ and $k^{n 0}$ amounts to 120 . If we set apart
from these the four cone vertices, we then tind as result that the rays of the congruence with coinciding foci form a regulus of order 116. The curve $l^{n 0}$ intersects $\tau_{t}$ besides in the three cone vertices lying in this plane in 57 points more, lying of course on the section $h^{8}$ of $\boldsymbol{\Omega}^{s}$ and $\tau_{i}$; to each of these points a ray throtigh $T_{2}$ is conjugated with coinciding foci; the 4 cone vertces are thus for the surface $\underline{Q}^{1: 6}$ 57-fold points.

Physics. - "Some remarkable relations, either accurate or approximative, for different substances." By Prof. J. D. van der Walis.
(Communicated in the meeting of November 30, 1912).
In a previous communication (June 1910 These Proc. XIX p. 113) I pointed ont the perfectly accurate or approximative equality of the ratio of the limiting. liquid density to the rritical density, and the ratio of the critical density to that which would be present for $T_{c_{1}}$, $p_{c}$ and $v_{c r}$, if $\frac{p v}{R T}$ should always be equal to 1 . With the symbols used there

$$
2(1+\gamma)=r s
$$

I have added the factor $r$, which must then be equal to 1 or must differ little from 1.
The rule given there has attracted some attention. For first of allDr. Jran Timmermans has informed me that he has found this rule entirely confirmed for six substances, for which the observations made were perfectly trustworthy For a seventh substance there was a great difference, but he thought that for this real association might perhaps occur, as is the case for acetic acid ${ }^{1}$ ). Besides this rule has also been adopted by $\mathrm{K}_{\text {ambringer }}$ Onnes and $\mathrm{K}_{\mathrm{bes} \text { om }}$ in their recent work for the Encyklopädie: Die Zustandsgleichung. The rule is indeed apt to rouse. some astonishment, because it pronounces the equality batween two quantities, which, at least at the first glance. have nothing in common.

It is to be expected that this approximative equality will have to be explained by the way in which the quantity $b$ varies with $v$; but it is seen at the same time that perfect equality cannot be put

[^1]
[^0]:    ${ }^{1}$ ) Sohubert l. c. page 62.

[^1]:    ${ }^{1}$ ) The numerical values have been communicated in the "Scientific Proceedings of the Royal Dublin Society", October 1912.

