Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

Docters van Leeuwen - Reijnvaan, J. \& Docters van Leeuwen, W., On the distribution of the seeds of certain species of Dischidia by means of a species of ant: Iridomyrmex myrmecodiae Emery, in: KNAW, Proceedings, 14 I, 1911, Amsterdam, 1911, pp. 153-158
are equal; the surface is in two ways locus of points with fixed distance to a given right line (each of the axes). If those two distances are equal, $\frac{\pi}{4}$ each, the surface divides elliptic space into two congruent parts ${ }^{1}$).

Botany. - "On the clistribution of the seeds of certain species of Dischiclia by means of a species of ant: Iridomyrmex mypmecorliae Emery." By Dr. W. Docters van Leeuwen and Mrs. J. Docters van Leeowen-Reynvann. (Communicated by Prof. F. A. F. C. Went).

Schimpre ${ }^{2}$) in his well-known work on American epiphytes, has arranged these plants in a number of groups according to the methods by which their seeds are distributed. Obriously it is necessary for these plants, that their seeds should ultimately reach the places, in which the adult plants generally grow. The seeds of epiphytes may be distributed througl the agency of fructivorous animals, and through that of the wind. The representatives of the first group are characterized by the possession of edible portions of the fruit or seed. Various members of this group are known among the orders Rubiaceae, Melastomaceae, Artocarpeae, etc. The wind may distribute the seeds if they are very light, as is the case with Orchids for instance; the spores of epiphytic Lycopodiaceae and Filicinae are also carried from tree to tree by air-currents. Other plants have seeds provided with a floating mechanism such as representatives of Gesneraceac and Asclepiadaceae.

Among well known epiphytes belonging to the last named order are vartious species of Dischidia, of which D. Rafflesiana has already been dealt with in several works. Since our arrival in Java, we have had repeated opportunities of observing this plant, both in its natural habitat and in our garden. Not only D. Rafflesiana but also D. collyris and still more D. nummularia are especially abundant in the immediate neighbourhood of our present abode. On the

[^0]hills in the vicinity of Semarang, i.e. on the last off-shoots of the Oengaran mountain, the numerous Mangifera's and Tectona's are often completely draped with these epiphytes. They are also found in thousands in the teak wouds of Mankkang, Djerakah, Tempoeran and Kedoeng Djatie. As long as three yoars ago when we first found these plants in the wild state, in the forest of Tempoeran, we noticed that trees over-grown by these Dischidia species, were full of a small dark-coloured species of ant. At the slightest touch the insects swarm over the trunk and the plants growing on it, and, in spite of their small size they can bite very unpleasantly. Since then we have noticed, that in numerous places, where the Dischidio's occur abundantly, the same species of ant also inbabits the trees in large numbers. In the neiglbourhood of Kediri, a small town at a distance of a day's journey from Semarang, one of us also saw these plants in large numbers in the tops of the slade-trees of a coffee plantation. Attention was drawn to their presence by the fact that on a certain spot the coffee trees were badly attacked by a small species of ant, which destrosed the bark and built channels withun it, so that a large number of coffee trees died off. It was found to be the species of ant already mentioned in the title. That there was a connexion between the life of the three above-mentioned species of Dischidia and the species of ant had been clear to us for a long time, but we were only able to discover the nature of this connexion in the last two rain monsoons.
Some time ago there appeared a paper by Ridiey on symbiosis between plants and ants, in which this investigator states that there can be no question of a true symbiosis between ants and Dischidia Rafflesiana. Possibly his opinion might have been different, had he known the connexion which exists between these ants and the seedlings, although we consider that as yet there is not sufficient evidence to assume the existence of symbiosis. We propose to publish our own results on this point in a detailed paper, but as the time we have at our disposal for research, is limited and the portion of the work mentioned in the title of the present paper, forms a rounded off whole, we here give a brief survey of the facts we have observed.
The seeds of Dischidia Raffesiana and nummularia agree completely as to shape (we are not yet acquainted with those of D. collyris), but those of D. Rafflesiana are about $1 \frac{1}{2}$ times as Iarge as those of D. nummultaria. Both have at one end a fine pappos of long white hairs. The seeds are compressed laterally and have on their narrow side and opposite the pappus, a thin white crest, which contrasts strongly with the testa, which is dark brown or almost
black. This crest is broadest at one extremity of the seed; it gradually gets narrower towards the opposite end and ceases completely about half way. The crest is composed of thinwalled cells containing oil and protein; it is clearly shown in the drawing of the seed of D. Rafflesiana published by Scmmper (PI. 6 fig. 6).

When walking on a quiet sunny day under the Mangifera's, which are sometimes completely draped with the grey strands of D. nummularia, one sees, when the seeds are ripe, the white pappus floating in the currents of air. If the seeds come into contact with a tree, they attach themselves more or less firmly, but can also be carried on again. At first sight one would therefore imagine, that these plants are disseminated by the wind alone. In our own garden and in that of the High School, in which a large number of trees are grown, we have carried on germination experiments with the seeds. They were stuck by means of a little water to the trunks of various trees and were regularly watered during the first few days. The seeds germinate extremely rapidly; the seedling attaches itself by the lower end of the bypocotyl and after a few days the cotyledons already appear. (Later we hope to describe the germination in detail). If the seedlings are now left on the trees without being taken case of, i.e. if they are not watered regularly, they soun begin to languish, although they are able to support much drought. The cotyledons keep crumpling up and become again turgid after a shower of rain. Although the past monsoon was very damp, not a single one of all the seeds, which were sown, survived. They all died off after a few weeks of drought.

Schimper writes that the seeds themselves may get down deep into the fissures of the trunk, but we have never observed anything of the kind; on the contrary the hairs of the pappus completely prevent the penetration of the seed itself into the fissures of the bark. It is further known that these plants, and especially D. Rafflesiana prefer to grow on trees with slight foliage or high up in the crown, so that they are exposed to the intense rays of the sun. It seemed to us worth while therefore to investigate in what manner the distribution and germination of the seeds really takes place.

After many abortive journeys through the habitats known to us, we saw the first young seedlings appear on the trees at the beginning of the wet season. They all, without exception, came up from deep down out of the fissures in the bark. Moreover we now saw them arise in all sorts of places out of the channels of the Irido-myrmex-ant, already well known to us. The seedlings were found most numerous in those places where the ants build their, very
primitive nests. Besides building between the branches and the roots and in the pitcher leaves of Dischidin Rafflesiana, these insects make their nests from enlargements of the tunnels, which diverticula are built with the same bitten-off particles of bark as the tunnels themselves. They prefer to make these enlargements on the lower side of a lateral branch, where such a branch emanates from a thicker one, but also on the lower side of the point, where two thinner twigs come off together. It would of course have been very peculiar, if the seeds had become attached in larger numbers just at. these places and had afterwards been covered by the ants. By these discoveries the problem was solved and later journeys and observations confirmed us more and more in our view.

When this fact has once been noticed, it takes very jittle trouble to collect a few hundreds of seedlings or more within a short time. Although germination takes place very rapidly, the further growth is, at least in the beginning, very slow. In the teak forest of Tempoeran we found very good evidence that we had not been mistaken. Among thousands of pitcher leaves of D. Raffesiana we found a single specimen which had a narrow slit in its wall. This pitcher was inhabited by a large number of ants, which had divided its lumen into various chambers and passages. The peculiar thing was that from this slit there issued the two cotyledons of a seedling of D. nummularia, while the hypocotyl axis was long drawn out and grew out from the innermost part of the ant passages.

The ants often live in large numbers on the small trees of Protium javanicum, which have been planted along the village roads and owing to continual pruning have assumed the aspect of pollard-willows. The widened, often half mouldered portions appear to be excellent nesting-places for the ants. Dischidia's indeed grow on these small trees in large numbers. We do not know why, but in various places one finds numerous ants on one side of the road and none or bardly any, on the other side. Withont exception there were in such cases mumerous Dischicdia's on one side of the road and few on the other. It is indeed in these places that the dissemination by ants is readily observed. We were moreover able to tak'e a large number of photographs which will be reproduced in the more detailed publication.

This point in the investigation was reached very rapidly but the principal evidence was still wanting. We had never directly observed the ants dragging away the seeds. Experiments made in our garden were unsuccessful, for the Iridomyrmex was always driven away by other species of ants. But after a long and abortive search we
were able to make more successful observations in the actual habitat of the plant.

It was on the morning of a sunny day, with a very gentle breeze. Ail around us we saw the light seeds floating in the wind. Whenever a seed stuck to a tree at a spot, where there were ants, the lattcr soon came running up from all sides in large numbers. The small ants are not able to take hold of the seed itself. They pull it by the hairs of the pappus. Among these hairs there are two kinds: a large number of long ones which break off easily, and a smaller number of short ones, which are less fragile. First the long fragile hairs are pulled off by the ants seizing them with their jaws and pulling in all directions. Then the seed is dragged away by a small number of ants and is seen to disappear among the leaves and stems of the Dischidia's already present. If no Dischiciac's are near, the sceds are drawn into the fissures of the bark and are then cauried further. Since the ants make their tunnels in the upper, as woll as in the lower parts of trees, the seedlings also are found growing in all sorts of places. The beautiful young seedlings of D. Rafflesiuna are found everywhere. At first they grow slowly, but as soon as they bave become somewhat arger, long, strongly heliotropic, climbing stems arise, on which but few leaves are developed. In this way the plant soon grows up to the higher parts of the tree, where, as is well known, it lives by preference. D. num. mularia and D. collyris however alsn grow with equal luxuriance in the shade.

In trees which are grown over in this way, the ants prefer to build their nests in between the Dischididia's. The roots of these plants then spread throngh the walls of the passages and nests, and sometimes form thick networks.

We thus arrive at the following conclusions:

1. that the seedlings which simply germinate on the trees without further intervention have a languishing existence.
2. that the healthy scedlings are to be found in the passages or nests of a certain species of ant.
3. that these ants drag away the seeds.
4. that the distribution of D. Rafflesiana and nummularia (and also of D. collyris, in which species we have not yet, however, observed the dragging away of the seeds) corresponds with the distribution of a species of ant. In the environs of Kediri, Semanug, Djerakah, Mangkang, Kedoeng Djattie, Tempoeran, Pekalongan and Kocripan this species is Iridomyrmex myrmecodiae Emery. It is of
course quite possible that in other places a different species of ant takes over the function of Iridomypiner.

The ants have been determined by profossor Forma, through the intervention of Mr. Jacobson; professor Fonim further states, that this species of ant inhabits in large numbers the tubers of Myrmecodia and Hydnophytum, a fact which we ourselvos could observe in plants from Tjilatjap and Buitenzorg. Another specics of Dischidia, namely D. sagittuta Decaisne, which we found in large numbers on Hibiscus tiliuceus on the sea shore at Koeripan, germinates and grows on the trees in our garden more readily than the two other species. So far we could not find here any trace of mymmecophilous dissemination. In addition to their being distributed by ants, the three Dischidiän's Rafflesiana, collyris and nummuluria ag'ree with one another in a varicty of other points. We hope to be able to show this later:

Physics. -. " Sootherms of monutomic substrances and of their binary midures. X. The behrviour of argon with respect to the law of corresponding states." (Continucd). By Prof. H. Kamblaneh Onnrs and C. A. Cromanan. Comm. No. 121^{b} from the Physical Laboratory at Leiden.
(Communicated in the mecting of May 27, 1911).
\$4. Comparison of aryon isotherms with those oblained from the mern reduced equation of state, and woith those for isupentone.

Two tables which we have already published, one of them ') containing the individual virial coefficionts for argon calculated from the experimental results, and the other ${ }^{2}$) the corresponding coefficients deduced fiom the mean reduced equation of state VII. 1 afford, on compaxison with each other, a means of determining the behaviour of argon with respect to the law of corresponding states. Of this beliaviour, which finds expression in systematic deviations from VII. 1 we have tried in Plate I to give a comprehensive reprosentation which seems to us a suitable manner of giving striking expression to the characteristic deviation of the reduced equation of state for the monatomic substance argon from the reduced mean equation for

[^1]
[^0]: ${ }^{1}$) Likewise we find elliptic space $S_{2 n}+1$ of an odd number of dimensions divided into two congruent parts by the quadratic $Q_{2 n}$ containing the points at fixed distance $=\frac{\pi}{4}$ from a given plane S_{n} as well as from its reciprocal polar S_{n} with respect to $\Omega_{2 n}$.
 ${ }^{2}$) A. F. W. Schimper. Die epiphytische Vegetation Amcrikas. Bot. Mitt. a. d. Tropen, Jena 1888.

[^1]: ${ }^{\text {1) }}$ Proc. Ac. Amsterdam, Dec. 1010. Comm, No. 1186 Table II.
 ${ }^{2}$) Proc. Ac. Amsterdam, March 1911. Comm. No. 120d 'lable I.

