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6, is the angle between the radins vector and the norih-axis at
noon, 7’ is the moment at which the radius vector has the direction
« of the great axis or, whenever the ellipse is flatlened down to
a straight line, the moment when it allains its maximum value.

It appears from these tables thal the gradient ellipses, for both
slations and in all seasons, approach to a straight line, so thai a
graphical representation could only be given on a large scale.

It would not be difficult o proffer an explanation of the somewhat
startling result thai the angle of deviation varies with the different
seasons. Such an explanation could be based only on a premised
conception concerning the mechanical meaning of the friction coeffi-
cieni, as introduced in the calculation, and would be premature
before the results obtained have been put to the test by application
of the method indicated in this paper to other series of observations
made at many and differently situated stations.

Mathematies. — “The pentagonal projections of the regular fivecell
and uts semireqular o ffspring.” Communicated by Prof. Scours.

1. Fundamenial theorem. 1f in two cirvcles (fig. 1) with radius o

N

situated in the planes O(X, X)), O(X,X,) of a rectangular system
of coordinates in space S, we describe two regular pentagons
1,2,3,4,5),(1,2,3, 4,5, of which the first is convex while the
other is star shaped, the five points P, P,,.., P,, whose projections
are the vertices of these pentagons indicated by corresponding mum-
bers, form the vertices of a regular fivecell with 9175 as length
of edge. ')

1) This theorem is not new. Probably it was given for the first time by
Dr. 8. L. vax Oss in his dissertation (Utrecht, 1894). Compare also my paper:
“Les projections régulidres des polytopes réguliers” (Archives Teyler, Haarlem, 1904).

We repeat here the simple proof. If (P, Pyy) and (Qg, @34 are the projections

ol the points P and @ with the coordinales x; and y; (i=1,2, 8, 4} on the planes
0(&,&5) , O(X;X,), we have

ProlP1p = (61—y1)* + (Xy—0)? , Pou@y= (B—y3)P* + (3,—~y.)°
and therefore if d denotes the distance PQ
PryQ%y + L5,Q%, = da>

Now the projections PjpQyp and Py 0y, of cach of the ten edges 12,...,45 of
the fivepoint P3Py PP are either side and diagonal ov diagonal and side of the
same regular pentagon, elc.

Which position has the regular simplex S(5) with respect to the planes of pro-
jection O(X7X) and O(N,X,)? Evidently this projection is characterized by the
fact thal each of the five pairs of non intersccling edges

(25) (34) , (13) (43} , (24) (15) , (35) (12) , (14)(¥3)
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We indicate the projection of the regular S(3) obtained in fig. 1
as the “pentagonal projection” of that polytope, and we try to show
in the following pages how easily the corresponding projections of

has parallel projeclions on either of the two planes, i. e. that the five lines at
infinity cutting these pairs of non intersecting edges have the lines at infinity of
the two planes of projection for common transvetsals.

Now there are allogether [ifteen pairs of non intersecting edges and therefore
also fifteen lines at infinity cach of which culs a paiv of non interseeling edges.
Moreover it can be shown easily that these fifteen lines at infin'ty lie on a cubice
surface. For, in barycentric coordinates with respect lo the regular fivecell as sim-

)

plex of coordinates these fifteen lines at infinity, for which the relalion 2 xi=1
=1 -

2
changes into < z; =0, are represented by the equations
. i=1

Ti+2k=0, z+20=0, 22=0,

where i, k%, I, m,n stands for any permutation of 1,2, 3, 4,5, and these relations

5
satisfy the equation £ 2,3=0 of the diagonal surface of Crzsscn. So the Scmiiru

double six completli_n—.; the fifteen lines menlioned above to the 27 lines of that
surface :5 x5=0 consists of the lines at infinity of six pairs of planes O(X;Xp)
and O(Z}Q) corresponding lo the six pairs of circular permutations
(19345) (12354) (12435) (12453) (12534) (12543)
(13524) \ ' (13125) (14593) (14325) | ' (15429) (15324)

with the property that in each pair any digit has in the two constituents diffeiont

adjacent digits. Each of these six pairs consists of two reciprocal polars with
5
respect to the sphere £ x,*=0 at infinity common to all the spherical spaces of

1=l

S;, as the two planes of each pair are perfectly normal to each other. According
to a known property, found for the first time by F. Scuur, the six pairs of lines
of a Scmuirur double six are really always reciprocal polars with respect to a
quadratic surface (compare Ta. Reyve “Beziehungen der allgemeinen Fliche dritter
Ordnung zu einer covarianten Fliche dritter Classe”, Math. Annalen vol. 55, p. 257,
and G. Koun “Ueber einige Eigenschaften der allgemeinen Iliche dritter Ordnung”,
Wiener Siteungsberichie, vol. 117, p. 66).

If we deduce in the ordinary way the projeclion 0(X,.X;) from ihe projections
0(X, X,), O(X;X)) afler having votaled each of the two regular pentagons over an
arbitrary angle, we obtain the projection of the fiveccll on any plane tlhe line at
infinity of which cuts the lines at infinity of O{X,.X5) , OLX X ). This shows Lhat the
projection op an arbilvary plane can only be got in two tempos. i. e. by passing
first lo lwo arbilrary projeclions O(X,X), O(X.X7) and by deducing o new pro-
jection O(X;X;) after having rolated each of the projections O(ALX,), O(X,XY)
over an arhilvary angle. Ov otherwise: if ,{' are the Jines al infimly of the plaues
O(X 1 Xy) , O3 X)) and m, m those of an olher pair of planes perfecily normal Lo
cach other, there are always {wo veal lines 0, %' intersecling 7, ¥, m, m' and repre-
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the semiregular polytopes derived by Mrs. A. Booie Srorr') from
the vegular fivecell by means of the geometrical operations of ex-
pansion and contraction can be constrncted.

But it will be useful to develop first some general laws.

2. We consider the projection of the fivecell S(5) more closely
which leads us to the following remarks:

a. In pentagonal projection the fen edges of S'5) present themselves
in five directions only, any diagonal of the pentagon being parallel
to one of its sides.

0. Though all the edges of S(5) have the same length we find
in projection two different lengths, with the proportion s :d, where
s and d indicate side and diagonal of the pentagon.

If we wish to take info consideration the length of the edge itself

-we can use a very well known rectangular triangle of plane geometry
saying that when r is the radius of any circle and s,, and s, denote
the sides of the regular decagon and pentagon described in it, s, is
the Jength of the edge itself, s,, and r being the projections.

It goes without saying that the difference in length of projection
is a consequence of difference in inclination ; five edges of S(5 make
with the plane of projection an angle ¢ for which tgp = & (/5—1),
the five others the complementary angle with 4 1”541) as tangent.

¢. In projection the ten equilateral faces of S(5) split up into two
quintuples of isosceles triangles, one group (2s, d) with an obtuse,
onc group (s, 24) with an acute vertex angle.

d. In projection the five limiting tetrahedra present the same (rape-
zoidal form (fig. 2). We show that this is of great importance with
respect to our aim by saying that a rotation of the projection (2345)
of the tetrahedron in the sense of the hands of a wateh around the
centre C indicated in fig. 1¢ (0 an amount of one, two, three, four
times 72° Dbring this projection succesively into coincidence with the
projections (3451), (4512), (5123), (1234) of the other four limiting
tetrahedra. '

In order to give some rvelief to the single tetraliedron of fig. 2 we
have dotlied one of the two diagonals of the trapezoid; by doing

senting thercfore lhe lines at infinity of the planes O(X,X3), O(X,X7) to be used;
unless any plane lhrough m (or m') makes with O(X;X,) two equal angles and
the lines [, 7, m,m' form a hyperboloidical quadvuple, in which case the planes
O(X, Xy, O(X A7) may be selecled [rom a singly infinite system.

1) “Geomelrical deduclion of semiiegular from regular polytopes and space fillings”
(this Academy, Verhandelingen, vol. 9, n 1). In the following we suppose the
resulls obtained lhere to be known.
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so we facitly vepresent that limiting body considered as lying in ils
own threedimensional space. For, in the projection of a fourdimen-
sional polrtope on a plane the question of visibleness has no sense,
as fourdimensional space surrounds a plane situated in 1tin the same
way as threedimensional space surrounds a line situafed in it.

3. We now examine what we have lo expect in general as (o
the pentagonal projection of the semiregular polytopes deduced from
the S(5) by expansion and contraction. For shortness we introduce
for the group of these polytopes the symibol S(5); moreover we male
use in future of the symbols 7 0,7, CO, t0, P,, P, for the limiting
bodies of these polytopes.

a. The polytopes S(5) partake with S(5) the property of present-
ing in peutagonal projection edges of five directions only. For it is
easy to prove that the three operations ey, ¢,, ¢,, taken either separately
or in combination, can introduce only new edges parallel to the origi-
nal ones.

b. All the edges of S(5) being of the same length we find here
in projection once more two different lengths with the proportion
s:d and the two different complementary angles of inclination
obtained above.

¢. As the ten faces of S(5) split up in projection into two quin-
tuples of different form, the equivalent faces of S(5) must do so
likewise. We shall even experience in the {reatment of the different
particular cases that square faces always present a third form of
projection.

d. In projection the limiting bodies of S(5) behave differently
according 1o their smport. The general rule that equivaleni limiting
bodies correspond in projection only holds for polyhedra of vertex
and of body import: while both the gronp of edges and the group
of faces of S(5) admit two different projections, the limiting bodies
of edge and of face import must do so likewise.

But what is of the greatest value with respect to the construction
of the projections desived is that all the limiting bodies of S(5) arve
“arranged pentagonally” aroand the projection of the centre of the
original fivecell, 1. e. that the four rotations indicated under ¢. of the
preceding article bring any one of these limiting bodies successively
into coincidence with four others. If we assert moreover that the
effect of the operations of expansion and contraction are extremely
easily obtained in pentagonal projection, it must be clear that the
execulion of whal was planned with respect to the polytopes S(5)
is merc children’s play.
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4. We now pass to the systematic treatment of the different par-
ticular cases, putting together under the different headings, containing
the expansion and contraction symbol, the symbol with the numbers
of vertices, edges, faces, limiting bodies, and the symbol with the
limiting bodies in the order of body, face, edge, vertex import, several
remarks pertaining to facilitate the interpretation of the drawings.

e, S(5) — (20, 40, 30, 10) — (5¢71, —, —, 5T).

The result is given in fig. 3. By the operation ¢, of the moving
out of the edges the 7 of fig. 2 becomes a 7 (fig. 4) with four
hexagons of face mmport and four triangles of vertex import. As each
vertex of 7' assumes three different posilions if it moves out with
each edge passing through it, the vertices of this 7" must bear two
digits, the first indicating the original vertex of 7', the first in com-
bination with the second the edge of 7" moved ont. By retracing in
fig. 3 the same pairs of digits one easily finds again the 7’ deduced
from (2345), though for the reason stated above no dotted lines Lave
been admitted. If we rotate this ¢7" around the centre of fig. 3 to
an amount of 72° in the indicated sense it is brought into the posi-
tion with (54, 45) as bottom-edge and (13, 31) as top-edge in coincidence
with a second ¢7), having in common with the first — in its original
position — the hexagon (54, 53, 35, 34, 43, 45), deduced by the ¢;-
operation from the triangle (3:£5) common to the tetrahedra (2345),
(3451) .of fig. 12 Or rather: the centre of fig. 3 is found by drawing
the ¢7 of fig. 4 twice and by putting these two ¢7 in such a way
upon each other as to get a limiting hexagon in common; then this
centre is the point of intersection of the lines bisecting orthogonally
the two edges (43, 34) and (54, 45). Or still otherwise: the limiting
polygon of the projection is a semiregular decagon with sides alter-
nately equal to z and d and from this fact the circumecentre can be
deduced 1).

It goes without saying that the vertices of each following ¢7"bear
pairs of digits deduced from those at the corresponding vertices of
the preceding ¢7' by adding unity to each digit, in which process
the 5 becomes 0.

The four different positions 12,13,14,15 of the original vertex 1
form the vertices of a 7" of vertex import.

It is easily verified that the ten limiling bodies 5:7, 57, now

1) From fig. 2 upward we use in all the diagrams for s and @ the same measures
in order to show by the projection the swelling of the polytopes corresponding to
the operations of expansion.

) 5

Proceedings Royal Acad. Amsterdam. Vol. XIV.
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accounted for, want as limiting faces exactly all the faces shown in
projection, each face counted twice over, a triangle always being
common to a ¢7" and a 7, a hexagon to two t7.

The 20 vertices present themselves in two wreaths (10, 10).

e,3(5) — (30, 90, 80, 20) — (5C0, —, 10P,,50).

For the result fig. 5 may be consulted. By application of the e,-
operation the 7" of fig. 2 passes into the CO of fig. 6, each edge of
T being broadened out into a square, the sides of which are parallel
to that edge and to the opposite one. Here the particularity enters
that two of the six squares project themselves as line segments, which
is due to the fact that in pentagonal projection the edges 25, 34 of
the 7 of fig. 2 are parallel. Here we have to indicate the vertices
of the CO by three digits, the first indicating the original verlex of
T and the two others, in irrelevant order, in combination with the
first, the face which is moved out. This CO in indicated in fig. 5
by the same triplets of digits placed at the vertices. By reproducing
it four times by means of the rotations indicated above, fig. 5 is
completed ; here any two CO have to be placed upon each other in
such a way as to have a triangle in common.

After bhaving inseribed all the triplets of digits at the vertices
according to the rule given above about the augmentation with unity
for each rotation in the right sense to an amount of 72° we find
that the 1 is foremost in six triplets, corresponding (fig. 7) to the
vertices of an O, i.e. we find 50 as limiting bodies of vertex import.
Farthermore the notation shows that the edge (34) of the 7 presents
itself in fig. 5 in three positions, the triplets of digits of the endpoints
of which are found by putting behind 34 and 43 successively one
of the three remaining digits 1, 2, 5, passing — if we rearrange the
second and the third figure according to their value — into 314,
324, 345 and 413, 423, 435. So we get the P, of fig. 8, occurring
in five different positions, and likewise the edge 25 leads to the
differently projected P, of fig. 9, occurring also in five positions. So
the ten P, of edge import are accounted for.

Here the circumpolygon is a regular pentagon with sides s - d; the
30 vertices appear in four wreaths (5, 10,10, 5).

¢,S(5) — (20, 60, 70, 30) -— (57T, 10.P,, 10P,, 5T').

The pentagonal projection (fig. 10) exhibits central symmetry as
does ¢, S(5) itself. Here (21, 31, 41, 51) is the 7" of fig. 2 moved out,
by which remark the 57 of body import are accounted for, whilst
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the four positions 12,13,14,15 of the original vertex 1 are the
vertices of a tetrahedron of opposile orientation, the rotation of which
provides us with the 57 of vertex import. The relation between these
two sets of 57 can be indicated by saying, that two T of the same
set have nothing at all and that two 7 of different sets can have
only one vertex in common.

If we had followed here the notation indicated under ¢, and e,
each vertex would have had to bear four digits, the digit of the
original vertex of S(5) followed by the digits of the other vertices
of the 7" with which the vertex is moved out; however, for short-
ness we have placed after the digit of the vertex the only digit
which does not occur at the vertices of the 7" moved out.

In this new notation of pairs of digits, where — at variance with
the notation appiied under ¢, — the order of succession is of
influence, the ten P, of edpe import present themselves in two
quintuples, which can be obtained by putting after each of the
digits of the pa:ir of digits of an edge successively each of the three
remaining digits; so 43 gives the three edges (31,31), (42, 32),
(45, 35) of the P, of fig. 8 turned upside down, while 52 leads in the
same way to (51, 21), (53, 23), (54, 24), the parallel edges of the P,
of fig. 9 turned upside down. Similarly the ten P, of face import
are foum! by putting after each of the three digits of a face of I’
successively one of the two remaining digits; so 125 gives the two
endplanes (13, 23, 53), (14, 24, 54) of the P, of fig. 8, 134 the two
endplanes (12, 32, 42), (15, 35, 45) of the P, of fig. 9.

The limiting polygon is a regular decagon with side s; from this
ensues the possibility of drawing the ten 7' immediately in position.
The 20 vertices are arranged in two wreaths (10, 10), of regular
decagons.

0,6, 8(5) — (60,120, 80, 20) — (5t 0, —, 10P,, 5¢T).

In this case, for which fig. 11 represents the result, the 7’ of
fig. 2 is iransformed into a tO (fig. 12); of the triplet of digits placed
at each vertex of this ¢0 the first indicates the original vertex of 7,
the second with the first the edge moved out, the third with the
iwo preceding ones the face moved out. This notation with triplels
of digits differs again from that applied in fig. 5 in this that the
order of succession of the second and third digits, of no consequence
there, is of influence here.

If we have traced in fig. 11 the {0 of fig. 12, rotation about the
centre, accompanied by an addition of unity to all the digits, gives

K
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the vertices and the triplets of digits of each following ¢0. It goes
without saying that here too the centre is found by drawing (O
twice over and putting these {0 in such a manner upon each other
as to have — with a difference in orientation of 72° — a hexagon
in common. In the case of the two {0 deduced from (2345) and
(3451), which 7' of fig. 1® have the face (845) in common, this
common hexagon is characterized by this that the six vertices bear
the digits 3,4, 5 in all possible permutations.

The digit 1 stands foremost at the triplets of twelve vertices, the
vertices of a (7 of vertex import; by omitting from these triplets
the 1 we get not only in position but also in notation the ¢77of fig. 4.
So the five t7" of vertex import are accounted for. Moreover, as to-
the ten P, of edge import we can refer to the development given
under ¢,.

Circumpolygon a semiregular decagon with sides alternately sand
d. Six wreaths of ten vertices, all of them semiregular decagons.

o6, S(5) — (60,150,120, 30) — (5¢T, 10P,, 10P,, 5CO).

In this case — for the result compare fig. 13 — the 7 of fig. 2
is transformed by the ¢,-operation into the ¢7" of fig. 4, after which
this 7" is moved out as a whole; as by this process each vertex of
¢,S5(5) assumes three different positions we must follow once more
the notation of the ftriplets of digits, which can be done here by
placing after each pair of digits of fig. 4 the digit 1 not occurring
at the vertices of the tetrahedron (2345) moved out. If these triplets
have been inscribed in fig. 13, rotation about the centre and augmen-
{ation of the digits by unity gives all that is wanted, as soon as the
centre has been constructed. We arrive as soon as possible at the
construction of this centre by determining the prisms of face import
first. In the case ¢, they were the prisms P, represented by fig. 8
and 9; by applying to the T the e-operation, the triangles of the
7 pass into hexagons, which includes that the P, are transformed
into P,, which can be drawn immediately. By applying to the end-
planes (13,23, 53), (14, 24, 54) of the wupper prism P, of fig. 10
the ¢,-operation we obtain the upper prism P, of fig. 13 represented
separately by fig. 14. Consideration of this prism P, shows that
the limiting polygon is a semiregular decagon, the sides of which
are alternately s and s d; from this the centre can be deduced.
In the same way the prism P; of fig. 10 with the endplanes
(12, 32,42), (15,35,45) passes into the P, represented by fig. 15.
Farthermore the two P, with the pairs of endplanes (341, 342, 345),

-10 -
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(431, 432, 435) and (521, 523, 524), (251, 253, 254) represent two
P, of edge import, the prisms of fig. 8 and 9 upside down.

The vertices with the ftriplets of digits where the 1 is foremost
form the vertices of a limiling body of vertex import, a CO in the
position of fig. 6.

Six wreaths of ten vertices, semiregular decagons.

e,6,6, S(5) — (120, 240, 150, 30) — (5:0, 10P,, 10P,, 5:0).

This most inflated of the polytopes S(5)is represented in projection
in fig. 16. According to the number of vertices') we have to place
at each vertex four of the five digits, each of them with a meaning
as to the order of succession; of these four digits the first indicates
the original vertex of S(5), the second the new endpoint of the edge
moved out, the third the new verlex of the face moved out and the
fourth — according to what was stipulated under ¢,5(5) — the digit not
occurring at the vertices of the tetrahedron moved out: so 1234
denotes the position of the vertex 1, after this point has been moved
out with the edge 12, with the face 123, with the tetrahedron 1235.

Likewise as in the case ¢,¢, S(5) the 7' of fig. 2 passes here inio
the tO of fig. 12, traced back easily in fig. 16 if one remarks that
the moving out of this {0 under the influence of the ¢;-operation
demands the digit 1 after the triplels of fig. 12. While now the
lower side (4351, 3451, 4321, 3421) of the projection of this ¢0
assumes the same length s 4 d as the upper side of the projection
of the P, of fig. 16, i. e. the side (1523, 1524, 1253, 1254), which
P, corresponds in form and position with that of fig. 14, it is clear
that the circumpolygon is a regular decagon wilh side s - d. So the
projection is once more cenfral symmetric as is the polylope itself.
In connexion with this the limiting bodies of vertex import are like-
wise ¢0, which is immediately verified by looking for the 24 vertices
in whose quadruples of digits the 1 is forcmost; likewise, not only
the prisms of face import, but also those of edge import, are hexagonal.

Evidently the centre of the figure can be deduced from the side
s+ d of the regular decagon; moreover it is possible o use to that
end the property that two adjacent P, of the ten of the form of
fig. 14 lying at the rim have in projection a square face projecied
as a lozenge in common.

1) It is easily verified that in each of the cases treated the notation corresponds
to the number of vertices, i.e, that the number of possible pairs, triplet, qua-
druples of figures is always equal to the number of the vertices,

-11 -
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ce, S(5) — (10, 30, 80, 10) — (50, —, —, 5T).  °

This figure can be deduced from fig. 3 by moving the limiting
bodies of vertex import, i.e. the 57" projected as trapezoids (12, 13,
14, 15), (23, 24, 25, 21), etc. in such a way towards the centre,
that the ten original edges of S(5), i. e. the five edges (12, 21),
(23, 32) etc. and the five edges (52, 25), (13, 31), ete. disappear.
It is easily shown thai these two conditions do not collide; for, if
we suppose that the trapezoid (12, 13, 14, 15) remains where it is,
whilst of the two adjacent trapezoids (21, 23, 24, 25), (51, 52, 53, 54)
the first experiences a vectilinear iranslation 21, 12, the second a
rectilinear translation 51, 15, the vertices 52 and 23 will coincide
in the point of intersection of the projections (12, 14), (13 15). So
we get the simple result of fig. 17, where the limiting polygon is a
pentagon with side d, oppositely orientated with respect 1o fig. 1.
In fig. 17 the six points where the digit 1 is lacking form the vertices
of an O of body import, the four points where the digit 1 occurs
a 1" of vertex import, etc.

ce,e, S(5) — (30, 60, 40, 10) — (5tT, —, —, 5.7).

This figure can be derived from fig. 11 by moving the 5:7 of
vertex import towards the centre in such a way that the ten prisms
P, of edge import disappear. Then the triplets of parallel edges of
these /P, disappear and only the two coinciding endplanes remain.
But this implies that the five ¢t0 of body import are reduced to ¢7
by the annibilation of these edges; so in the case of fig. 12 the
square (532, 352, 354, 534) is rveduced by the coincidence of the
vertices 532, 352 and of the vertices 354, 534 to an edge with the
direction (532, 534) and the hexagon (523, 253, 235, 325, 352, 532)
passes into a ftriangle, while the adjacent hexagons do not change
in form. So we get fig. 18, where each vertex bears a {riplet of
digits, of which the order of succession of the first and the second
is irrelevant, while e.g. 345 resulls from the coincidence of the
vertices 345 and 435 of fig. 11. In this figure the ¢7 of vertex
import, remained unaltered, are recognized by ihe property that at
their vertices the same digit occurs under the first two of the three
digits, whilst the five other t7 of body import lie in projection
symmetrically with these with respect to the centre.

It may still be remarked that the centre of the figure can also
be found by drawing the ¢7 of fig. 4 twice and by pulling these
two tT' with a, difference of 36° in orientation in such a way upon

-12 -
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each other that they have in projection a hexagon in common*®).

The limiting polygon is a regular decagon with side d. The figure
is central symmetric as is the polytope itself. The vertices appear in
three wreaths of ten regular decagons.

5. Though we have finished what we had proposed to ourselves
to do, the plate still contains another diagram. In fig. 19 we have
constructed accurately the vadii of the circumcircles of the different
projections and — for the cases where the limiling polygon is a
semiregular decagon — also the side of the regular pentagon inscribed
in the circumeircle. So the labour of the pure construction of the
figures is reduced to a minimum. This diagram will be clear if we
remark that OA4 is divided in extreme and mean ratio, that on
OB measured from O are to be found the radii of the circum-
circles and on OC parallel to AD measured likewise from O the
sides of the regular pentagons inscribed in the circumcircles of the
semiregular decagons. Moreover we have OE=F(G=:, OF=E(i=d,
whilst in connection with 16

OH=QS, O0I=QT, OK=PT
and the points e, , ¢e,, ¢,¢, on OB are obtained by letting down
the perpendiculars from H, I, K on OB. Finally Fe,, Fce,e, and
Ge,e.e, are parallel to AD.
Groningen, March 10, 1911.

Physiology. — “On the drritation-effect in living Organisms.” By
Mr. J. L. Hoorwee. (Communicated by Prof. H. ZwAARDEMAKER).

(Communicated in the meeting of April 28, 1911).

1. In this paper I wish to make a few remarks with regard to
an essay of Hiuw. (1) intending to give an extension to NErnst's (2)
theory about the electric irritation of living organisms.

[ may remind iy readers of the fact that ever since the year
1890 I have occupied myself with this subject, when I communi-
cated in the Ned. Tydschiift voor Geneeskunde (3) experiments aboui
the contraction of the human muscles by condensator-discharges, and
indicated in this paper a simple connection between the capacity C
of the condensator used and the potential P, to which the latter
was to be charged in order to produce a minimal response. This con-
nection is expressed by ‘the formula

1) We remember that under ¢; the difference in orientation was 72°,
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