Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

J. de Vries, On the correspondence of the pairs of points separated harmonically by a twisted quartic curve, in:
KNAW, Proceedings, 15 II, 1912-1913, Amsterdam, 1913, pp. 918-921

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Mathematics. - "On the correspondence of the pairs of points separated harmonically by a twisted quartic curve." By Prof. Jan de Vries.
(Communicated in the meeting of November 30, 1912).
§ 1. We indicate by P and Q two points, lying on a chord of a twisted quartic curve of the first kind, separated harmonically by this curve ϱ^{4}. As any point P lies generally on two chords, in the correspondence (P, Q) to any point P wo points Q are conjugated.

If F moves along a line l, Q describes a curve λ° of order six. For any plane Δ through l cuts Q^{4} in forr points S_{k} and contains therefore six points $Q_{k l}$, where $Q_{k l}$ lies on a chord $S_{k} S_{l}$ and is harmonically conjugated to the points $P_{k l}$ common to that chord and l. If l is an arbitrary line, Q never lies on l when A rotates about l.

The line $Q_{13} Q_{23}$ is separated harmonically from l by $P_{12} S_{3}$ and $S_{1} S_{2}$. By assuming a position for A in which S_{1} and S_{2} coincide with Q_{12} we find for $Q_{13} Q_{23}$ a tangent of λ^{6} separated harmonically from l by $P_{12} S_{1}$ and $P_{12} S_{3}$, whilst an other tangent of i^{5} takes the place of $Q_{14} Q_{24}$. So each of the eight tangential planes of ρ^{1} contains two tangents of λ^{6}; so the rank of this curve is sixteen.

Moreover we find that λ° has eight points in commion wilh ρ^{\prime}.
§2. The line p connecting the two points Q, Q^{\prime} conjugated to P describes a regulus A^{2} if P moves along l. For p is the polar line of P with respect to g^{i}, i. e. the intersection of the polar planes of P with respect to any two quadratic surfaces through Q^{4}, and these polar planes describe two projective pencils.
-Let us now consider one of the two lines p cutting l. The corresponding point P bears two chords $S_{1} S_{2}$ and $S_{3} S_{4}$ lying in the plane $A=l p$. The points Q_{12} and Q_{31} lie on μ, the points Q_{13}, Q_{23}, Q_{11}, Q_{24} lie on a line m through P harmonically separated from l by the chords $S_{1} S_{2}$ and $S_{3} S_{4}$. As λ^{4} lies on the regulus A^{2}, m is a line of A^{2}. Any tangential plane of A^{3} contains thereforc a quadrisecant of λ^{6} and beth the reguli of A^{2} are arranged by $\lambda^{6} \mathrm{in}$ a correspondence $(2,4)$. Evidently the quadrisecanis q are the polar lines of l with respect to the quadratic surfaces ihrough φ^{1}.
§3. If we assume for l a chord of 6^{4}, the locus of Q breaks up into four parts, i. e. the chord l itself, the tangents r and r^{\prime} in the points R, R^{\prime} common to l and $凶^{4}$, and a twisted culvic λ^{3}. The polar line p now connects a point Q of I with the point Q^{\prime} of the second chord k passing throngh P. This line describes a regulus
having with A^{2} the line l in common. So the locus of $Q^{\prime}=k$ is a curve λ^{3} throngh l_{i} and R^{\prime}, as l is to have two points in common wilh it and R and R^{\prime} correspond amongst other points with themselves; the curves λ^{3} and ϱ^{4} have four more points in common.
$\$ 4$. If l is a misecant of ρ^{1} in R, the locus (Q) degenerates into the tangent r and $a i^{5}$. Any plane through l contains besides R three points Q; of these two must be combined with R, if the plane contains the tangent r. The quadrisccants q of l become here trisecants; for r rests on each of the polar lines q of $l(\$ 2)$. The plane q tonches o^{4} in R and contains therefore two points Q united in R. In relation with the results obtained we conclude from this that by the correspondence (P, Q) to a unisecant of a^{4} a twisted curve of order fice is conjugated having a node in the point common to the unisecimt and ρ^{4}, the nodal tangents lying in the plane l.

So the curve is of rank ten. Through l pass six common tangential planes of ρ^{4} and λ^{5}.
$\$ 5$. The vertices T_{k} of the four quadratric cones containing g^{\prime} are singular points of the correspondence (l, Q). For T_{1} bears ∞^{1} chords and the corresponding points Q lie on the conic τ_{1} common to the polar plane $\tau_{1}=T_{2} T_{3} T_{4}$ of T_{1} and the quadratic cone with T_{1} as vertex.

To the line $T_{1} T_{2}$ as locus of points P correspond in the first place the two conics $\tau_{1}{ }^{2}$ and $\tau_{2}{ }^{\text {a }}$ and moreover the line $T_{3} T_{1}$ counted twice. For the points S_{k} in any plane through $S_{1} S_{2}$ form a complete quadrangle of which T_{1} and T_{y} are diagonal points; in the third diagonal point Q_{13} and Q_{2}, coincide, whilst of the remaining four points Q two lie in \boldsymbol{r}_{1} and two in τ_{2}. So to any point of $T_{1}^{\prime} T_{2}$ correspond two points of $T_{3} T_{4}$ and inversely.

If l contains the point T_{1} only, the six points Q lying in a plane). through l consist of two points in \boldsymbol{r}_{1} and on $\boldsymbol{\tau}_{1}{ }^{2}$ and of four points lying on the line common to λ and the polar plane of l with respect to the cone projecting ρ^{1} out of T_{1}. Then the curve (Q) breaks up into the conic $x_{1}{ }^{2}$ and a plane carve λ^{\prime}. In the two tangential phanes of the cone passing through l the two points Q lying on $\tau_{1}{ }^{4}$ coincide with two of the remaining four in a point of intersection of $r_{1}{ }^{2}$ and λ^{1} where the latter is touched liy the edge of contact.
$\$ 6$. Let us now consider the surface of the points Q corresponding to the points P of a plane I. If S_{k} are the points common to $I I$ and g^{4}, the six lines $S_{L} S_{l}$ form the intersection of $I I$ with the
locus under discussion. So it is of order sir. As it contains at the same time the lines touching ϱ^{4} in S_{k}, these points are nodal points. To the two points of $\tau_{2}{ }^{2}$ lying in $I I$ corresponl iwo points Q coinciding with T_{k}, whilst to the point of II lying on $T_{k} T_{i}$ two points on $T_{m} T_{n}$ correspond. From this ensues that the four points T have to be also nodes of Π^{0}.

So to a plane corresponds a surface of order six with eight nodes and ten lines.
§7. Let us now consider the correspondence between two points P, Q separated harmonically by a twisted quartic curve of the second kind σ^{4}. As P bears three chords of σ^{4}, it is conjugated to three points Q. To the points P of a line l correspond the points Q of a twisted curve Λ^{6}; for each plane through l contains six points Q.

The three points Q corresponding to P lie in the polar plane of P with respect to the quadratic surface H^{3} through σ^{4}. The plane Π rotates about the polar line l^{\prime} of l, if P moves along l. So l^{\prime} is a trisecant of λ^{6}.

The scroll of the chords of σ^{4} cutting l is of order nine; so nine of these chords also intersect l^{\prime}. To these nine belong the two trisecants of σ^{4} cutting l, each of which represents three chords; they have to meet l^{\prime}, as they lie on the hyperboloid H^{2} and are at the same time trisecants of λ^{6}. The remaining three chords cutting l and l^{\prime} determine the three points Q on l^{\prime}.
§8. Each of the six tangential planes of σ^{4} passing through l contains a point and two tangents of.6; so this curve is of rank twelve and rests in six points on σ^{4}. By $S_{l c}$ we represent the points of σ^{4} lying in a plane drawn through l; the chord $b=S_{1} S_{2}$ is paired to the chord $b^{\prime}=S_{3} S_{4}$ and now we consider the correspondence between the points P^{\prime} and P^{\prime} in which b and b^{\prime} intersect l. As P bears three chords we find a $(3,3)$. If b and b^{\prime} intersect l in the same point P, only the third chord through P furnishes a point P^{\prime} not coinciding with P; from this ensues that the coincidencies of the (3,3) coincide by two in a double coincidency. So through l three planes pass for which b and b^{\prime} intersect in l; the line l separating l harmonically from b and b^{\prime} then contains four out of the six points Q, the remaining two lying on b and b^{\prime}.

So the curve λ^{6} admits three quadrisecants.
§ 9 . Let l be a chord of σ^{4} and S_{1} and S_{2} the points it has in common with 0^{4}. Through any point P of l pass two more chords
b, b^{\prime} of σ^{4}. So the locus of the points Q lies on a cubic scroll A^{3} with double line l.
In the plane $b l$ two points Q coincide in S_{1}, two other ones in S_{2}, whilst Q_{12} lies in l and Q_{34} in b. If P moves along $l, q=Q_{12} Q_{34}$ describes a cubic scroll \boldsymbol{D}^{3} with double line l; for through Q_{12} pass two lines q, q^{\prime} to the points Q_{34} of the chords b, b^{\prime} concurring in the point P corresponding to Q_{12}.

The scrolls $\Lambda^{3}, \boldsymbol{\Phi}^{3}$ have the trisecants t_{1}, t_{2} of σ^{4} passing through S_{1} and S_{2} in common. For if P coincides with S_{1}, t_{1} becomes a chord b and, as Q_{12} coincides then with S_{1}, at the same time a line q.

As l is nodal line for both scrolls, these surfaces have still a twisted cubic λ^{c} containing the points Q_{34} in common. In the planes touching σ^{4} in S_{1} and S_{2} the point Q_{34} coincides with the point of contact; so $S_{1} S_{2}$ is a chord of λ^{3}. This curve intersects σ^{4} in the two points the tangents of which intersect $S_{1} S_{2}$; it has for chords the single director lines of the scrolls Δ^{3}, Φ^{3}.

So by the transformation (P, Q) the chord l passes into the system consisting of l itself, the tangents s_{1}, s_{2} and a twisted cubic.

Evidently a trisecant t is transformed into that line to be counted thrice and the langents in the three points it has in common with σ^{4}.
If l touches σ^{4} in S_{13}, the scroll \mathscr{P}^{8} becomes a cone with nodal edge l. In the osculating plane of σ^{4} in $S_{12} q$ lies along l; so this plane is common tangential plane of \boldsymbol{A}^{3} and $\boldsymbol{\Phi}^{3}$, having still in common the triserant through S_{12}. The residual intersection λ^{3} touches in S_{12} the tangent of σ^{4}.
§ 10. If l is unisecant of σ^{4} in S the curve λ^{0} breaks up into the tangent s of a^{4} in S and a curve ι^{6}. The polar line l^{\prime} of l becomes chord of ι^{5}, s being one of the three chords cutting l and l^{\prime}. The plane $l^{\prime} S$ touches H^{3} in S and is therefore polar plane of $P \equiv S$; it contains the tangent s and the trisecant of σ^{4} on which S lies. Of the three variable points Q common to l^{5} and a plane through l^{\prime}, two coincide with S and only one lies outside S.

Any plane through l contains besides S three points Q and has therefore in S two points with λ^{5} in common. Also the plane $l^{\prime} S$ not passing through l has in S two points in common with λ°; so S is a node of λ^{5}. The plane $l s$ contains beside S only one point Q; so it passes through the nodal tangents of the node. So to a unisecant corresponds a twisted quintic with a node.

The curve is of rank eight, through l passing four common tangential planes of σ^{4} and ι^{5}.

