Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

Nernst, W, On the inconsistency of my heat theorem and der Waals equation at very low temperatures, in:
KNAW, Proceedings, 14 I, 1911, Amsterdam, 1911, pp. 201-204

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'
for by incomplete combinalion of the two components, so that a small quantily of water escapes further action of the gas by being enveloped in solid hydrate. A further proof of this is furnished by the fact that some preliminary experiments, in which little care was devoted to the complete formation of the hydrate by shaking, yjelded far more oscillating ralues, which were all higher than those menlioned above. So it is beyond doubt that the values found can only indicate a too grear content of water.

So the hydrate $H_{2} S .5 \mathrm{H}_{2} \mathrm{O}$ differs from the many hydrates M. $6 \mathrm{H}_{2} \mathrm{O}$ examined by Villard.
3. When in conclusion we survey the results of the investigation, it appears that the system $H_{2} S-H_{2} \mathrm{O}$ presents great analogy to the system $\mathrm{SO}_{2}-\mathrm{H}_{2} \mathrm{O}$, one of the gashydrate systems investigated by Banhus Roozrboom. Thic solubility of the higdrate of SO_{2} under the threc-phase pressure in the condensed gas is only small, like that of the hydrate of $H_{2} S$, because in both cases the pressure of the line $S L_{1} G$ lies only litlle lower than the vapour tension line of the liquid, most volatile component. The other systems examined by Bakhus Roozrboom deviate more or less from this system, either in consequence of the fact that the concentration of L_{1} on $S L_{1} G$ lies much less on one side, or because this line shows higher pressure than the two components, so that the L - G-surface presents a maximum in the isothermal sections.

Anorg. Chem. Laboratory of the University of Amsterdam.

Physies. - "On the inconsistency of my heat theorem and van drir Wanls' equation at very low temperatures." By Prof. W. Nesnst of Berlin. (Communicated by Prof. H. A. Lormentz).
(Communicated at the meeting of May 27, 1911.)
Messis. Kohnstanm and Ornstein ${ }^{1}$) have published a criticism on my theorem of heat ${ }^{2}$) in these Proceedings, which is based on clearly mistaken premises, and which therefore calls for a refutation.

Everybody who has studied Thermodynamics, knows the form, in which Hembol't\% and others have expressed the second theorem of heat:

$$
\begin{equation*}
A-U=T \frac{d A}{d T} \tag{1}
\end{equation*}
$$

[^0]Now the question rises how under certain conditions the two thermodynamic functions U and A (variation of the total and the free energy) behave at low temperatures, and in the discussion of this question I pointed out that when gases are present in the considered system, we cannot reach the absolute zéro of temperature wilhout discontinuities making their appearance, but that when only solid and liquid substances occur, the following equation holds:

$$
\begin{equation*}
\lim \frac{d A}{d T}=\lim \frac{d U}{d T}=0, \text { for } T=0 \ldots . \tag{2}
\end{equation*}
$$

The question what is the relationship between U and Λ for very low temperatures, has, morcover, already been treated by different authors¹); hence it seemed superflious to me to give further explanation about this problem itself.

In the strange way in which they treat the problem the two authors write that "it may be assumed" that the meaning is that the limit is approached with constant volume, because otherwise the whole problem would be indefinite.

It appears from this remark that the authors do not quite understand the meaning of equation (2), and though it seems hardly necessary, I shall illustrate the question of the way in which the limit is reached by an example. Let us consider the reaction

$$
S(\text { rhomb }) \rightarrow S(\text { mon }) ;
$$

independently of the pressure under which the two modifications of the sulphur are, A possesses definite values, of course variable with the pressure. As equation (2) if it is correct, must also bold for the case of compression - and we come here to the conclusion that for low temperatures the heat of compression $A-U$ becomes equal to 0^{2}) - we need not impose any restriction on equation (2): only the differential quotient of A must of corrse in each special case be formed in the way that classical thermodynamics requires for equation (1). I can, however, not be expected to set this forth more fully here.

The authors now come to the conclusion in a rather circumstantial way, some points of which are by no means indisputable that when we consider van der $W_{\text {alas' }}$ formula to hold for fluids down to any temperature however low, equation (2) camnot hold.

This result, which, of course,] had known for a long time, may be arrived at in the following direct and exact way.

[^1]As al case to which we will apply equation (2) wè consider the expansion of a liquid from the volume v_{1} to the volume v_{2} at constant temperaturc. When van der Waiss formula

$$
\left(p+\frac{a}{v^{2}}\right)(v-b)=R T \quad
$$

holds for this, we get:

$$
A=\int_{v_{1}}^{v_{3}} p d v=R T \ln \frac{v_{2}--b}{v_{1}-b}+\frac{a}{v_{2}}-\frac{a}{v},
$$

while

$$
U=\frac{a}{v_{3}}-\frac{a}{v_{1}}
$$

follows for U. These relations are of course in harmony with equation (1), of which one can easily convince oneself, on the other hand we have:

$$
\lim \frac{d A}{d T}=R \ln \frac{v_{2}-b}{v_{1}-b}, \lim \frac{d U}{d T}=0(\text { for } T=0
$$

relations which are incompatible with equation (2), i.e. the new theorem of heat.

Now, however, it would be entirely injustifable to consider the new theorem of heat refuted on this ground; it is indeed only experiment which has to decide this question. And as we know, experiment proved long ago that van der Wanls' formula and even the general theory of corresponding states too are often in flagrant opposition to experiment ${ }^{1}$); it is further easy to see that especially at low temperatures the deviations become particularly striking. The now thoorem of heat, on the other hand, has already been confirmed by a great number of examples, and in many hundreds of cases, in which we could not yet prove it with perfect exactness for want of a more accurate knowledge of specific heats at low temperatures, at least certain approximate results were confirmed, which I could derive from it.

For the rest it is also easy to derive from molecular theory even without having recourse to the new theory of indivisible units of energy which is of course incompatible with formnla (3), that this formula cannot possibly hold for liquids at low temperatures. For it is known that strongly undercooled liquids assume a rigid glassy state at low remperatures according to Tamanns's investigations, and nobody but

1) Cf. e.g. my Theoret Chem. p 236 and particularly Krisline Mcyer, Zeilschr. physik. Chem. 32 1, (1900).

Messers. Konnstama and Onnstrin would cver think of applying van der Wals' formula to amorphous Quaz and similar substances. For here there is no longer present uñchecked movement of the molecules, and this is encirely in conflict with the premises on which van dra Wanss' formula was derived. Indeed, the new theorem of heat is intended to account for the entirely different circomstances found here; for the rest it necessarily follows from the iheory of indivisible units of energy ${ }^{1}$).

Messis. Koinsetamin and Orastimen therefore try to refute my theorefical considerations by evidently inaccurate, nay even inadmissible formulae ${ }^{2}$).

It is known that when Tart questioned the second theorem of heat on the assumption of Demons, Classius could point out with perfect justice that his formulae did not refer to the question how heat behaved with the aid of Demons, but what it did of its own accord. In the same way the attention of Messris. Konnstamm and Ornsteme might be drawn to the fact that equation (2) does not hold for substances which only exist in their imagination, and that the real behaviour of substances at low temperatures should be taken into account.
In conclusion we may point out that the formulae (2) express the whole of my theorem of heat, and that particularly the applications which I have made to gassous systems, with which remarkably enongh, the authors exclusively operate, consist only in a combination of these formulae and the already known theorems of heat.

Physics. - "Further Eetperiments with Liquid Heliann. E. A Helium-- Cryostat. Remarks on the preceding Commanications." By Prof. H. Kammbingh Onnes. Comm. No. 123a from the Physical Laboratory at Leiden.
§1. Introcluction. In the Jubilee volume presented in October 1910 to J. M. van Bemurlen a description was given of an arrangement by means of which liquid helium had been successfully transferred from the apparalus in which it had been prepared to another vessel in which the measuring apparatus could be immersed in liquid helium. Advantage was then taken of this arrangement to

[^2]
[^0]: 1) These Proc. of 24 Dec. 1910.
 ${ }^{2}$) Nernsir, Theoret. Chom. VI Aufl. S. 699 (1909); cf. also the literature mentioned in my paper, Journ. de C'lim. Phys. 8228 (1910),
[^1]: ${ }^{1)}$ Van ${ }^{\prime}$ thorf, Boltzmann Festschuift 1904 S .233 ; Brönsted, Zeitschr. phys. Chem. 56645 (1906).
 ${ }^{2}$) Nernst, Journ. de Ghim. Plyy. 8236 (1910).

[^2]: 1) Nernst, Journ. de Chim. Phys, 8234 (1919); F. Jürtiner, Zeitschr. f. Elektrochem. 17139 (1911); O. Sacior, Ann. d. Phys [4] 34455 (1911).
 ${ }^{2}$) With an analogous reasoning the said authors might also have "refuted" Planar's formula of radiation, the whole theory of indivisible units of energy ete.
