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Physics. — «“On the solid stute.” VIL (Conclusion,. By J. J. ":\N
Laar: (Communicated by Prof. H. A. Lorentz.)

30. We shall examine now {o what modifications some formulae
and vesults are subjected, when mnot #wo simple molecules, but
several, e.g. n, associate to a compound molecule.

In the first place the formula for g, the degree of dissociation of
the compound molecules. Now the caleulation of I (These Proc XI
p. 767—770) is modified as follows.

The condition of equilibrium :

—g Frpg, =0 . .. ... L. ()
is reduced to:
02! 0L
(— C,4nC,)— [— 5 + - + BT (— log oyt log c,) =0,
1 2

after substitution of the values for uy, and g, (see p. 767 loc. cit.).
In this equation £'= fpdv — pv — RT S, .log =n,, C,, C,yn,y nyc,

and ¢, having the known iweaning (see p. 767). Further:

0R  02'dn, 0R'dn, 02 02

= =55 T — = 4T,

03 On, dg = On, d3 on, - On,
because 7, = 1—3 and », ==, so that the equation of equilibrium
passes into:

0 R
(— C,+nC,) — == + RT log > = 0,
B ¢

1

or into
C,—nC i
; nrl[ju ( 1= 2) _}' a—‘g' )
0 == , . .
T BHa+ a1 p— T ®)
because
7, 1—-8 Ny nf3
€ = - = ;e = =
a4, 14 @—1)8 no+n, 14 (n—1)8
0L
Now the value of —aE may be calculated by means of the equation
of state. From :
Q4+ @—HRT a
p = — . . . . . (C)'

v—10 v

follows:
ﬁodu = (1 4+ (n—1) §) RT log (v—b) + % :

because we know ihat the quantity 3 must be kept constant during
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this integration, as it refers to a mixture of the definite concentration
B. (Only the condition of equilibrium — g, 4+ np, = O defines this
value more closely). Hence we get for £7: .

Q= (14 (1) ) RT bog = e+ = P
0
so that we get for —a—ﬁ—:
22 N y—
35 = (D BT loy o — (—1) BT

14 (»—1)8 v db a Ov 0v
R () e

We have, namely, assumed the quantity o to be independent of
8. For:

e = n,%a, + 2n.n,a,, - n,’%a,
. al a]_ .
passes with n, =1 —8, n, =ng, ,, =—, a, = — into:
n n

a=[(l-—8F+2(1—BB+Fla, =a,,
i.e. independent of B. (¢ and a, both refer to an n-fold “molecular”
quantity). In consequence of the equation of state all the terms with
(% vanish, so that:
| p

-a-—q: (n—1) RT log AT

op P
is left, because
b =mn,b, + nb, = {A— B) b, 4 npb, = b, 4 B (-— 0+ nb,) = b,+ pAD.
So the quantity Ad = — b, 4 nb, again represents the variation of
volume, when a compound molecule breaks up into n simple mole-
cules. We know particularly from my last paper on the solid state
that it depends entively on the quantity A whether this state exists
or nol. As soon as Ab becomes = 0, there is no solid state any
longer.

Then substitution of (d) into (0) and introduction of the values
of C. and C, gives: '
nps LT
log A0+ e D) — BT [— 1 (log T—1) (ky— nk,) +
+ [y —n(es)e] — 1 [(1)s == 2 (1)e] + (n—1) RTlog BT —

— (n—1) BT log (p+9/2) — (n—1) RT — (p+%/y) Ab] )

or also:

— (n—1) BT — (p+/2) £b, . (d)

a/.2
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B" , _]"1 'l‘"kz - (61)0 + n(ez)o
l = (log I'—1 —
"Tma+e-na T TR BT
+ —'(771)01':77-(7]3)0 ‘I‘ (n_]) ZOg B + (n——l) Zog T __ (n_l) —_— loy 2 —
— (n— 1)l (o) — ZE72 0, f
If we now put: '
—k k _—
- 1;"71 2 _I_ (771)01':"("72)0 _|_ (n—-].)ZOgR _ (n—l) _ ZOg nn :logc
,(e
—k,+nk, (e, - ( ) (3
—_— =7 —81)s T " (¢3)e = ¢,
R I
we get:
6" l7al QD '
R e i A
+ (n—1) log T — (n—1) log (p + ¢/») —B—;Tf/i Ab,
Hence finally :
Hn—1) 2 Pt b
" 7D T RT S TRT
B ¢ e e 28)

(1—B) (1-+(n—1) By—1 (p + /)1
For n=2 this equation passes inio formula (2) on p. 770 lc.
The only difference is after all this that in the general case the ex-
pouent of 7" is found to be y-+(n—1) instead of y -} 1; that in the
denominator (p -+ ¢/, )1 is found instead of p -+ ¢/,=, and that the
2
first member has become what (28) gives instead of ——f—————
(1—8) (1 +B)
31. In this connection we may devote a few words to the
dimensions of the constant c. If we have a quantily of subslance
m times as greal, the 1% member in (28) remains unchanged, as
B and n are numbers. Also 7', and hence 7 +H(—=1, because v is
likewise a number. For in the ‘expression for y (see above) £, and
k, become m times as greal, bul also I becomes m iimes as great.
The exponent %/pp remains unchanged for the same reason. For

p -+ “/,,2

]

¢, and R become both m times greater. Further Ab is also

14 in—1
+ bﬂ Ab according fo the equalion of state, and so remains
'v—

again unchanged, as A) and v-~b become both m times greater.
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Finally p-+ 9/,» does not change in the denominator either, as a
and »* become both m®-times greater and p remains unchanged, of
course. So it follows from this that the constant ¢ must necessarily
be independent of the quantity of the considered substance, and
consequently must not contain linearly the quantities v or A. In
how far is this in harmony with what (¢) gives for ¢?

Apart from terms which apparently do not change when the
quantity of substance becomes m-limes as great, the terms:

B (’71)0 ~+ n(ns)o
R
are left, in which particularly at first sight, the term with log R
looks strange.
On closer consideration of the so-called entropy constants 7,
however, we see that it is not strange at all. For when calculating
the entropy of a perfect gas, we arrived at the expression:

+ (n—1) log R,

T v
s-——so—_:/clog?,— + Rlogu—,

0 0
by integration between the limits v, and », T, and T (v, and T
arbitrary initial states). Hence
8= (s, —klog I'y — Rlog v,) + klog T + R log v,
and in this 1,, the entropy constant was written for s, — 4 log 7,
— Rlogw,; i.e. m, is properly speaking =+, — R log v,, and so:
- (711)0 + 77'(712)0 e (71’1)0 + n(77’z)o .
R R
—(n—1)Rlogv, + (n—1)log R,

+ (n—1)log R =

in which now in ihe fraction of the second member both the

numerator — (77',), + 2(7',), and the denominator B become m-times
larger, so that we may write:

R

log ¢ = log ¢, + (n—1) log —,

%

0
which entirely solves the appavent contradiction. In consequence of
B and v, the quantity ¢ now remains really unchanged, wheu the
quantity of substance is increased or decreased.

32. Let us now examine in the second place whatl takes place
with the formula for the pressure of coexistence liquid-solid, as we
derived it in V (These Proc., Oct. 1910) p. 454--458. In this we
shall assume that both in the liquid phase and in the solid phase
only n-fold molecules are present -— in the liquid phase only to a
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slight amount, in the solid phase to a very great amount, as we
saw before; only in the neighbourhood of critical points the concen-
trations approach each other.

As the functions of the temperature C, in the two members cancel
each other the condition of equilibrium, viz.: (see also IV p. 133—
135; These Proc. June 1909):

(u)lig = (W)sotiay - - « . - . . . (a)
ie. the equality of the molecular potentials of the compound mole-
cules [then naturally (p,)i==(i,)s. in the two cases because of
{, = ng, |, passes into:

<E~R1'logcl> = (@)sotia - . - . « + (D)
i

n iq.

From the expression for £/, demved in \}30 viz.

Q' = Enl
follows :
0L v—1b Sn, .RT 2a,
— =RT 7 L b —,
on, 'qZ‘nl v—b +
dv
because the terms with — vanish in consequence of the equation of
n,
., 00 0a )
state, while — =5, and 5. = 2a,. For from a=mn,%,+2nna,,+n,’,
7, n,
follows
da nf
E;‘ = 2""'1""1 + 2"’1“12 =2 ((1—3) + 7{) & = 2“1’
1
as a,, = —. S0 _we get:
e RT 2
22 Rl T BT 1, (p 4 7)) + o,
On, p+a/e v

writing again a for a, (see § 30). In consequence of this the relation (h)
passes after division by RT into:

prefe b (a_a) 2 5_1) r 1-8 1+@e-g
hTp RT(" ) R?'(v 7 Al ey vl

when the solid phase is indicated by accentuated quantities. So we
get finally:

Z0 ~7)+ /"l —‘3 1+(n 1)lq,:| ¢ Z(E"‘l[)_b](_]:; __l_'):,, . (29)
p+ifmit(m-1p 1—F | BT v S

quite in accordance with (19).in V, p. 455. Only, | 4 (n—1)8 is
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substituied for 1-+p3. As 8 is mostly near 1, 8' on the other hand
mostly near 0, we shall again transform (29) by means of (28).
From (28) follows viz:

log (l'—ﬂ) = ZOg |:(p—-]—a/Lg)1z ! 77+“/u‘1

I+ o —w—l] ET

Ab,

when the temperature function ¢7 "'Hn—l)e‘m’ is indicated by 6.
Hence:
-8
Z aje) ————ooo—— —
og (p+/s2) 1+ m—1)8
— l !3 P+ /U A
=nlog | (p+ /v- ( 1)3 — log 8 4 —— T N ()

and (29) reduces to

2 lng [p 12/ B 1+(72‘]){3':|
P+ 14-(n—1) '

(-3 (-2 e-2)

because log & has the same valuein the two phases, and is accordingly
cancelled. Now b, + Ab=mnb,, hence also :

o [o+n/,n § 1+(n——1)3']_
Lot 11 B -

a 1 1 1 1
= ‘pr |:2 (:‘ _ 7 —_ 7Zb2 (-U—z -_— F):I, . . . (29“)

analogous to (199) in V7, p. 456.
If only for the lquid state we substituie the 24 member of (¢)
for the Ist member in (29), we get:

O o O (R e . R 1_
T oty QFG—Dgy  1—8  olre—h |~

a 11 11 (p+9/») (—A0)—q,
—ar2(5 =)o () [+ e

analogous to (199 in V, loc. cil.

The relation (29) can be profitably used when 3 and ' are both
near 0; (299 when they are both near 1; and (29%, when 8 is in
the neighbourhood of 1, 8 on the other hand not very far from
0 — as will in reality occur most frequently. If in the last case
=1, f =0, v=mnb,, v'= >0, may be put (this is the case at some

. ) Ab
distance from a crilical point), we may wrilc — —b-( A for
N
1 b
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1 1 1 1 1 1 1 1
(=)D e 3) e
v v v v v v v v
Lb Lb
add to this — — = — —— the sum becomes (see also p. 457 loe. cit.)
v? (nd,)?
—Ab
T and (29" veduces i0;
1 2 - _
«“ n
loq (p i (nb2)2> 1 — _a__ —Ab u p(’-Ab)_Qn
b L » + a/b12 n”(;TH‘("*]‘)_ sz bl ')lb2 .RT ‘
Now :
‘) @ __ a

iy VA iy S
as before [see II p. 35, formula (10); These Proc. May 1909], when
namely the coexisience curve solid-liquid is retrogressive (for Ab
negative), so that a pressure of coexistence p, becomes possible for
7= 0. The second member of the preceding equation becomes then

—Ab
= (p—p,), and we get:

RT
i + a n -1
RT (1’ (nbz)Z) 1 )
—Po = Ay =L — J —(y+(n—=1))log T 30
e —A4b 509( P+ Yo n'c (14 (n—1)) log | (30)

. p ) a ? . . _ a :
quite analogous 1o (20), but (p_T (nbz)’) substituted for (p—} (2b2)=>,
n* for 2%, and v -4 (n—L) for y - 1.

If we pui again:

(9_{ a )n

] o —

b)) 1

log N ) =

Py nv
in which C may be considered constant (i. e. independent of p) by
approximation at some distance from a critical point (p. 457 loc. cit.),
(30) passes inlo :

k]

RT )
p—po=_Ab[0——<y+<n~1»logf], RN

analogous (o (21) on p. 458 loc. cit. Just as before, 7, i.e. the
temperature of the triple point can be found from this, by puiting
p=0. (See also p. 460 loc. cil.).

33. Let us now repeat the calculaiion on p. 461, viz. that of
To/y ) which relation is of greal importance for the theory of ihe
solid state. .Let us viz. pul in (29%):
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=1, =0, p=0, v=mnd, =0,
we geb:

n log (—Zi —1— I (—1 — l) I:Z—nb (—1— 4 -1—)] =
n*b,* afy RT \ndb, b, \ab, = b,
o —Abb nb, a (—Abd)
=i (5

a DDV bt 1
Ry = —(-—1] : =l . ... (82
* T nb, <b1 ) " ed (1L’Z)22 nﬁ') (32)

Of course this expression also holds for Ad positive, if only a
triple point occurs, and this lies far enough from any critical point
to justify the just mentioned suppositions. The value of 73 to be
calculated from (31) only holds for the case Ab negative, for only
then tihere is a pressure of coexisience p, al 7'=0. Moreover T}
cannot be explicilly solved from (31). On the other hand in (32) the
quantity 3 occurs, of which we only know thal it will be near O.
But as we shall see, all the same some inferences may be made
concerning 7', or rather concerning the relation Zo/7,. )

If we suppose that at the eritical temperature (vapour-liquid) the
molecules have become single for the greater part, 7c can be cal-
culated from :

from which

8 a, Sa:nﬂ_ 8 a
27b, 27 b,  2Tnnb,’

1

RT, =

n ) . a . .
Hence = RT. can be written for -, I consequence of which
7
2

7, 97 fABY e 1
L e O i Y .1
7,78 (bl) 9 (nﬁb; 113') (329

Formula (32%) differs in this from (27¢) on p. 461 loc. cit. that
apart from the substitution of (nd,)* for (20,)*, the numerator 23’
has now changed into nB’. This is very essential, and brings the
value of 17,/7, inlo the neighbourhood of the experimental value/,,
without such a large value of Ad being required for this. We saw

(32) becomes :

. Ab
in V p. 461 that g/ would slill have to be = 0,37 for;—:—— oy
1
to bring the ratio 7,/7, to */, for n = 2. Only for still greater values
of Ab, B'. might have been shghtly smaller This is no longer the
case now.

8 a 8 a
. _ _ ;S8 . . o O Gy
) Also from (1 4 (n—1)g) RZC TR which passes inlo nRT, 27 b, with

p=1. (¢ is vz, mdependent of 5§ and ==¢, for an # fold molecular quantily).
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If we, namely put 7,/7, =1/,, (327) becomes, when b, + A) is

substituted for nb, in it:
1 27 (Ab)g . 1 1
— = :log [ —————
2~ 8 \ b, ((1 B ) n[;)
1
((1 + 5?[5‘) h

when z is written for the ratio Ab:b,. From this we calculate then

So we get:

the following values of n8’ for 2 = —0,5, —0,3 and --0,1:
e—=— 0,5 og i i log?® = 0,733 | nf = 0,74
’ nf 16 '
= — 0,3 | ! *243'1 10 = 0,264 '=1.11
o= 05 oy geg —aog) W = 0304 e =1
=01/ ! 21 i log*® = 0,0293] n3' — 1,15
¢ T = —0, Ogm 4(0 09 np — 1,
. l
&= — = 0 ; log"* = —
(@ 0) |log " og 0 (»f'=1)
So if B’ is not to be greater than e.g. 0,07 (see p. 462 loc. cit.),
n must be at least = 11 for 2 = — 0,5; at least = 16 for + = — 03,
at least =17 for #=-—0,1, this number verging to about 14

according as @ approaches to 0. In his first paper on Quasi associa-
tion in liquids (These Proc. June 1910 p.129) vax ppr Waars found
already n»>>6; so it is by no means remarkable that we find
n > 10 (for negative values of Ab, so for retrogressive melting-point
lines), the more so as we have included not only the liquid state,
but more particularly the solid slate, in our considerations.

Repeating the above calculation for positive values of Ab, we find
for 2=0,5, 0,3 and 0,1 successively:

05 | tog — 27 1 g = 0,082
CEN N Mo 1 | T
943
=03 =" | g =0,322
’ % T6ong —a00 | =0
1 927 .
s =0,1 =2 g =07
v 9 Totag — 200 | 6 = 0770
1
(=0 |lyg — =0 |@f=1
af

-10 -
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So here the condifions aic still more favourable, as we already found
in VI p. 644; These Proc. of Dec. 1910. For 3’ = 0,07 » must be at
least = 2 for 2 =0,5; for a =03 at least = 5; for 2=0,1 al
least = L1; which would again approach to 14 for 2=0.

If we now suppose that in reality == A p will probably always be
<, and if we assume e.g. 0,1 as mean value, then from this
would follow n =17, rvesp. 11 — let us say 14 on an average, a
very plausible value, also in connection with vax pEr WaaLs® inves-
tigations.

84. To the foregoing remarks a great deal might be added. In
reality the relations will probably not be so simple as we have
thought them in what precedes; particularly n the easily mobile
liquid state — where the situalion of the compound molecules is
not fixed as in the solid slate — all possible combinations will be
conceivable . double molecules, triple, quadruple ete. And all thisin
ratios which depend on the constants of the substance, and morcover
on the temperature and pressure. In the solid state, on the other
hand, probably one kind of multiple molecules will prevail. But
this would simply render the above compufations somewhat more
complicaled, the essential part will remain the same. Accordingly I
have not entered into the calculation for a special case, e. 8. n = 10.
The main point is, and remains that on account of association,
both in the liquid and in the solid state, the occurrence of this latter
state follows from this as a necessary consequence for not too low
values of Ab. The considerations and calculations of the foregoing
papers have taught us this. At cervlain high pressures the isotherms
turn back once more, and this is repeated for the second time
at low pressures, after whicl they finally rise {0 p = . And we
have seen critical points appear both in the case Ad negative, and
in that where A) is positive (see specially V and VI, which T shall
not discuss any further here).

So the whole theory of the solid state rests on #wo suppositions :
that of the association and that of the wariation of volume (AD) with
the association. The former supposilion is now universally accepted,
though vaNn DEr WaALs continues o speak of “Quasi” association.
Yet lhe applies the thermo-dynamic conditions of equilibrium to it
already in his 1% paper (p. 121—123), which strictly speaking only
hold for ‘weal” association. Hence I have never understood quite
clearly, why quasi association is spoken of — unless it should be
that quasi association specialiy appears under the cxclusive influence
of the molecular forces and that in the expression for the variation

-11 -
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ol eunergy
AE =3 (g, + vRET) + (}9 + f;) AN 4

the quantity g, = 0. But then, this is a very special case, which is
probably only veached by approximation in reality. In any rase y
cannot be =0 even tihen, and even though the “internal” varia-
tion of energy =0 at the absolute zevo-point, it is not at the ordinary
temperatures (because of the term yRT)).

And where for water, acetic acid etc. (also in the vapour) real
association is assumed, it is no more than consistent in my opinion
to assume this “real” association in all cases by analogy.

Whether we consider the matter from a kinetic or from a thermo-
dynamical point of view, we always come to the same results, in
my opinion. If at a certain moment we could fix the state in the
whirl of the molecular movements — we should always see a certain
number of groups, where two molecules are in each other’s imme-
diate neighbourhood (and stay there for some time, however short
it be); where three, fonr, or more molecules happen to be together,
ete., etc.!). In the same way the real association is thought also
thermodynamically. The principle of the “mobile equilibrionm’ involves
that a certain number of the formed double molecules break up
again into simple molecules in a certain time etc. And the known
thermodynamic prmciples are applied to the “state of equilibrium”
which has set in in this way.

So association; but besides variation of volume caused by the
association. For again: without assigning some value io Ab, we do
not arrive at the solid stale. The theory developed in V and VI has
proved this convincingly in my opinion.

And now it is, indeed remarkable, that in his theory of quasi-
association vaN DErR WaaLs does assume coniraction in the value of
a — which is supposed constant in our theory (ses above) — but
no change in the value of b.%).

No doubt van DER Waars will have had a good reason for this
contraction in the value of n, — the matier, however, has not

1) In connection with this we may vefer e.g. to the theory of “Schwarmbildung”
of v. SCHMOLUCHOWSKL.

%) See these Proc. June 1910, p. 119—121 (with regard to 4 p. 121); also
Nov. 1910, p. 494. With reference to the valuc of 4, vAN pER WAALS owns that
A6 will not be =0, and even makes the supposition that aé will probably be
nearly always positive, (But then what aboul the melting-point lines running to

the left ?). Notwithstanding this he assumes provisionally (‘% =0,

-12 -
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become clear {o me. The grounds alleged by van prr Waals for
this p. 119—120, have not been able to convince me and at any
rale the supposition ~=1/, is arbifrary. Il might be asked with
some justice how great the value of » will have to be for contrac-
tion 1o take place in the molecular alivaction, and below what this
contraction need not be reckoned with (e.g. for n =2, see p. 119
loe. cit. : «It is true”) In any case the future will show whether, and
it so in how far a change should be made also in the value of
a also with regard to the solid state. For there is reason to
assume that — in consequence of the immobility of the molecule
groups — the molecular aftraction in the solid state may be different
from that in the liquid state.

85. In conclusion I will still discuss here an important question,
which is in close connection with the foregoing, and which I thought
about already years ago: I vefer to the dependence of the quantity
b on the temperature and the volume.

In a third paper vanDer Waars once more discusses the critical
quantities fully, and the changes to which tbey are subjected in
consequence of the variability of & with ». The influence of the
temperature is disregarded in this important investigation. I also
occupied myself with these questions already before — though it be
on a more moderale scale — and bandled the question in a perfectly
analogous way. I need only refer to an article in the Arch. TryLrr
of 1901'), where I derived the quile general formula for v. as a
function of &, (;Z—b)z b's and (g) = 10", (see p. 2), and also that

c c

v

Pcre
RI,
particularly to a paper in the same Archives of 1905: Quelques
remarques sur I'équation d’éiat, where on p. 47 et seq. I gave analogous
considerations to those vaN DErR WaaLs gave later on p. 117—119
of his first paper (June 1910) on the Quasi association, and wore
extensively in his last paper of April 1911 (p. 1211 et seq.)*).
Two things have particularly struck me in this last paper. First
of all that on p. 1214 with too great modesty vaN pEr Waars calls
1y
7

for p, RT,, and p= (p- 7 formulae (9), (10) and (11)). But

his theoretical formula tog%— :_7"( — 1) an empirical formula.

1) Sur P'influence des corrections & la grandeur & ete.
2) The formula (II) on p. 1214 for ». agrees willh thal already cited on p. 2
of my paper of 1901.

-13 -
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For this formnla can very easily as far as its form is concerned
— be derived from the equation of stale combined with MaxwrLy’s
theorem. But in the second place thal in virtue of considerations on

db d*b -
the value of (d—) and (d_> on p.1221—1229 loc. cit. he arrives
. v Je

v
at the empirical formula (in the neighbourhood of the critical point):

b b( n
_:1——a(_’). N (0.
b v

p- 1227, where then n = 4'/, is found.

Now in virtue of considerations — which are in close connection
with the theory of association, developed by me in connection with
the solid state in the six preceding papers — I think we have to
arrive at the result, that the dependence of the quantity 6 on v in
the neighbourhood of the critical point is represented betier by the

relation :
b b 2
—=1—gp L S 1
:, rp(v__b), (%)

and this led by the following theorelical considerations.

In order to arrive at the form of the function b = f(v,7") in the
equation of state (p 4 ¢/)(v—b) = RT, we can, namely, follow
two different courses.

The first course, which is generally followed, is this that the
problem is considered from a purely Ainetic point of view. According
to the method of MaxweiL, Borrzmany, v. 0. WaaLs, Korrnwie,
Lorentz, REINeANUM, and others the vicissitudes of every molecule
separately are followed, the effects of collisions etc. etc. To shorten
“the calculations we can also make use of the theorem of the Virial
(Cravstus). By often laborious calculations we arrive in this way at
the formula of approximation

b=4b, (1 —_ ;—;% + etc.),
the coefficient '7/,, of which has afterwards proved to be =?/,.
The calculation of the following coefficienls becomes practically about
infeasible. In this molecular forces arve still left entirely oui of con-
sideration. If we wanted to include them into the considerations,
the calculations become still much more complicaled, and the tem-
perature also appears as influencing factor. (RziNeanum).

So the above formula gives the “apparent” change of &, when
ithe volume decreases. We leave aside here a “real” diminution,
fully discussed by van Der WaasLs some years ago.
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But there is still a second method, which leads o the purpose
quicker and more accurately in my opinion, viz. the thermodynamic
method. What can hardly be taken into account in the first method:
altraction, the staying together for some time of the molecules, for-
mation of so-called clusters of molecules, etc. is here implicitly
directly reckoned with.

The thermodynamic (or statistic) method simply briefly snmmarizes,
what the kinetic method would be able to reach only in a very
circnitous way. The thermodynamic method does nol occupy itself
with the vicissitudes of every molecule separately, but only divecis
its attention to the most probable final stute of the system. And the
collisions and the temporary molecule aggregations considered in the
kinetie theory arve — from a thermodynamic point of view — nothing
but the double, triple, quadruple etc. molecules, the varying quantities
of which are only functions of v and 1.

It is this method which more than ten years ago I wanted to
apply to the solution of this problem, and I repeatedly discussed it
orally, but I abandoned the attempt, becanse at the time the solution
was sought in an entirely different — in my opinion — impracti-
cable direction. I am now perfectly justified in using the qualification
“impracticable”, as I myself am more or less competent to judge
about it.

There is, however, one difference beiween the two methods. The
kinetic method gives some quantitive results, which the thermodynamic
method would never be able to give. E. g. that for ¥ =— o the volume
v must be diminished by four-times the molecular volume, to enable
us to find the correct value for the pressure. For this is a question
which is in connection with the collision of molecules considered
as perfectly elastic spheres.

But the corrections which were applied later on for the overlapping
of two, three, and more “distance spheres”, can also be obtained
thermodynamically, in my opinion, by examining how many double,
triple efc. molecules are temporarily formed. It is true that we do
not arrive at the quantitative value of the coefficients «, g8, ete. of
before, but yet at quaniities corresponding with them. Where,
namely, these coefficients «, B, ete. were calculated from the consi-
deration of segments cul off from purely geomelrical spheres, now
the quantities A0, A0, ete. are entered into the calculation, ie. the
variation of the molecular volume in consequence of the formation
of double, triple, etc. molecules. These last quantities remain purely
empirical, and can be considered kinetically as the apparent change

of 40 for simple molecules, when two, three etc. of them get into
7
Proceedings Royal Acad. Amsterdam. Vol, XIV.
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each others’ neighbourhood — i. e. as far as their effect on the
pressure is concerned, in consequence of the “efficient” diminution
of the available volume. I do not know, if I have expressed myselt
clearly enough, but the attentive reader cannot fail to feel the analogy
of the two methods.

The thermodynamic method, however, has this advantage that also
the influence of the mutual attraction of the molecules, of the variation
of energy in the formation of multiple molecule groups ete. can now
easily be taken into consideration.

We will not enter here into the accurate solution of this important
problem, in which we are also confronted by pretty great difficulties,
but only give an approximating expression, which may be used: in
the neighbourhood of the critical point.

86. Let us imagine instead of n, simple melecules n, double, n,
triple, n, quadruple ones ete. all the molecules to be n-fold on an
average. Then according to (28) of § 30, when we replace

1 (n—1)fRT . .
» -+ ¢/ by ( (z b) f) In it:
v_

0 IH(n—1)8 b

4 — RT —b
oT’+ e e v

pr _
(1—8) A+ (—1)8y—1 "~ (1+(@—1)8)—1 (RT)—!

holds, so that we get (¢’ = c¢: R+—1)

(’U __.b)n—l ,

S _ He—be .
gr RT, v—b

i—:-B = O’Tv(v—b)n_l [

If now in the neighbourhood of the eritical point § is put near 1,
i.e. if the multiple molecules are nearly all dissociated to simple
ones, and if we further assume g, =0 (see § 34), we get by ap-
proximation:

nAb

1 N —1 b
— = T b "
1-8

In this the association factor n (at the critical point) can be put
independent of v and 7'; in general this is, of course, not the case,
as on an average a smaller number (n) of molecules will be associated
to a compound molecule at high temperature and great volume than
at lower temperature and smaller volume.

)
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So if we represent the temperature function (')~ by «'*), we get:

nAb

e 1—0
(v_b)n—-l )

Hence for b==b,+30b — or as Ab=—10,-}+nd,, b=nb,—(1—F)Ab —
we find:

1——3:: o

ndb

e v—0b

b:nbi-—-aAb m_—l-.

Ab b
As — is about = at the critical poini, and will therefore be

v—

nAb
comparatively small, we may pub e v independent of v as a further
approximation, and write simply :
Ab
b=nb, —«a Z”_‘T)""—i )
nAb
when o' b is represented by e«. The apparent contradiction in
the dimensions of the fraction «Ab:(v—b)»—' with that of nb,
vanishes when we consider that ¢’ = ¢: R*—1, and that therefore ¢
and o still contain the factor Rr—!.
As for v=occ at any rate b =nb,, we may write for nd, also
0,, and se we get by approximation in the neighbourhood of the
critical temperature:

b_—_b(,[1_¢(%)"_l:|, . (39

Db
in which, therefore, ¢ = ab —.
q
From (33) the approximate expression:

db b n
b':—:(n—-l)w(ﬁ), N 114

dv
d(v—>
(dv—):l——b’—_—j is put as first

now follows easily for 7,, when

approximation (0. is about = 0,07).
Finally we find, also at 7T¢:

da*b

;Z—,lzn(n—l)rpu—i
v

by

— b = — v,

6(] 41
-1 e 30
(27" o

K
) 1f we do not put go =0, the factor ¢ ET is added to ¢r’,
- *
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—ub,"
‘,—c— is found :

[

So for the relation

— V¢ bc“ Ve

5 :nvc__,_bc e e o e . (889
Now at the critical point about
ve=2,200, ; —ub"=20,38 ; b'=1/,,=0,07
so that we get:
0,38 2,20
0,07 1,20
lience x
5,32 =1,83 7,

so that for » a value is found which is only slightly below 3. If
we take the value 0,39 for — v.6," (van DER WaarLs gives even the
—4 2,8 .
value ZT =3—8=0’41 on p. 1227 loc. cit.), we find accurately
4
n = 3. Hence it seems that in the neighbourhood of the critical point
the slight number of complex molecules which still remain, are on
an average associations of friple molecules.

Hence we may write for 7, by approximation:

b B,
b_,,—l—(p( b) T (2]

I shall have to conclude now; the fuller discussion of this interest-
ing problem, only just alluded to in §§ 35 and 36, I must postpone
to a further occasion.

Clarens, April 2204 1911.

Chemistry.. — “Action of sunlight on allocinnamic acid.” By
Dr. A. W. K. pr Jone at Buitenzorg.

Some time ago (Ber. 35, 2908 [1902]) Ruser found that ordinary
cinnamic acid, in the solid condition, is converted by the action of
sunlight into a-truxillic acid. A numbex of other compounds possessing
a '-1111]0 have been obtalned in a similar manner.

Among the acids obtained by the splitting of the coca alkaloids
occurs, besides a-truxillic acid, also a structure-isomer, B-truxillic acid.
It seemed to me very probable that this compound might form from
allocinnamic acid, which always occurs among the split off acids.

The allocinnamic acid, used in this investigation, was prepared
from the split off acids; it melted at 41°—42°, the melting point of
ErLeNMEYER’S ¢socinnamic acid. It was readily soluble in both petro-
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