Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

W. van der Woude, On Steinerian points in connection with systems of nine [symbol]fold points of plane curves of order 3[symbol], in: KNAW, Proceedings, 15 II, 1912-1913, Amsterdam, 1913, pp. 938-946

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl) > 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Mathematics. — "On Steinerium points in connexion with systems of nine q-fold points of plane curves of order 3q." By Dr. W. VAN DER WOUDE. (Communicated by Prof. P. H. SCHOUTE).

(Communicated in the meeting of December 28 1912).

§ 1. In a former communication 1) has been indicated what is the locus of the point forming with eight given points a system of nine nodes of a non degenerated plane sextic curve; here will be treated a more general problem including the preceding one as a particular case.

To that end we remark that by nine arbitrarily chosen points D_1, D_2, \ldots, D_s a curve of order 3ϱ passing ϱ times through these points is determined: in general however this $C_{3\varrho}$ is a cubic curve counted ϱ times. So the problem we propose now is: "Eight points D_1, D_2, \ldots, D_s being given, to determine the locus of the point D_g under the condition that the nine points D_i can be ϱ -fold points of a curve $C_{3\varrho}$ not degenerating in the manner mentioned.

§ 2. As we shall find by and by this problem is very closely related to the following one: "Let B_1, B_2, \ldots, B_s be the base points of a pencil (3') of cubic curves, and u_s any curve of this pencil. On u_s lie (q^2 -1) points S each of which forms with B_s a Steinerian pair) of order q. To determine the locus of these points S, if u_s describes the pencil (β')".

§ 3. We start by treating the first of the two problems.

So the eight points D_1, D_2, \ldots, D_s are given and we have to determine the locus of the ninth point D_s satisfying the condition stated. In the quoted memoir the case $\varrho = 2$ has been treated; for convenience sake we repeat here the principal results.

Then we occupy ourselves with the case q = 3 before passing to

¹) W. v. p. Woupe. "Double points of a c_6 of genus 0 or 1 (Proceedings of Amsterdam, vol. XIII, p. 629)

Compare also Dr. V. SNIDER, "The involutorial birational transformation of the plane of order 17" (American Journal of Mathematics, vol XXXIII, p. 328).

²) Two points P and Q of u_3 form a Steinerian pair of order n, if it be possible to inscribe in u_3 one and therefore an infinity of closed polygons with 2n vertices, the sides of which pass alternately through P and Q. Literature: STEINER (Journal of Crelle, vol. XXXII, p. 182); KUPPER (Math. Ann, vol XXIV, p. 1); SCHRÖTER (Theorie der chenen Kurven dritter Ordnung. § 31). For the treatment by means of elliptic functions see CLEBSCH: Vorlesungen über Geometrie.

the general case of an arbitrary ρ . But we wish to give just now one theorem where ρ has already any arbitrary value :

"If D_1, D_2, \ldots, D_9 are q-fold points of a non degenerated curve C_{3p} of order 3q, these points are at the same time the base points of a pencil of curves of order 3q, each of which passes q times through D_1, D_2, \ldots, D_9 ".

For the proof it will suffice to remark, that the nine points lie on a cubic curve u_a ; so the pencil mentioned is represented by

$c_{3\rho}+\lambda u_{s}^{\rho}=0.$

§ 4. By D_1, D_2, \ldots, D_s we will henceforth denote arbitrarily chosen points; we represent by (β') the pencil of curves c_3 passing through them, by B_2 the ninth base point of this pencil. So the principal results, obtained for $\varrho = 2$, are the following:

I. "The locus of the point forming with D_1, D_2, \ldots, D_s a set of nine nodes of a non degenerated ') $c_{\mathfrak{s}}$ is a curve $j_{\mathfrak{s}}$ of order nine passing three times through D_1, D_2, \ldots, D_s ".

II. "This curve j_{α} is also the locus of the points corresponding with B_{α} in tangential point on the curves of pencil (β')".

III. "Let u_s be any cubic of (β') and c_s any sextic passing three times through D_1, D_2, \ldots, D_s . Then the line joining the last two points common to u_s and c_s will meet u_s for the third time in the tangential point T of B_2 on u_s ".

Before continuing our considerations we wish to correct the preceding communication. We have indicated there that B_g does not lie on j_g ; indeed this is so, but one of the proofs — the geometrical one — may give rise to difficulties. Therefore we once more prove here: B_g does not lie on j_g . To that end we consider j_g as the locus of the points on any curve of (β') corresponding with B_g in tangential point. Now B_g will be a point of j_g , if and only if one of these points coincides with B_g , which only can happen if B_g is a node for one of the curves of (β') . Of these nodes — the 12 so called "critical points" of the pencil — none however coincides with one of the base points, if — as it is the case here — eight of the base points have been chosen arbitrarily. So B_g does not lie on j_g .

§ 5. We now pass to the case q = 3.

We still denote by D_1, D_2, \ldots, D_s arbitrarily chosen points,

¹) Here by non degenerated is meant a curve not breaking up into a c_3 to be counted twice. In this manner is to be interpreted henceforth the expression non degenerated c_6 used now and then.

whilst u_3 , (3'), B_3 and T keep the signification assigned to them in art. 4. Now the question is to determine the locus of the point forming with D_1, D_2, \ldots, D_n a set of threefold points of a non degenerated c_3 .

In order to determine a curve c_s passing three times through D_1, D_2, \ldots, D_8 we can imply to it the condition of containing six arbitrary points. Of these six points however no more than two¹) may lie on u_3 ; then the last point common to u_3 and c_4 is determined inequivocally. We will show immediately how the latter point can be found; provisionally we start from any c_{n} with the eight given threefold points, cutting c_s in an arbitrarily chosen fixed point X. This c_{q} cuts u_{x} in two points more; the line connecting these two points has still a third point E with u_s in common; according to the Residual Theorem of SYLVESTER the latter point is a fixed point, i.e. independent from the chosen curve c_n passing through X. Now we first determine the point E; to that end we choose a c_0 breaking up into a curve v_{1} of pencil (β') and a curve c_{μ} passing twice through D_1, D_2, \ldots, D_8 and passing moreover through X. We have seen that this c_{a} cuts u_{s} in one point Y more, being collinear with X and T (§ 4, III); moreover u_3 and v_3 have B_9 in common. So the point E is the third point of intersection of the line YB_{a} and u_{a} .

If now we fix on u_3 two points X, X' and consider a curve c_9 with threefold points in D_1, D_2, \ldots, D_8 and cutting u_3 in X and X', then the last point of intersection of this c_9 and u_3 can be found as follows: we first determine in the manner indicated the point E; then the third point of intersection of the line EX' and u_3 is the point looked out for.

Remark. We have stated, that any c_{q} with $D_{1}, D_{2}, \ldots, D_{s}$ as threefold points meets u_{s} in three points more; evidently this does not hold if this c_{q} breaks up into two curves one of which coincides with u_{s} . In this case the residual curve of order six must be determined in such a manner that it admits on u_{s} nine nodes, eight of which lie in $D_{1}, D_{2}, \ldots, D_{s}$. So we fall back on the case q = 2, but we can discard this by requiring that D_{q} has been determined in such a way that the c_{q} under discussion does not break up, neither into a c_{s} to be counted thrice nor in two curves c_{s} and c_{g} , the latter of which admits a node in any of its points of intersection with the former.

¹) See e.g. SALMON FIEDLER: Höhere ebene Kurven, p. 23.

941

§ 6. It is now immediately clear that there are four points in which any $c_{\mathfrak{s}}$ with the threefold points $D_1, D_2, \ldots, D_{\mathfrak{s}}$ and passing through X can touch $u_{\mathfrak{s}}$, i.e. in any of the four points admitting E as tangential point; likewise that any $c_{\mathfrak{s}}$ with the threefold points $D_1, D_2, \ldots, D_{\mathfrak{s}}$ touching $u_{\mathfrak{s}}$ will cut this curve in X.

We now will try to determine X in such a way that it coincides with one of the four points of which E is the tangential point; in that case any c_{2} with threefold points in $D_{1}, D_{2}, \ldots, D_{s}$ and touching u_{3} in X, will have in X a third point in common with u_{3} .

Let us suppose that the point X has been determined so as to satisfy the condition mentioned; then we can describe in u_s closed hexagons the successive sides of which pass alternately through B_s and X. If we choose B_s as first vertex and P is the third point of intersection of B_sX and u_s , then there is a closed hexagon with the successive sides B_sB_sT , TXY, YB_sE , EXX, XB_sP , PXB_s (fig. 1).

So the points X to be determined are the eight points each of which forms with B_{a} on u_{a} a Steinerian pair of order three. ¹)

§ 7. We now choose one point out of these 8 and call it X_1 . If we then require that C_0 has threefold points in D_1, D_2, \ldots, D_8 and touches u_3 in X_1 , we can assume arbitrarily four more points K, L, M, N of this curve, which as we have seen above has in X_1 still a third point in common with u_3 . Provisionally we suppose L, M, N to be fixed points but K to describe a right line k through

¹⁾ That B_{θ} and the point X satisfying the imposed condition form on u_3 a Steinerian pair of order three can also easily be shown by representing the points of u_3 by means of an elliptic parameter. If β is the parameter value for B_{θ} and x that for the point X taken provisionally at random, we find for the values corresponding to T, Y and E respectively -23, $2\beta - x$ and $x - 3\beta$. So the condition that E be the tangential point of X is $3\beta \equiv 3x$. Chiefly for the cases $\rho = 4, 5, \ldots$ presenting themselves later on the use of this parameter proves to be very convenient. Compare GLESCH: Vorlesungen über Geometric (p. 615).

 X_1 different from the tangent to u_1 in X_1 ; then the C_2 describes a pencil, one curve of which passes through any point of k. The coincidence of K with X_1 then furnishes a C_2 having in X_1 three pointsin common with u_{s} and two points with k; so this C_{s} has a node in X_1 and one of its branches touches u_s . If now we allow L to move along LX_1 to X_1 and afterwards M along MX_1 to X_1 , we generate .a $C_{\mathfrak{q}}$ having still threefold points in D_1, D_2, \ldots, D_8 , now admitting a ninth threefold point in X_i and passing moreover through an arbitrarily chosen point N (compare § 3). So the point X_1 is a point of the curve j_x under discussion. Therefore :

The curve j_x cuts any curve of (3') besides in the base points in 8 points more. It is at the same time the locus of the points forming with B_{α} on the curves of (β) a Steinerian pair of the third order.

§ 8. In order to determine the curve j_i more closely it is necessary to know the order of multiplicity of the points D_1, D_2, \ldots, D_8 on it, i. e. how many times each of these points happens to form with B_{α} a Steinerian pair of order three on a curve of (β') . Let u_{α} (fig. 2) be once more an arbitrary curve of (β') ; then we project B_{2} out of D_{2} on u_{3} (i. e. we determine the third point A_{1} common to $D_2 B_3$ and u_3), from this point A_1 we project D_1 on u_3 into A_3 , from A_2 we once more project B_2 on u_3 into A_3 and so on. alternately projecting B_{a} and D_{1} . Then we allow u_{a} to describe the pencil (β') and determine the loci of the points A_1, A_2, \ldots, A_n ; then every coincidence of $A_{\mathfrak{s}}$ with $D_{\mathfrak{s}}$ points to a curve out of (β') on. which B_{2} and D_{1} form a Steinerian pair of order three.

So we find for the locus of

 A_{1} : the line D_{2} B_{3} ;

 A_1 : a C_1 with a double point in D_1 , not passing through D_2 and B_{q} but cointaining D_{s} , D_{4} ..., D_{s} ; A_s : a C_7 with an ordinary point in D_1 , a threefold point in D_{2} , double points in D_3 , D_4 . . ., D_8 , a fourfold point in B_{s} ; A_4 : a C_{12} with a sixfold point in D_1 , a threefold point in D_2 , fourfold points in D_s , D_4 ..., D_s , a double point in B_{n} ; $A_{\mathfrak{s}}$; a $C_{\mathfrak{l}\mathfrak{s}}$ with a fourfold point in $D_{\mathfrak{l}}$, a sevenfold point in D_2 , sixfold points in D_3 , D_4 ..., D_8 , a ninefold point in $B_{\mathfrak{g}}$;

We prove this as follows. It goes without saying that the locus of A_1 is the line D_2B_p . Through any point A_1 of this line on ecurve u_3 of (β') passes and this curve is cut by A_1D_1 for the third time in A_2 . In D_1 we draw the tangent to u_3 and we indicate by A_1' the point common to this tangent and D_2B_q . Now if u_3 describes the pencil (β') it will happen twice that A_1 and A_1' coincide; in each of these two cases A_2 coincides with D_1 , so that D_1 is a double point of the locus of A_2 . This point A_2 describes a rational cubic curve, to be indicated henceforth by a_3 , any line through D_1 having only one more point in common with this curve. It contains the points D_3, D_4, \ldots, D_8 , as $D_2 B_2$ cuts each of the lines $D_1 D_3$, $D_1 D_4, \ldots, D_1 D_8$ in one point.

Let us now consider the locus of A_3 . It is immediately evident that D_1 is an ordinary and D_2 a threefold point of this locus; for a_3 is cut by $B_a D_1$ in only one, by $B_a D_2$ in three points; in the same manner we prove D_3, D_4, \ldots, D_8 to be double points. So we have still to investigate how many times A_3 coincides with B_3 . Let A_2 be once more an arbitrary point of a_3 and a_3 the curve of (β') through A_2 ; then the tangent of u_3 in B_3 cuts a_3 in three points A'_2 . So the points A_2 and A'_2 generate a correspondence (1,3) furnishing — a_3 being rational — 4 coincidences. Any coincidence of A_2 and A'_2 gives a coincidence of A_3 and B_3 ; so A_3 describes a curve of order seven, to be indicated henceforth by a_7 , any line through B_3 containing three points more of this locus.

We can prove that B_{η} is a fourfold point of a_{η} also as follows. In case A_{2} coincides with one of the points A_{2}', A_{η} is at the same time the tangential point of B_{θ} on the curve out of (β') through A_{2} . So the number of points common to a_{η} and the *tangential curve* of B_{0} — i. e. the locus of the tangential point of B_{θ} on any curve

943

of (β') — amounts to four, the common points coinciding with the base points of (β') disregarded; for, the tangential curve is of order four and admits B_{η} as threefold point whilst it passes only once through $D_1, D_2, \ldots D_8$. So B_{η} is a fourfold point of α_{η} and this curve is of order seven. From the number of the double points we deduce that α_{η} is rational; this is right, for it corresponds point by point with the line $D_2 B_{\eta}$.

As to the locus of A_4 it is immediately clear that B_9 is a double point and D_2 a threefold point on it, while it passes four times through D_3, D_3, \ldots, D_8 .

The tangential curve of D_1 is cut by a_7 besides in the base points in 6 points more, which implies that D_1 is a sixfold point on the locus of A_4 and that this curve is of order twelve, any line through D_1 containing six more points of it. In the same manner we determine the loci of the points A_5 , A_6 , A_7 , etc. and then the loci of A_{2n} and A_{2n+1} can be found by the Bernoullian method. Provisionally we only still wish to remark, that the locus of A_6 has an eightfold point in D_2 , for this proves that the points B_9 and D_1 form two Steinerian points of order three on 8 curves of (β') .

§ 9. Let us return to the point we started from. We have seen that the curve j_x under discussion — the locus of the ninth threefold point $\dot{-}$ is at the same time the locus of the points each of which forms with B_s a Steinerian pair of the third order. On each curve of (β') lie besides the base points eight points more of j_x ; moreover D_1, D_2, \ldots, D_s are eightfold points of j_x :

We have now to investigate whether B_0 lies on j_r or not. This can only happen if on a curve v_s of (β') the point B_0 coincides with one of the eight points each of which forms with it a Steinerian pair of the third order. However it is easy to prove that a suchlike coincidence of two Steinerian points can only present itself in a node; for the group of the nine inflexions this is immediately evident and for the other groups of Steinerian points of the third order it can be deduced from this by projection. Now B_0 is not a node of a curve out of (β') ; so it does not lie on j_x .

As the number of points common to j_x and u_s amounts to 72 we find:

"The curve j_x is of order twenty-four; it has D_1, D_2, \ldots, D_s as eightfold points."

§ 10. We will enumerate some points of j_2 , which curve will be denoted furthermore by j_{24} . It is cut by the line D_1D_2 in eight

more points; any point P of these eight determines with $D_1, D_2, ..., D_8$ a pencil of curves c_9 with threefold points in these nine points. Any other point Q of D_1D_2 determines a curve c_9 of this pencil having ten points in common with that line and breaking up therefore into that line and a curve c_8 with double points in D_1, D_2, P and threefold points in $D_3, D_4, ..., D_8$. So any point of intersection P of $D_1 D_2$ and j_{24} is at the same time a node of a c_8 forming with D_1D_2 a c_9 with nine threefold points. At first this result may seem astonishing; for we can indicate *eleven* points on D_1D_2 each of which forms with $D_1, D_2, ..., D_8$ a set of nine threefold points of a c_9 , and of these eleven points we find back eight only. But, the three other ones prove to determine a c_9 (and therefore a pencil of curves c_9) excluded from the beginning.

To prove this we consider the net $[\sigma]$ of curves c_s determined by the six threefold points D_s, D_4, \ldots, D_s and the double points D_1, D_2 ; the curve of JACOBI of this $[\sigma]$ is of order twenty-one and, as it passes five times through D_1, D_2 , it is cut by the line D_1D_2 in 11 points more. So D_1D_2 contains 11 points each of which is a node of a c_s belonging to $[\sigma]$.

Now let us consider the curve c_s passing through D_1 , D_2 and admitting D_s , D_4 , ..., D_8 as nodes; this completely determined curve cuts $D_1 D_2$ in three points E, F, G more. Each of these points lies on the curve of JACOBI of $[\sigma]$, for c_s forms with the curve c_s of (β) passing through E a c_s of $[\sigma]$, of which the point E is a node; likewise these two curves form with the line $D_1 D_2$ a curve c_q of which D_1, D_2, \ldots, D_8 and E are threefold points. However E does not lie on j_{24} , for this c_q can be considered as the combination of a c_3 of (β) and a c_q and this combination has been excluded beforehand (§ 5). But it is evident that E, F, G do lie on the curve j_q quoted in § 4.

The eight remaining points of intersection of line D_1D_2 and the curve of JACOBI of $[\sigma]$ do lie on j_{21} ; so on each of the 28 lines $D_i D_k$ can be indicated eight points of j_{24} .

Moreover j_{24} is cut by the conic D_1, D_2, \ldots, D_5 in eight more points. These lie at the same time on the curve of JACOBI of the net $[\varepsilon]$ of curves of order seven passing twice through D_1, D_2, \ldots, D_5 and thrice through D_5, D_7, D_8 . This curve of JACOBI of order eighteen is cut by the conic D_1, D_2, \ldots, D_5 in eleven more points; of these however once more three do not lie on j_{24} , i.e. the points common to this conic and the curve c_4 passing once through D_1, D_2, \ldots, D_5 and twice through D_6, D_7, D_8 .

So on each of the 56 conics $D_i D_k D_l D_m D_n$ can be indicated eight points of j_{24} .

§ 11. We now treat in a summary way the general case: g is an arbitrary number.

Once more the arbitrarily chosen points D_1, D_2, \ldots, D_8 are given and the question is to determine the locus of the point forming with these given points a set of nine ϱ -fold points of a non degenerated curve of order 3ϱ . In the same way as we have used the results obtained for $\varrho = 2$ in the solution of the problem for $\varrho = 3$, we can solve the successive cases $\varrho = 4,5,\ldots$ by using every time the results obtained in the immediately preceding case. So we consider for $\varrho = 4$ at first a variable c_{12} with fourfold points in D_1, D_2, \ldots, D_8 and touching a curve u_3 of pencil (β') in a point λ ; then we determine the third point of intersection of u_3 with the line connecting the last two points of intersection of c_{12} and u_3 , which point is independent of the choice of c_{12} , etc.

But before we state our results more in detail we wish to make a remark. We find, that any point D_{9} which can present itself as ninth q-fold point of a non degenerated $c_{3\rho}$ must coincide with one of the points forming with B_{g} a Steinerian point of order g. The locus of the latter points is a curve $c_{3(p-1)}$ with (q^2-1) -fold points in D_1, D_2, \ldots, D_s . Now however it is evident that this curve degenerates in several cases. So, if e.g. we consider the case q = 6, we shall find among the points forming with B_{α} on a curve of (β') Steinerian pairs of order six also the points which form with B_{a} Steinerian pairs of order two and of order three. So the curve $c_{3(p^2-1)}$, here of order 105, must break up into j_{a} , j_{24} and a curve of order 72 passing 24 times through D_1, D_2, \ldots, D_8 . Now the latter curve forms the locus proper of the ninth sixfold point of a non degenerated curve c_{1s} . So the two curves of which the first is the locus of the ninth *q*-fold point, the second that of the point forming with $B_{\mathfrak{g}}$ a Steinerian pair of order ϱ , coincide completely if ϱ is a prime number; if ϱ is no prime number the first curve is a part of the second. So we have found:

"The locus of the ninth ϱ -fold point coincides completely or partially with that of the points forming with B_{q} on the curves of (β') Steinerian pairs of order ϱ . The latter curve cuts any curve of (β') besides in the base points in $(\varrho^2 - 1)$ more points, has the points D_1, D_2, \ldots, D_s for $(\varrho^2 - 1)$ -fold points and is therefore of order $3(\varrho^2 - 1)$. The former coincides completely with this curve, if ϱ is a prime; in the opposite case its order and the multiplicity of the base points on it can be easily deduced from the corresponding numbers of the second curve."