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Physics. — “lnergy and mass”. By J. D. van per WaaLs Jv.
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§ 1. Introduction. In classical mechanics the mass of the bodies
was considered to be constant and the force was defined as the time
derivalive of the momentum; in consequence of this the law of
conservation of momenium, the law: the action is equal {o the
reaction, and the law of the uniform motion of the centre of inertia
of an isolated system were considered to be ihree different ways to
state the same law of nalure. At present many physicists consider
this nol to be the case. They assume that the law of conservation
of momentuwn holds good in nature. For this assumplion, however,
it is necessary to generalize the nolion of momentum, so thaiwe
ascribe also a (uantily of momentum (o the electromagnelic field.
The law aclion = reaction however, most physicists consider not
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to be fulfilled. Tt is easy to generalize also the notion “force’ in -
such a way that this law is satisfied. The only thing thalis requirved
for this purpose is that also the time derivaiive of the electromagnetic
momentum is called “force”. -

To this the objection has been raised that we must consider the
ether to be stagnant, and that il is therefore, meaningless to speak
of a force which is exerted upon it. But we speak of the momentum

of this stagnant ether and 1 do not see why we cannot as well

spealk of the force which acts on if. Moreover we may avoid both
expressions and affvibute the momentum not {o the ether, but to
the electromagnetic energy, and in the same way we may take the
force to be exerted on this energy. Thus we also alirvibute the entropy
not to the vacuum or lo the ether, bui 1o the radialing energy.

These are after all mere questions of nomenclature. More important
is the question, whether the motion of the centre of inertia of an
isolated system is really uniform. It is evideni thalt we may assume
this fo be the case if we conceive the electromagnetic momentum
to consist of a mass which is in motion. As an instance we will
consider a slationary body with a mass M and a ray of light which
is absorbed by it. The ray represents a quantum of momentum which
we will denote by me, the radiation propagating with the velocity c.
When the ray is absorbed, the total momentum must remain constant.
Now we can make two different agsumptions. In the first place that
ot Porxcark '), who assumed that the mass 1/ obtained a velocity ,
so that Mv = mec. The uniformity, however, of the centre of inertia
required the following rather startling assumption about the mass m:
wlhen the radiation is absorbed the mass m is stopped, itislhowever
not annihilated, but becomes stationary at that place where the
energy has been absorbed. The body which has absorbed the cnergy
however moves in the mean lime away from that place. Pomxcans
himself declaves that a physical meaning cannot be ascvibed to this
theory.

Another possible assumption was proposed by the present wriler
also in 1900 in defending his theses on the occasion of his promotion
to the degree of doctor. This assumplion consists in this, that we
imagine the mags m to remain in the body which has absorbed (he
energy. This body would then obfain a velocity v', which is determined
by the equation (M 4 m)v' = mec. This assumption involves a hypo-
thesis with a very decided physical meaning, namely that the mass
of a body depends on its energy. In 1900 however there seemed to

1) H. Powcart. Livre Jubilaire dédié a H. A, Lorenrz p. 252 Anno 1900.
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be litlle veason to doubi the constancy of the wmass ol the bodies.
I thervefore felt obliged to reject this hypothesis and with it the law
of the nniformity of the motion of the centre of inertia, and the law
action — reaction. .

The electron theovy, however, has since lhat iime given rise fo
doubts as lo the constancy of the mass of the bodies, and Einstrm *)
has moreover shown thal LormNtz’s theovy of relativity requires in
some cases that we ascribe o the bodies a mass varying with their
energy. It seemed thevefore desirable to return to the idea rejected
in 1900 and to ascribe a mass to the energy, and that as well with
Pomncari for the case that the energy moves in the electromagnetic
field”) as with Kmsrmixn for the case that it occurs in ponderable
bodies. Lavr") has given a general theovy for this latter case. Although
mwy vesults partially coincide with those of Lauw the following
considerations will perhaps not be super{luous.

§ 2. In the first place we may deduce from the formulae:
The current of energy =&

1
The momentum per unit volume = —&
cﬂ

. . L
that the mass of a quantily of energy & is equal to —s. The velocity
C,
of this mass in the electromagnetic field may be assumed io be
€ . .
D= W=1{ (€ +9%) representing the density of (he energy. I
say it may be assumed to have thal value, for we may also introduce
another supposition namely that at a point severul paris of the energy
have different velocities. And in connection with § 5 this assumplion
has some advantages.

So if a ray of light moves in an elecirostatic field, the above valne
of w is different from ¢. We may however also assume that the
light energy moves with the velocity ¢, and the other quantities of
energy move with different velocities or ave stationary. It is however
immaterial which supposition is introduced, if only care be taken

) A. Ewmsrew. Ann. d. Phys XVII p. 639, 1905, and XXUL p. 871, 1907,
Compare also G. Norpstrém and M. Aprauan Phys. Zeitschr, X and XI Anno
(1909 and 1910) and IH. A, Lomestsz. Versl. Kon. Akad. Amsl. Juni 1911, p. 87.
(Slill lo be published in these Proceedings).

3) H. Pomvcart 1 c. Compare also A, Ewsroy, Ann. d. Phys. XX p. 627. 1906
and M. Prasex. Ann. d. Phys. XXVI p. 1, 1908 and Phys. Zeitschr. IX p. 828.
1908.

8 M. Lave, “Das Relaliviliilsprinzip.” Vmmwea und Sour. Braunschowvelg 1911,
Also Ann, d. Phys. XXXV p. 524. 1911,
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that TWiv == &. The momentum has then also the right amount

j—@. In this paragraph I will assume for simplicity that at a given
. x
point all electromagnetic energy has the same veloeity.

It is important to point oul that ¢ is the maximam value which
can be assumed by w. This value is reached if € and D are equal
and perpendicular to one another. In all other cases w is smaller
than ¢.

Finally I point out that the essential property of mass according
to our considerations is that mv = momentum. Thal moving mass
involves a quantity of kinetic energy is not to be considered as
essential ). It is not even generally trne. When a body radiates
energy in all directions, the energy (and therefore a part of the
mass) which was originally 1n rest, is sel in motion. This motion,
however, is not connecled with any kinetic energy, for the energy
15 constant. The fact that the motion of a body is accompanied with
kinetic energy must therefore be considered as a secondary pheno-
menon. The energy is then not only set in motion, but also augmented.
So the energy of an electrically charged conductor is augmented
with an amount of magnetic energy when this conducior is moved,
and something of the same kind must happen in other cases where
kinetic energy occurs®).

We will now put the queslion: what are the forces which are
exerted on the electromagnetic energy ? We wiil start from the well
known equation:

(oL 108
AV Dinpy= 1BV |y 108
d i

SNON

Here A ) is an element of volume, ¢ the densily of the materal

. . . 0

mass, v its velocity and € {he Poynting vector. The symbol 5

t

indicates” a partial diffeentiation with vespect to the time with
conslant value of the coordinates, and

i 0
ar o

Finally vepresents

v J L 0
+ J'a“;’*‘ 1/6'17"" ”:az

1y This has already been remarked by Lave.
2) PFar fiom denymng the existence of th* ether, I should be inclined to account
for all the inertia by the action of the medium Cf. Phys. Zeitschr. p. 600. 1911,

8) In accordance with Laut a pressure is represented by a positive, a Llension
by a negative value of p.
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. Opi. . Opry . Opae
Div. py = ” + ay/—f— 3
Paz == % (@2 + H%) — €, — 9,
Py =— (€ € + 5, H,)
Pz =— — (@L @z -+ {77 ':3;: )

In order to introduce the forces which act on the medium energy
we will transform the righthand member of egnation (1) in such

.. 0
a way that the differential gquotient with — no longer occurs in if,

0t
ifferenti ) _ d 9 0 0 0
but a differeniial quotient with PRy + 1w, o -+ 1y, a -+ W 5
This-can be done as follows. We put v
. - ,
—GT C=9u

Then eqﬁhlion (1) can be written:
d(ov, L V)+ d(o'w V)

— AV Div p, —
la de dt
dAV 00wy 00" W, 00z
—o'm — AV Wy +1y —— + Wy —— |;
T (zam_”yéy—{_”a: '
1t we now put:
, ' . = 2 (CZ‘.LI
P =00 = =W

Sl ! —

Py =90 W, Wy = o Ql =W

Phe= 0wy Wy = %8 _ &8
1z = v = =

? ¢t o' W

and p—p' =1t (. € P~ P =1tn ele.), and we add AV Div p',
to both members of the equation, then we get:

Ao AT d(o AV
— AV Divty = (QL; i (Q“;ft ) _

"AT

75—" Q' W AV Divw.

—_ Q! W,

i

aLv .
As however = AV Divw, the last two terms cancel each

v

other. S0 we get an equation the left hand member of which may
be interpreied to represent the force which is exerted by ihe tensions
¢ on the volume clement A V7, whereas the righthand member represents
the increuse of the momentum of the masses gAV and ¢'AV,
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Thus we are led to consider the elemenis of 7 as the guantities which
determine the tensions in the medium. In the electrostatic and in the
purely wagnetic field these expressions agree with those given by
Maxwern. Bal in the general case they differ from those values. In
a plane wave for instance the tension in the direction of propagation
becomes zero. At first sight this may seem strange. For MaxweLn
deduced the existence of the pressure of the radiation from his value
of the tensions, and il appears that in puiting ¢, =0 (@ being the
direction of propagation) we deny the existence of that pressure.
Yet this is not the case. For often we deduce the existence of lhe
pressure of radiation from the momentum of the electromagnetic
field without making use of the tensions. Properly speaking these
two explanations of the pressure are contradictory; or at least one
of them is superfluous. If both the tension and the momentum exisied
in the medium, the effect of these two causes oughi to be added
and we should find the double value for the pressure.

This difficulty does not exisi if we ascribe the above values to
the tensions. According to them a force exerted on a body is to be
ascribed either to a tension ov to (he momentum of the medium.
And if they both exist, their effect must be added. Let usconsider a
ray of light reflected on a perfect mirror. In the ray we do not
assume any longitudinal tension, but at the surface of the mirror the
normal component of & is zero, and our expression for the tension
is by no means zero, but coincides with that of Maxwzrr. The effect
of a ray of light on a mirror is therefore quite analogous to the
effect of a jet of water on a surface by which it is thrown back.
In the jel there need not be any pressure, but on the surface where
the waler is thrown back, a pressnre does exist.

The tensions ¢, which we introduced, are therefore quite analogous
10 elastic tensions in bodies; the tensions of! Maxwurr on the other
hand are analogous to the wbsolute tensions, as Lauw calls them, i. e.
of those quantities whose divergence is equal {o the change in
momentun of a stationary element of volume. This change is occasioned
by two causes: 1t the fensions £, 2" the {ransport of momentum
through the surfaces of the volume element.

The result of our general considerations is this, thal we — it is
true — deny the existence of bodies with a constant mass, and that
our assumptions differ in this respect from those of classical mechanics.
But on the other hand the law of conservation of energy warrants
that the total amount of mass is constant, so that the only
difference is that we asswmme that the mass can be transferred wiih
the energy (rom one body {o another. Moreover we have reassumed
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the law action = reaction and the law of the uniform motion of the
centre of inertia. Comparing these assumptions with those of the
oldet theory of elecirons, where the total mass was a vaviable
quantity, it appears thal we by no means deviale farther from classical
mechanies, but rather that we return to it.

§ 3. Let us now consider a special case: a body is set in motion
by a force . We will assume

dm 1 dv dm
—=—of and K =m— + v —
a ¢ dt + dat
From lhis assumption follows: )
1
~ 1db
dm &
{ T T e
m )
I——
¢

or
»?
{(m) = — %l(l — —‘> + C

Writing {(m,) for ¢, we find:

m

« n3
R
e

Without making use of ihe theory of relativily we find therefore
the well-known expression derived by Lorentz ') in his ingenious
paper in which he drew up that theory. Perhaps we may be astonished
{o find this relation withoul introducing the LorkNTZ contraction,
whereas Loruntz derived it for bodies which do undergo this con-
traction. In order to explain this fact we observe that (he above
deduction is always applicable, it the force & represents the only
change of the energy of the body. And this is the case, 1t if the
shape of the Lody is invariable, 2" if the body undergoes the LoreNtz
contraction according to the theory of relativily. For according to
this theory the contracted form is the form of equilibrium for
the moving body. A virtual change of form, therefore, does not
require any work, and if a body is accelerated quasistationarily, no
work is expended for the change of form. For an electrically charged
body e.g. the negative wovk done by the electrical forces when the
body conlracts will be compensated by posilive work of other forces
(which we will call elastic forces).. )

1) 1. A, Lorexrz These proceedings Vi, p. 809, Anno 1904.
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This observation throws a new light on lhe signification of the
well-known experiments of Kavraany (Bucamrir, Houpka). These ~
experiments are carried out with a purpose o investigate whether -
the electrons confract when moving. We here see however that, even
if the accuracy of formula (2) is perfectly Confirmed by experiments
of this kind, this by no means proves the exisience of the contraction.
What really can be decided by these experiments is whether we
have rightly atiributed mass to the energy. -

In order o deduce equation (2) we have assumed that the increment

the increment of the energy. We are

k

of the mass is equal to —
o

o

- 1
now inclined to ask whether also m,=—¢, (¢, = the energy of
c

the body when its velocity is zero). Specially we will put this
question for electrons with surface charge. For tbe electromagnetic
energy and the electromagnetic momentum we find respectively :

1
¢ L —
, *3 , g4 b '
fF— ———m————¢ and @):‘.————————80

= 0

2 ve 3 3 v¥
¢ 1 — — ¢ 1 ——
c? ¢

¢, representing the electrostatic energy of the stationary electron.
These values do not agree with the formulae:

N 1
and & — — sgv.
02

but it does not follow that these formulae would not be satisfied if
we had {aken the total energy and the total momentum instead of
¢ and &' It is namely known that an eleciron has besides its electro-
magnetic energy, still energy of another kind ') (elastic energy), in
consequence of which its mass and ils momentum must be augmented
by a positive term. Bul there is another reason why ©' must be
diminished by a certain amount in order to find'the total momentum.
For inside the electron is an amount of momentum whose direction
is opposite to the direction of the motion of the electron. To prove
this we will investigate the veclor of Poynring when the electron
moves in the direction of the positive X-axis. ‘At the half of the
electron lurned towards the positive X-axis this vector is directed
inward, at the half divected towards — X it is dirvecled outward;

) Cowp. i.a. H. A, Lorenrz. The theory of elecirons p. 113 and 114, where
hlso the remarks of Porvcari and Apraman referring lo lhis are discussed.
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in the electron it is zero. The continuity of the motion of the energy
requires that in the electron the transport of energy in the direction
— X takes place, and that {herefore also an amount of momentnm
in that direction exists. This transport of energy in the elertron is
occasioned by the elastic forces. In the electron cxists namely a
tension, and this is always accompanied with a transport of energy
opposite to the motion of the body, in the same way as a pressure
is accompanied with a transport in the direction of the motion. ~
So we see that &' and ¢ must be augmented by several amounts
which are at present unknown. It is {herefore impossible to decide

: 1. .
whether the equation m,=—=-— &, is satisfied. 1t is not even certain
e

that this question has a real meaning. For in mechanics the energy
is never perfectly determined, but contains an arbitrary constant.
And though for some kinds of energy no reasonable doubt can exist
as to the absolule amount, as for the kinetic, the electric, and the
magnetic energy, it is by no means certain that for all kinds of
energy we have a sufficient reason for the determination of the zero
of energy. So we musl content ourselves with observing that it is
certainly also impossible to prove that the equation does not hold good.

The explanation of the relation between the energy, the mass, and
the momentum of a moving body given here differs from that of
EinsteN '), who assumes that the energy of a moving body varies
if a system of equal and opposile forces is applied, although they
influence neither the velocity nor the shape of the body and accord-
ingly do not change the energy when evaluated from a system of
coordinates which shares the motion of the body. According to
Lorentz *) these forces bring about also a variation of the momentum.

It appears however to me that this view cannot be maintained.
In the first place the existence of a rigid body is assumed, and the
exislence of such a body would be at variance with the fundamental
hypothesis of the theory of relalivity*). Bul the increase of energy
and momentum would not be found even if we assumed the existence
of such a body.

For a body cannot be rigid with vespect to every system of
coordinates. If it has that quality with respect to a coordinate system
which shares its motion, it cannot have it with respect o other
coordinate systems. A disturbance which propagates with infinite
velocity when evaluated from a system which shares the motion of

) A. Emsreny, Ann. d. Phys. XXIII, p. 371, 1907.

) H. A. Lorentz Versl, Kon. Ak. Amst. Juni 1911, p. 95,
) M. Laue. Phys. Zeitschr. 12, p. 48, Anno 1911,

-10 -
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ihe body, will propagalc with other velocities when evalualed from
a system relative (o which the body moves with a velocity v. Evalualed
from such a system the velocily of propagation in the direction of

9 a
o i

the motion is 5o the opposite direction il 1§ —
Al

Let us now take o rod whose ends will be called 4 and 5. In
A and B two equal and opposite forces are applied. These forces
are applied ai the same time when evaluated from a system relalive
to which the rod is in vest. An observer relative to whom the rod
moves in the direction from A towawvds S will find that the force
in 4 is applied earlier than that in /3. Call 7 the moment in which
the force in A4 is applied, then Le will find that the force in B is

, )
applied at the moment ¢ —I—;w’ . The energy and the momentum

calcalated by Emsteix and by Lorentz are those quantities imparied
. . v . .
to the body by the force 4 during the interval — 2/, during which
¢

2
the force in B was not yet applied and could not cancel it. We
have here however not yet taken into account that the effect of the
force in B propagates in the rod with a negative velocity and that

. - o . . . . - » . » n
it is felt in 4 before it is applied in B. During the interval S

during which it is not yet applied, the force in B imparts notwith-
stfanding energy and momenium lo the body which exactly cancel
those amounts which are imparted by the force in .

We see here again that the assumption of the existence of rigid
bodies leads in the theory of relativity {o unacceplable conceplions.
We arve therefore induced to assume that every body is elastically
compressible and that in such a way that the same law which holds
for the propagation of light in moving wedia also applies to the
propagation of elastic distarbances.

Let us apply to a body a syslem of equal and opposite forces, by
which it is compressed, and if we (hen set il in motion, in consequence
of which it contracts farther, then the forces will again do a cerlain
amount of work when this coniraction takes place. This is perfectly
analogous 1o the case that we apply first a set of forces 4, which
compress a body, and aflerwards another set B, which compress it
sill further. At this second compression the sel 4 will again do
some work. So il proves to be (rue that a set of equal and opposite
forces changes the energy of a moving (and also of a stalionary)
body, bul this energy is exclusively the consequence of the contraction
and change of form of the body.

-11 -
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So it appears to nie that the circumstances are mucl simpler than
we should conclude from the rather stariling conclusion of Einsruix,
that forces which do not impart any change ol velocily or shape lo
a~body, yel would change its energy.

1 lay some stress upon this poini becanse it appears to me that
everything in the theory of relativity may be interpreled in a much
more rational and intelligible way than many people imagine. So the
fact that according to the theory of velalivity {wo velocities cainot
be added in the ordinary way by means of the parallellogram is
often thought to necessitate a new doctrine of kinematics. We must,
however, take inlo accouni thal velocities, measured by the same
observer, may be added in the usual way. Only for velocities eva-
lnated from coordinate systems moving with different velocities this
is nol the case. Those velocities, however, are measured with different
units of length and time. And velocities measured with different units
cannot divectly be added. This was already the case according to
the old doctrine of kinematics. For that reason we do not want a
new one.

Neither is the Loruntz contraction a sufficient reason {0 speak o1
a new doctrine of kinemalics. It appears to me that the best way to
formulate the discovery of Loruxtz is to say, that when a body is
sel in motion, it experiences forces which try to malke it contract in the
wellknown manner. It is however possible that {hose forces are
cancelled by other forces, and then the coniraction does nottake place.
So the contraction cannot fake place when a body rotates; a begin-
ning contraction is in this case opposed by elasiic forces.

In the same way we formulate the law of Nuwron by saying,

m,m

that iwo masses at a distance 7 altract each other with a force f

17772
73
Whether they will obtain the corresponding accelerations depends
upon the possible existence of otherc forces which perhaps cancel the
Newtonian force. So it appears ro me that the law of Lorextz con-
cerning {he contraction no more belongs {o the region of kinemalics

fhan the law of Nzwron concerning gravitation.

§.4. Mutual Mass. let us imagine two electrons with equal
charges ¢ but of opposite sign, and both with a total mass m. Their
distance be »r. Then we wmay distingnish three masses: m in the

C)
o2

() . .
centre of each molecule, and a mass m,, = oo which veally resides

T
in the field, but which for many puarposes may be thought to be
concenlraled in its cenfre of inertia i. e.in the point hallway belween

-12 -
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the two eleclrons. 1f we impart fo this system a velocity v, then
the momentum will be (2m 4 m,,)v?). It one of the electrons is set
in motion and the other remains in rest, the momeninm will be
(m -+ $m,,) v, for the mass m,,, remaining halfway between the two
electrons, moves with a velocity §v. This however is only true for
yuasi stationary motion, and we musi keep in view that the requiremenis
for quasi stationary motion are in this case by no means so easy 10
be fulfilled as in the case of a single electron. If e. g. the electron
vibrales with a wavelength <, then the mass residing in the field
and contributing to m,, cannot be assumed to have everywhere the
velocity 4 v. This mass therefore may not be thought to be concen-
trated in the centre of inertia and the mass of the electron may not
be avgmented with & m,,.

Let us consider electrons on the sun. They have a greater poten-
tial energy than those on earth. Ave we justified in ascribing a greater
mass to them and in expecling thal the period with which they
vibrate will accordingly be greafer ? *) In order 10 answer this question
we must investigale whether this potential energy shares the motion
of the electrons or not. If we assume that gravity propagales with
infinite velocity, we shall have o assume that the gravitational energy
moves with the electron, and then the mass of electrons on the sun
would veally be greater than that on earth. If on the other hand
gravitation propagates with the velocity of light this conclusion would
not be justified. ,

If the shifting of the spectral lines in the light of the sun as
expected by Eivstmin therefore does not occur, this fact does not
prove that we are wrong in ascribing a mass to the energy. But it
proves that gravitation propagates with finite velocity. If on the other
hand the cffect did occur, it would show that gravitation propagates
with infinite velocity or at least with a velocity which is very great
compared with that of light. The effect would therefore be in direct
contradiction to the hypothesis of relativity.

§ 5. We will still consider the following special case. A rod of
1 cm? cross section experiences a pressure fy in the direction of its
length, We will call the ends of the rod 4 and B and choose the direc-
tion from 4 to /3 as positive X-axis. The rod moves with a velocity
v in this direction. T be the density of the energy of the rod. The
amount of energy which passes through a stationary plane of unit

) This agrees with the caleulations of L. Simersremv, Phys. Zeitschr, XII,
p. 87, 191L.
%) A, Emsrer, Jahrbuch der Radioakt. . Elektr. 1V, p, 459,

-13 -
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area perpendicular to the X-axis, would according to classical mecha-
nics be:
& = (W + tw) »-

According to our considerations the question would be a little less
simple. We shall have to conceive W {o be separated into three
parts: W, moving along with the vod with the velocity v, W,
moving with the velocity w, in the 4 X and W, moving with the
velocity W, in the — X-direction. We are inclined to suppose that
W, 4 W, will be the elastic energy which is a consequence of the
compression, and that w, and wn, arve the velocities with which a
perturbalion propagates in the moving rod according to a stationary
observer. If we put v =0, we get w, — w, and the assumption, which
I introduce here is, thai also in this case the elastic energy is not
in rest, but that we cannot ascertain its motion because two equal
carrenis of energy move in opposite directions. If we again impaxrt the
velocity v, both currents will be changed, but in a different degree,
in consequence of which a carreni of energy in a definite direction
can be ascertained. These considerations are confirmed by the fact
that the energy transported by the tension through the moving rod
cannot move with a velocity ». So it cannot De transformed into vest
together with the rod.

For our purpose lowever it is not necessary to determine the
values of W,, W,, w,, and w,. We certainly may put:

S=Wo+ W, — W, . . . . . . (8
The force exerted by the rod on a body against which its end

B rests, may not simply be put equal {o f.. For we must take
into account that the rod contains two quantities of momenium: a

1 . . .
quaniity with a density — W,w, moving with the relative velocity w,— v
o

. " .
towards the end B, and a quantiry with a density — W, moving
¢

with a relative velocity w, - v away from it. The forece exerted on
the end of the rod is therefore:

t.t) =t + —1— (w,—v) W, 4 l (w,-+0) Wow,.
o ¢

1) 1t is ohvious that in principle fe, has the closest analogy to what is ordina-
rily called clastic lension. The quantily Zur, however cannol he measuied and in
so far 7., which represents e lorce as il is measured, is a more important
quanlily. An casy calealalion shows that f is the same quantily as the quantily
4z of Lave. The lensor { is symmelrical, whereas = (¢ in lhe nolalion of Laur)
is an asymmetrical tensor.
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Therefore we find for the energy which passes thie stationary plane: -
Sp== (W) 0.

We will introduce in this equation the quantity p.. which is
cqual to: -

1
Pox=tu + 7 ( [/VJ 0¥ f w}rzm; + l/Vnmae)

We easily find: -
rl
S = (Wpaa) o — (Wr 4 W, — W) =

. ey Lot .
Taking cquation (3) into account and putting — = f* we (ind:
o

Co (L) = (Wp) v - - - - . - (4
[t is importani to remark that this equation, deduced here without
maling use ot the theory of relativity, can also be derived from the
equations (102) of Lavk ):
(1+8) S + o (Pt W)

x

n,

T g
)
W' L3 4 2 r} &',
W= v
1 — 8
. »
PotBW' 2 &,
o
Po= T F

If namely we imagine the rod to resi relalive te the accentuated
system, then €,=0. We find then equation (4) by eliminating
Phe and W

In the same way we can discuss the case (hal the rod lies paral-
lel to the Y-axis and that a force in the 4+ X direction is applied
in the middle of the rod. In the ends of the rod two equal forces
act in the X-divection, which {ogether exactly balance the force in
the middle. This sysiem moves with a velocity v in the A-direction.
For this case both ways of calculating yicld

Gy == Opzy -

So we see ihat ii is possible to derive several conelusions from
the law of the uniform motion of the centre of inerlia which usually
are derived from ibe theory of relativity. In principle the {wo ways
of deducing them are equally justified. In bolll we starl from laws
which are proved o hold good for some regions of observations and

1) M. Lave. Das Relativititsprinzip p. 87.

-
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apply them to phenomena belonging (o regions fér which their
applicability has not been experimentally proved. A generalization
of this kind is of course hypothetical. The fact that the two deductions
here yield the same results will probably be considered as a confir-
mation of the validily of the hypotheses.

The question suggests itself whether the hypothesis concerning the
mass of the energy is not only in the special cases trcaled above,
but with perfect generality in agreement with the theory of relativity.

The most general method to solve this question seems to be that
suggested by Lave. His argument comes in prineiple to the following.
We will take the 16 guantities

v
Pas Pay P2z’ " <,
?: o
Py Pyy Pyz " €y
s
Pz Py Pzz — &
¢
1 1 1
le, Lg, te —W
¢ c " ¢

and differentiate the four quantilies of one horizontal row respectively
according to 2, y, 2 and <c¢t and pul the sum of the four terms
thus obtained equal {o zero'). The four horizontal rows yield four
equations of this kind; the first three equatlions determine the increase
ol the momen{um, the fourth equation is an expression of the law
of conservation of energy. We have chosen for the elements of the
fourth verlical column the same quaniilies which occur in the forth
horizontal row. By making this choice we have introduced the
hypothesis of the mass of the energy.

Lauk now postulates that these 16 quantities, when we make use
ol a moving coordinate system will be trausformed as the elements
of a fourdimensional fensor, (in this way the equations (102) cited
above are found) and so he postulates that the hypothesis concerning
the mass of ihe energy agrees with the hypothesis of relatlivity. The
question must however be put: have we a rvight to postulale that
the quantities will transform in the way given by Lave? We must
keep in view that we are dealing with derived guantities. From the
equation €, = Xow, e.g. il appears that, if we have already assumed
in what way g and w, will be transformed, the formula for the

1) The choice zero for Whe righthand member of the equations is an expression
of the hypothesis that no **aclio in distans™ occurs. Lave does nol inlroduce {his
hypothesis, his cquations therefore have a righthand member differing from zero.

¢
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transformation of &; is determined. The cdonsiderations of Laug,
therefore, are only justified if he can show that it is possible to
attribute to the different kinds of energy a velocity whose value is
such that the transformation of ¢ and w yields for X'ow, the same
formula as he postulates for the transformation of &. Considerations
of the same kind apply to the quantities p,, and W.

Postscript. Perhaps I have not always been consistent in the use
of the words force and tension. I have thought for a moment that
we could do withoul these notions altogether, and that we could
account for every change in the momentum in a volume-element by
means of the transport of momentum through its surfaces. Buat then
we are cliecked by some difficulties. The nomenclature most accurate
in principle is of course to use the word force only for that change
of momentum for which we cannot account by a transpori of
momentum. But il seems to be impossible to perform the separation
between the offect of forces and of transport in an unambiguous
way. In § 5 eg. I called =, the force exerted on the rod. This is
accwrate if the quantities of energy TV, and 1V, ave partially reflected
at the ends of the rod. If they, however, pass the ends and flow
into the other body, t,, would represent the force and .. —t,; would
represent a quantity of momentum which is imparied to the rod by
means of transport. It seems to be impossible to find good reasons
for a choice between those two conceptions. It is after all immaterial
to which of these quantities we will apply the name of force.

In the same way we may ask whether we will define the force
by the equation

lo d
ﬁ:an% + \\—(;—?
or by .
](:md—v-
dt

The force adds energy and so also mass lo the body, and the
value which we ascribed (o the force will depend on the momentum
which this new mass had, before it was added 1o the body. If we

dy
think that it was then stationary, we shall undoubiedly call m
[«

dam
the force exerled on the “old mass” and 9 - that exeried on the
! ¢
“new mass”. Bul if this new mass had a velocity w before it was
absorbed by the body, we shall ascribe another value to the force
properly speaking, but say that the momentum of the body is alsa
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changed in consequence of the momentum of the “new mass”, which
is added to it. The value of w being unknown in many cases it will
be impossible {o perform the separation between force and transport,
and we will simply call & the force exerled on the body.

In some cases lLowever it will be useful to take the difference
between force and transport into account. An electrical condensor
e. g. sharing the motion of the earth is suddenly charged, heat is
generated in a wire according to the law of JouLs, or a body receives
heat from another body. The momentum of these bodies is increased.
Is a force required in order to keep the motion of these bodies
uniform, and will they suffer a retardation when this force is not
applied ? The answer to this question will undoubtedly be: If they
receive their energy from a slationary source, this will be the case,
but not if they receive their energy from a source moving along
with the earth.

Mathematics. — “A bilinear congruence of quartic twisted curves
of the first species.” By Prof. JaN DE VRigs.
. x

1. If we allow each quadric Q' of a pencil (@) to bisect each
surface of a second pencil (@, a congruence I' is formed of biqua-
dratic twisted cuvves, ¢f, of order one; for through an arbitrary
point P passes one of, the intersection of the two @7, which is
determined by P in the (wo pencils.

An arbitrary line / is cut by the pencils into two quadratic in-
volutions, which have, in general, one pair in common; the con-
gruence I' is thus of class one (an arbitrary line is bisecant of one
curve). '

2. The base-curves 8* and 8" of the pencils are singular curves;
each of their poinis bears o' curves ¢*. As B* and ¢* lie on a @7,
they cnt each other in eight points. So we can determine I' also
as the syslem of the g’ cuiling each of two given biquadratic twisted
curves in eight points.

Each bisecant & of ' is a singular line. For the surface Q* deler-
mined by a point of b conlains b and the pencil (Q%' cuis b in the
pairs of an involution, so that § is bisecant of o' cnrves g'.

3. DBesides the two congruences (2,6) of singular bisecants deter-
mined by §* and 8, the congruence I' has a congruence of singular
bisecants on which (@*) and (@' describe #he same involution.

\ 18
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