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VIIL, & = 0.414

T A ph. ende. ph.
29°.9 69.15 pl.p. 69.15 pl.p.
31.2 71.20 2and 3 7410
32.9 73.65 2and 3 80.05
34 .6 76.65 2and3 _8590 ,,
35.9 78.60—7865 2and3 90.50 °?
37 4 81.60--81.65 2and3 9595
38 .9 84.15—84.20 2and3 100.90
39 .9 86.60 +  plp. 10440
41 .0 108.20
42 .0 111.10
43 .0 11410
44 .0 117.10
44 7 119.20
15 4 122.75
46 .2 12415

tube burst
Physics. — “The variability of the quantity b in vaNy DR WAALS

equation of stute, «lso in connection with the critical quantities.”
I. By J. J. van Laar. (Communicated by Prof. H. A. Loruxrz). -

1. At the end of my last paper on the solid state (These Proc.,
May, 1911) I announced on p. 100 the fuller discussion of the
problem alladed to in §§ 35 and 36. I may now be allowed to discuss
this problem more at length.

In the paragraphs mentioned, particularly in § 35, I have already
set forth at length how we can arrive at a complete theory of the
variability of the quantity &, if we only assume that the molecules
are assoctated to larger molecule complexes to an amountl varying
with the temperature and the volume, in which we must supposc
the volumes of the complex molecules smaller than the corresponding
volumes of the simple molecules which form the complex.

I think I have demonstrated (loc. cit.) in a convincing way that
the two causes of the vauiability of 4, which were kept separate
before, are solved in, and are comprised by the wider theory of

association — which naturally also includes the third cause recently
brought forward by van bur Waars — [ mean the so-called “quasi’-
associufion.

For the diminution of the molecular volume ) in consequence of
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the increasing association, on diminution of the volume v e.g., can
be considered to be a real diminution of that molecular volume, but
also as an apparent diminution accompanying it. The quantity
Lb=-—1b, + xb, introduced in our theory need namely not necessarily
indicale exclusively the real change of the volume of a molecule,
but can also include the apparent change, in so far as it is manifested
in its cffect on the pressure in consequence of the tewmporary aggre-
-gations of the molecules (see p. 96 and 97 loc. cit.)?).

The degrec of variability of b is then further exclusively determined
by the degree of dissociation 3 of the compound molecule-complaxes.
As this quanlity being a fanction both of » and 7 the quantity 0,
given by b=(1—p)d, 4 vfd,, i.e. by .

b= b, — (1 — ) Ab,

will depend besides on v, also on 7', though the latter will be the
case only to a very small degree, as we shall show presently.

It is this way of considering the problem, which I dimly conceived
already some. fen years ago, and which I have practically never
quitec abandoned, though I adopted other poinis of view for a time.
Now after the completion of my theory of the solid state, I am
more than ever convinced thal my original point of view must be
the right one. Already the course of the quantity 8 as function of
» and 7' made me see the grear probability of this point of view.
The way, namely, in which g for » and 7’=0 approaches 0 asymp-
totically (so that only complex wmolecules are then present), and
approaches 1 asymptotically for » and 7= o (all the molecules
simple); while the critical point appeared to lie exactly at the beginning
of the abrupt inflection from 1 to 0 — which pointed to an appre-

. ab .
ciable value there of ' =— 7 and to a rather considerable valne of
v

2

.__vb"::vF — all this convinced me more and more that the
av

variability of 0 was only and exclusively to be aturibuled to the
varying degree of association of the molecules, fogether with the
variation of volume Ab (real or apparent) atlending it.

Whereas in the paper of vax pur Waars presently to be mentioned
(oe. c¢it. p. 1227 and 1228), only an empirical relation could be

I Exactly in lbe samre way as among others Reweanuy, when lie comes to the
conelusion Lhat the inlluence of the temperature on the pressure which the mole-
cules of a non-ideal gas exert on the wall, is manifested in a fictitious enlarging of
the molecule: il seems “as if™ .the molecules are enlarged with rise of tempera-
lurc ; ele.
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given for the variability of 4, holding only in the neighbourhood of
the critical point, viz. %}—: l—a (%—)4’34, now a theoretical for-
mula can be derived for this variability, which just as my theory
for the Solid State, has a purely plysical foundation.

Already in my Solid State VII I derived (p. 98—100) from the
general formula an approximate formula, viz. ;:1-:;(%) ,
which in my opinion is preferable to vaN DRR \VAZ\LS’ empiric for-
mula, though of course our approximative formula is not accurate
either. But in what follows we shall make use of the original quite
accurate formula 6 = f (v, 7).

The same quantities 3 and Ab, which play so important a partin
the transition of the liquid state to the solid state, and the reverse —
so that we may safely say: no solid state without these quantities —
must also necessarily play a part in the theory of the liquid (and
of the solid) state considered in itself.

So this furnishes one cause, both for the deviations of the beha-
viour of liquids from the original ideal equation of vaAN DER Waals,
and for the solid state appearing at lower-temperatures. And so in
this way the whole behaviour of a substance, also the appearance of
the three states of aggregation with their gradual transition at critical
{emperatures, can be brought under one point of view.

This solves al the same time the question repeatedly put by vax
DpER WaaLs in his last paper but one (These Proc., April 1911) on
the ecritical quantities (see among other p. 1212 at the bottom;
p. 1222 in the middle; p. 1228 at the bottom): “What is, after all,
the cause of the variability of 6”.

As principal couses he seems still to accept the veal diminuiion
by compressibility (p. 1212 loc. cit), and the apparent diminution in
consequence of the partial overlapping of the distance spheres (see
p- 1225 and 1226 where the coefficient ¢ = ?/, occurring in this
case is mentioned). The so-called quasi-association would play only
a negligible part (at least at the critical temperature) (see p. 1213
at the bottom).

In our theory, on the other hand, the association, with which the
quasi-association is practically identical (see p. 93— 94 of my last
paper on the solid State), is the only factor — and it will appear
from what follows thal the critical quantities are also perfectly
accurately determined by the sole assumption of association, with the
variation of volume Ab accompanying it. We shall find that at the
critical point the compound molecules are decomposed to an amount
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8=10,95 into simple molecules (so only /,, part is still complex),
while on assnmption of an association to double or triple molecules
in the neighbourhood of the ecritical point the value of Ad is found
to be such that the limiting volume (b, = b, for v = o) has duly
decreased to half its original size (b, =&, where b, =?/,vD,), when
v has become = b.

To tlus is added the circumstance that the minimum molecular
volame 0, for v = > proves to be the same for every temperature. For
however high or low the temperature may be, f willalways be =0
i the expression (1) for B (see § 2) for v = b; hence b, =4,, in
which 0, is the molecular volume of the complex molecules, on
account of the above expressions for & and Ab. And reversely the
valve of b, will again be =&, for T =0 for every volume, because
also for I'=20 the degree of dissocialion B will approach to 0. Hence
there is not only one limiting volume for greal volume and high
temperatnre, but also only one limiting volume for small volume and
low temperature; the laiter about half the first.

The differences which conlinue to exisi for different substances in
the reduced equalion of state, and which vany per Waars p. 1212
pointed out, can now also easily be accounted for by a somewhat
divergent value of B (and possibly also of Ap). For it is clear that
the degree of dissociation of the comrplex molecules will not be the
same for every substance. It will of course entively depend on the
constanis of the equation of dissociation (1). And thus substances
will also be found with abnormally greatly divergent values of 8, the
so-called anonwalous substances.

Also the value of » can be different. It will namely also depend
on the coustants of the substance, Zow many molecules wil combine
to a complex molecule at different temperatures and volumes. I have
already pointed out in my last paper on the solid state (p. 98 at the
bottom) that also » will be a fanction of v and 7', and that on an average
a grealer number of molecules will associate at low temperature and
small volume than at high temperature and great volume. But in our
following consideratidns we shall for the present neglect #iis depend-
ence, because we shall confine ourselves exclusively to the critical
quantities. And at this volume and this temperature v will appear
o be about from 2 to 3, 1. e. the few molecules which are still
associated then (about '/,,) will be on an average associations of
double or triple molecules. [At 7"= o and v = w lhe exceedingly few
complex molecules, still present then, the number of which approaches
to 0, will only be double ones of course].

In my last paper I came to the conclusion (p.100) that » is about



( 282 )

3 at the critical point. But this was only an approximative caleulation :
a more accurate calculation makes us find a value of 2 & 3 for ».

But now we proceed to derive the critical quantities from the
equation of slate on the supposition of the variability of b exclusively
in consequence of the dependence of the degree of dissociation £ on
the volume »; while 7 has to be multiplied by the factor 1 4 (» —1) 3,
because in all there are 1— g complex molecules and »g simple
molecules, in which » will denote the number (for the present
considered constant by us, see above) of simple wmolecules which are
on an average associated {0 one complex molecule.

Also the quantity @ wil be assumed to be constani by us (see
Solid State VII, p. 94 at the botlom, so that the contraction introduced by
vaN pER WaaLs in the value of a isnotintroduced in our derivations.
The number of molecules associated to one complex molecule (on an
average 2'/,) is nol great enough for it at the critical temperature,
so that no reason whalever would exist for this contraction, (see
also VAN DER WaaLs, Quasiassociation. These Proc. XIII p. 119—
121). So we consider the formula

a=na, + 2n.n,a,, + n,a,
as valid, which passes into a =a, with n,=1—8, n,=n3, a,,—=
:6:—:, “z:%, in which (and this will henceforth be the case when
the contrary is not asseried) always »-fold molecular quantities of
the substance are considered.

The formulae following here were already derived by mein 1908,
and published in the Arch. Teyler (2) 11, Troisitme Partie: “Théorie
de lassociation ete.”, where (see p. 25—34) comparatively simple results
were obtained. But these formulac only hold for the case » =2,
and we shall, therefors, give the derivation here"once more for the
perfeetly general case that not 2, but » molecules ave associated to
a complex molecule, in which at the same time some simplications
will be applied in the derivation.

2. The general formula for 3 was already derived for the case
of » molecules in my Solid State VII p. 81 —86. We found there nl.:

q Z‘+"/ 2
B ot TR T RT O
(1—B (1 + (~1)pr-1 (p+9/,2)—

If we substitute for p--¢/. the expression which follows for it
from the equation of state

(p+7) (v—b) = (1 + (v—1) B) BT,
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we get :

% Ad
(1]} — =2 (1 (—1)8) ——
(:T/+ ) T RT, (+(—1)g) )

F = - (v~—b)—,
(1—8) (1+(—1)8)—! (14-@—1)gy—" (RT)—1

or pulting v —1 = z:

ab
Batt ¢ 17 e_%i’e—(‘—}—xﬁ);:‘b
= w—bF . . . (1)
(1—8) (1 +afy  Re (1+28F
If now Ab is positive, i.e. if the complex molecules (real or apparent)
occupy a smaller volame than the simple ones, the degree of disso-
ciation p will get the value O for v =20, and the value 1 for
v=oc0. In the same way the quantity § will approach to O at
T'=0 for positive values of ¢, and 7, and at T'= o to 1.
In order to facilitate the following calculations, we put:

(1+wB)—Ai:(p,. B (1)
v—>b
in consequence of which (1) passes into
grtt _ G
(1—B) (1+af)y ¢

(1)

_n

JAAY
in which & represents the temperaturefunction ¢ (ﬁ) T ¢ BT,

The equation (17), combined with the equation of state
(p+)e) 0—b) = (1+a®) RT,. . . . . (2
will now represent the total amount of the considered substance, to
which then 6 = (1—8) b, + »8 b, can be added, i.e.
b= b, — (1—8) A,
or »b, being the limiting volume for v = w (B =1):
b=0b,—(A—B) A, . . . . . . . (8
in which 3 is given by (1%), and Ab by Ab= —1b, + rd,.
Now in order to find the values of v, BT and p al the critical

: dp dp
point, we shall only have to put 7 and E) equal to O.
t t

[
From the equation (2) in the form

(1+28)RT & ¢RT a
B T " ey VR
follows (for T constant) :
dp 2a RT dg

dv—v’ﬂz;"'.""(ﬁ)
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. . . dy .
in which we must therefore calculate Ef From (¢) in the form
Y

(1+aB) Ab = @ (v—b)

follows : -
al\b % =g (1 — b gg) + (—10) %,
because - = Abg; according to (3).
Hence :
) E =gt b

ag
So we have to calculate zl‘—, and that from (1¢). This relation, dif-
v

ferentiated logarithmically, yields .
(a:—{—l 1 x? ) 43 dep @ dy

B +1_(3_'1+m/3 dn dv g dv’
or
a+1 (Z,B__ a4 dip
B(1—B) (1+ap) dv p dv

If in this we substitute the value (y) found just now for
dip

—, we get:
v
ap
w1 B $+(p“—9>+.(ﬂ'+‘ﬁ)Ab%
BAL—B(1+aB)dv @ v—b ’
or
d_ﬂ z4+1 _L(x—}-(p)z LT ate
dv [13(1_5) (1+23) ' o v—b}— o—b
or also
v—b df Z4-
11afdo o+l (ato) )
1+aB) —
B1—p (14-aB) —
i. e. taking (@) into account:
v—>0b d[)’_ B
14+aBdv a1 .
) + @+9)

for which we may also write :
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1
) B (L—B)z+)

v—> d3
e : )
1+af dv 1 ’ ,
L+ 5808 (e+)
So we find finally, substituting (d) in (7):
1
B (1—B8) (z+ )
dy Ad w1
(=87 =— g + (L4af) — —— :
1+ ey B (1—P) (v+1)
Ab
or as (1+ap) =
v—>5
dy P
(v—B) Ez?p = - )
1—8) (= 3
I+ 7B ete)
d
Now we get for d—p, by substitution of this value in (8):
I
dp 2a RT 17
dv 0 Db (v—b) RN

i :
14+ Py B(1—B) (z+¢)
a2

Z: must be =— 0, we have, when the equation
v

As also
v——b_RT 1)
Db 1
A B (1—B) (5 L-p)
U BB +o)

is logarithmically differentiated :
1 (1 db) 8 ldp 1 dy

=\~ dv) v @dv 1tyav

20

1
when for shortness we put the expression —+—1 B(1—p) (x+¢)* fora
1A

db ap
=1. ,as —=Ab—:
moment = y. Hence, as o 7
3(v— d 1 1
o TV SN S SRS
v dv 14y 1—y dv
b B s equal to — % ding to (s). H {
H —0) — 2 — aceor 3 . e get.
ecause (v )dv is equal to oy according to (s). Hence we ge
d, s
@) — () 20 2 4 o)
3 —b dv dv
v 14y ’
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or also
. ) dg dy
9 (1_]_1/2‘1/) - l/ﬂl1+y) Db % + 1/2(17-1)) c—l_v

v—D0
Y 1-ry B - (9

d,
For (1+y) A?J;lE we find according to (d), taking into account that
v
Db
(4 af)— = o:
v—>b

(1}ty) Ab

dﬁ_ 1 - ’
%—"mﬁ( —B) ¢ (24 0).

d
The value of E‘Z is found from
v

1
=— B (1=3) (@ + )%
¥ w+1{( 3) (@ + ¢)

from which follows:

d 1 dep . ag
=) G = s | 2B e o) 4 A3y -0 5 |

. dp ¢ I P i
With (v—b) R W (see ¢)), and (v—20 e | B(L—B3)(1 Fap)

(@+¢) : 1-+y) (see (d)) this becomes:

dy
b=
(- 0) -

1 1
= mr‘y) [—213(1"5”(&’-{"/‘) + m B(L-BY( +23)(1-23)(x+«) ] )

Hence

d d
-2 par® =

1

= 9B —3) gz ) — (1) B(L—P) ¢ (e~
(w+1)(1+,u)[ B —B) gz 4-9) — (1+y) BA—B) g (v +¢) +

1
T T AL —B) (1+2pB) 1—2p) (.v+q))3J,

so that we find:

v—b

2 1
=3 11y (1+3y) I+y) +

v

-10 -
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1
“2B(L-B)p(ot9)+ o BL-B)(1-28 +208-S0)(o +g)
+ o :

O [ -t ) 7 -8 o)

as (14-26) (1—25) = (1—28-+2¢8--348") — 2p(1—B).

Now we get further for the factor between [ ]:

+ ~ “_i_—l 13( —B)&+9)’ +

+ s O o)t LB +o)- oL BB o+
1
2(a-1)B-3af Nz + ) — ——— B &

+ gy A0 (218308 )"~ 50 s 08t )

In this we have:
3 1 i . . 3z 1
3 o MR+ = 5o =t r)+q~,—1—)ﬁ( ~Bple+o),

so that the factor mentioned becomes:

3w
1+ o= B-B)@ +p)+ 5—; B1-B)(14-2(2-1)8-326") @+ )" + 5,

2o +1) 2(a -i—l)2

in which the snpplementmy piece S is represenied by

3 1
Sy el +‘p)“_5(1 (o +P)+g~mﬂ(l B o+ )
2w +1)= BB (o)~ 5 Jr1)(3’(1—13)¢( v+¢)-

The first two terms give

1
w+1) é(l“ﬁ)’l (2-p); the two following

B*(1—BY ¢ (x+p)*; so that the first four terms can be

olles 2( + 1 )2

represented by

1 ,
m+nm—wwwvﬂ}+EEMme+m}

and this is evidently the fifth term apart from the sign. So the
supplement S is =0, and we finally get:
v—b 2 1

v 30ty

":1 -+ % 1,_1—|-—1 B(L—P) @ 4-p) +
1
+5- 2(x +1)z B(1—pB)(14-2(a—1)3—3ap) ’b+q)):|
If we henceforth put:

20
Proceedings Royal Acad. Amsterdam. Vol. X1V,

-11 -
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1
|

1
14+y=1+ P | Bl—P)(z+) =m ' o .

BE 1 o \
1+§(7u—?f) 5(1~(3)(-”+¢)+m13(1—(3)(1‘*‘2('”““1)[3-3“(3‘) ) =n s

we find the simple expressions

oA 3m? A 3m?
= : = . . . . (6)
v— D 2n by,  3m*—2n .

For 2=1(»=2) the expressions for m and n pass into those
which are to be found in the cited paper in the Arch. Tryrer (p. 29).
If 3=0 or 1 (one kind of molecules), m and # duly become =1

and the old value 3 is found back for %
4

/
Now the value of B7% is easily found from (4) by puttinggZ =0.
v

Then we get:

2a Lbv—b
RTp =~ ©=9,,
v
. Ad
or ¢ being = (! —l—a;ﬁ)v———b:
1 2
RITp = 2 (0—b)* m.
14-af v
—b 2 b  8m*—2
With = y —= m . " the last expression becomes :
v 3m® " » 3m*
2 3m*—2 4n®
RZ}C:——}—.——(Z.»—”—Z- “n. -i m,
1428 & 3m?* Im?
hence:
RT) = 1 8 « n‘(3m"——@ L @

1428 27 by, m®

8
It =0, this becomes (m=1,n="1) R’j’/c:o—i-bﬁ. Anditg=1,
2t D

8 a
.— —. DBut as then the quan-
27 by,

[ A

we gel e. g for a=1(@=2), BT} =

{ities @ and b vefer to double-molecular quantities, we have a =4a’ and

1

8 a
b=24', hence Z]?]’/:,:-é-%b-T as before, where ¢’ and §’ now refer
3

10 single molecular quantities.
Formula, (7) oceurs (for # =1) in Tryuer on p. 31 (formula (16)).
At last the expression for p; follows [rom the equatlion of state
(2). The latter yields:

-12 -
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§ a n’ (8m* — 2n)

a7 b m? «
Pl = on o 3m? e’
— —b
3m? — 2n- 3m? ~ 2n
2
as v—1> :—,Tf—b, as immediately follows from (6). Hence
3m? — 2n
4 an3n*—2n)° 1a (3m’—2n)
PE= o7 m? 95° m? ’

1 o (3m*—2n)*(4n—3m)

 — — 8)
Pt 27 by? m® ©

identical with what we found in TryLir, p. 32 {formula (17)).
1
Here too pr= ‘77—2)22 is duly found both with 8§ =0 and with
ad 0
f=1m=mn=1). Just as in the formulae for v; and BT}, b is
then constant, and 0y is either = b, (if 3 =20), or =d, (if f=1).
Of the greatest importance is particularly the knowledge of the

. DIV N 3
guantity u::z =, For this we find now:
RTy,

1 o (3m*—2n)*(4n--3m) 3m*

— b
ATy m SmP—2n
= 1 8 a4 2°(8m’—2n) ’
1-+a3 27 by, m®
or
3 m*(dn—3m)
p= e @)

3
For f=0 this becomes n= for =1, and eg. 2=1(»=2)

3
we find 2 ><§' But it must then again be borne in mind that then

for the calculation of g the critical volume of a double molecular quan-
tity of snbslance has been taken for v.. Hence if g =1, so {hat e
only have simple molecules, the value — if v refers {0 a single
molecular quantity as usual — must still be divided by 2, and we
3
gel agaln g
Formula (9) corresponds with (18) on p. 32 in TwyLer.

8. Of just as great imporiance is also the knowledge of the
guantity

-13 -
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Tdp
= (—- clT) .
P I

From
L (+#B)RT
P == —— e —
v—10 vt
follows :
dp :(l+w5)1€+.'uR’l' g N (1—}—‘7;[3)]?'1’ 25 (% ’
aT ), —  +—b v—0\dT/, (v—D)? ar ),
hence

N «\ RT(dp /
l(ﬁ)v—(wr;% b(dT) [ e +zﬁ)~—]

or also, in virtue of (a):

dp\ _ G 1
#(3).= 0+ 3) [+ g (e rn)

q
So we must calculate (%) From (1% follows immediately by

v
logavithmic differentiation (see for the first member also the calcu-

d
lation for (—‘8)):
dv t

z+1 ag v 7% dep adyp
BL—B8)1+ap)dl T RI* 4T @dTl
_ GtyRT  atede
~ RT? o dT°

Db
Now from ¢ = (1 + *f) — follows :
o—
ldey o 43 1 d(S‘ 1 dB
@wdT ™ 1+aBdl  v~b aT C1-faRdl
hence also

=)

(+< T 28)-

lde -24¢d3
q)dl'—1+.w[3c-l7.z"
So we gel, as ¢, +vRT'=q:
z+1 @ _ g _(ot9)dp
Bl—B)(1+aB)dT  RI*  1+tap dl’

50

q (] —
B R 3 (1 13)(1—1—'7«5')1)1}

ar 21 n (.'v—}—(p)‘“'
BB+ ' 1{ap

14 -~—{3(l ~B)(o-+o)

-14 -
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For f we may now write:
1 .
“ ¢ w1l B1—B)z+9)
f= (1 + W) I+ 2o I - (10)
T 14— B(1- Bz+e)
a+1".

We observe that the factor of R_(]T according to (d) is also
__v—0b dp
T ldtaRdy

Formula (10) agrees with (28) on p.42 in Teynur (z2=1).

Vi
RT
will be very small. If now ¢ itself is also still small, as may be
assumed in case of association under the influence of the molecular
forces (see also Solid State VII p. 94 at the top and 98 at the botiom),
we may safely neglect the correction term A4, in

a
f:—_(l ~|——*>(1 + 4Ly),
po*
and write, just as vaNy DER Waals does :

Fe=la S ... L. (109
pv*

We see at once that when 8 is near 1 or O, the factor of

al least in the neighbourhood of the critical point. But we should
bear in mind that strictly speaking this can never be quite exactso
long as the state of association is also influenced by the temperature.
If (10Y should practically be sufficiently accurate, we should of
comrse also be able to calculate the quantity e from it.
Before proceeding to calculate the quantities g and ¢ from wand f
at the critical point, we shall first derive the value of a few quan-

tities, which are of importance at te eritical point. We mean the quan-
2

It is self-evident that we do nof

2"

db
tities O’ = — and — 90" = — @
' dv v d

find the values now, found for this before by vax pmr Waars and
by myself. For if we start from the equation of state

- R:p [12
= —_——
z v—>b !
without the factor 1 -+ aB of RT, we find &’ from
b_ D EO—) %,
dv (v—0)* 3"

3

d . . —
and 0" from d~——2f_—_0, which after elimination of ¢ and RT yields
o

-15-
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(see also Teyler 1905: Quelques remarques sur ’equation d’etat, p. 46) :
v Yowd" 3 i
— (1 P =2,
v—b( )+ 1 2
But the values of 0" and 6" resulting from this will of course be
slightly different from those which we shall now calculate from the
same experimental data; and so we are not allowed to draw any
conclusions from the deviation of the values of 4’ and 0" caleulated
by us just now from those found before. They remain simply secon-
dary wvalues, which can never be found by direct experiment, but
only by the calculation based on certain suppositions.
Now in the first place the value of ' can be found from (3),
viz. bh=0b,— (1—B) Ab, from which directly follows:
db a3
=—=Ad j

—%—— %o

7)’

AV
Taking (d) and (L —l—xﬂ)——b: ¢ into account, we get:
’U—

1
PR B(A—B) ¢ (z~+p)
b= L N 0!

- 1
L o B ) (o)’

The calculation of 6" from this expression is about as elaborate as
dp dp . . Uk .
— from D see § 2 the calculation of . The easiest
v? v v —04

way to reach the result is the following. The numerator of the

1
(,)' oY (We puty for ) B(1-B) @ +p)*

that of

second member of (11) being =

for shortness’ sake, abovein §2), we have:

' = —,
Aty =y
hence
ly v dy @ dop
b (1 V= oy
Aty & dv  a+@dy +(a;—}—q))2‘l/du
ke P g PPy P
But as o = o ke liy —atwiig we have
also :
. @ 1 dy £Y dp
—0b) 0" (1 = — (0—=-b) % —— (v—]) —.
(0=0) ¥ () = T T =D 3+ s o=
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Now according to (¢), we have:

(-2 ! 2 (1—B) p (1)
-y Et=— | — 23 (1 =) p (2.
v }dv 1)+ i p)p r) -

1
+ oy B8 (+a) (1—2p) @Mﬂ
while according to (¢)

(=) P = P

dv 14y
Henee :
DY (L) = — [
o~ 1 -
( Y= it ety

+ —13(1—;) (L+aB) (1—23) ( 7:+fp)“§ —_k’p} :

—B ¢ (z+g) +

or
9
(=01 (149 = o [— S PU—Dy
1 ay (L+u)
B (=) (1) (1—23) (¢ +¢)* ~_~___2_‘|,
g B0 L) (28 k) ~
After substitution of

1 1
YUty = —7 B8 (=) (et )’ 4-(—,-,1—)13 (1—3) (z+ o),

we get further:

1
(w—=0)V" (1 + y) =0 l:— — 13' (I—B) (+2¢) +

+ oy B0 (b0 [0 (12 — 58 03] |
hence finally (putting (1 4 y=m, see (3)):

1 1
&0 (+29) + e+ 210 |02

v—bm? &+ e+ 1

""U])”

b,

Finally the value of - can be found from
g
b, = b, — (1—p) Lb,

from which follows:

b Ad a
E_1_(1—5)—1)7. R ()

Of the now derived quantities only w and f ave of use for the
calculation of the two unknown guantities 3.and ¢ at the critical
point. Then the value of # can be assumed to be such, that we get
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Ab
a, suitable value of calculated from o = (1428 — If we -
'D—

’D.—
wanted to consider @, 3, and » as unknown quantities, so that the

value of ;A—bb was of course determined, the knowledge of a third

quantity would still be required at the critical poini. This third

quantity could be no other than the direction of the so-called “straight

diameter” in the ecritical point. But as the discussion of this calls

for a separate study, which we hope to give in a following Paper,

we shall now content ourselves with the knowledge of u and /, and
JAV)

18
o—b

simply examine at what value of x a suitable value of
obtained with the ecalculated values of 8 and «.

4. Let us in the first place examine what the approximate formula
(102 for f teaches us concerning the values of the quantities 7 and n.

From f=1 -+ ﬁ; follows:
pu

a a [0\
) bt \ vp

=T ,
7 Pl 1 a 13m*—2n)* (4n—3m)
27 0% md
b . 3m:—2n .
or as — Is= —, according 1o (6 :
vl 3m*
Fo1= 3m
T T 4n—3m
lof—l Ym |
¢ 8 —_ = —, 1.8,
or als 7 el
m 4 f—1
;:E—T . («)

If we now assuwe a ‘“mean’” normal substance, for which the
value of 7 may Le put to be 7, we find for the ratio m:n the value
m 8

n

_7-
After division by 1 -4 @,
3 L’ 2
= 1+%5£ (4—31—'3)91 N (4]

El 14-2 n? n

. . . . DKV ..
follows from (9), as we shall regard the value of v, in =, as referring
ke

to simple molecular quantities.
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8
With ﬁ:7 it follows from this that
n
343 1ta
"= -— .

96 1-4-op

If in this we substitule the value 0,265 for w, which value about
agrees with owr substance for which f=17, we get:

142 8

n = 0,947 ]_-_E-—ZB ;= —;7—71 A )
As according to (5)
. 3e ' ) \
=1 g BB ) +
! ) 2 ]
RETTEEY B(1—8) (142 (v—1) B—3u8*) (w+g)* ', (5)

1
m:1+w+—1‘ B(—B(a+p) ;

we can find the values of 8 and ¢ from the above equations with

an arbitrary value of .
Thus e.g. with =1 we find the values:

B=0,9547; o= 1.227.

=0,969; m = - n=1,107,

~a] w

For then n becomes = 0,947 > ~
1,955
while

3 1
=1+ —B(1—8) (L+¢) + 5 F (L= (1—38") (L4

3 1
=14 T X 0,04325 X 2,227 — 5 X 0,04325 31,7344 X (2,227)°

=1+ 0,0722 — 0,1036 = 0,969.

also follows from (5).
And as to m:

1 1
m=1 4 B(1—8) (1) = 1+ - X 0,04825 X (2,227)°

=1+ 0,1072 = 1,107,

1.2 A
Then we find further the value ﬁ—s?: 0,628 for = from
,965 —
Ay}
= (14—
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This value is probably too high. For if we pui j—/ al about 2,1, -
e

then vy =28,4¢, because by is by approximation about equal to -
by = 4o (o0 = the volume proper of the molecules). Hence the limiting
volume b, for v =0 (= that of the complex molecules #,) is about

1 . .
I}(S,hl 0=2,19, because in most cases a value is found for this

limiting volume in the neighbourhood of !/, of the critical volume.

As now b;,=1b,—=4¢ and b,=0b,=219, s0 Ab=—b +
-+ vb, = 1,90, and hence
b 1
L8619 4 s,
b, &
YN AL AD
So we find for —, supposing —=-—:
v—20 br by
b
Ab b
=t 04T s,
v—br v 1 21—1

So the value 0.63, which we found above, is too high. But we
must not attach too much imporiance to this eircumstance, because
it is very well possible that al lower temperatures and smallex
volumes, where association {0 molecule-complexes which are larger
on an average, will lake place, and # accordingly assumes a higher
value, ¢ will naturally decrease. We pointed out already above
that the quantity « is properly speaking, variable, and thal we should
only consider it to be constani provisionally in the neighbourhood of
the critical point to simplify the considerations.

Before we proceed, however, and repeat the foregoing calculation

v
for # =2, we shall firsi calculate the relation zi‘ with the values
(3

. . 8 a 1l «a )
found for m and n, and also the factors of 275 amdﬁ e resp. in
the expressions for R7) and p;. We have viz. according to (6):

8m? 3% (1,107} 8,678
_ 8w’ 8 X (LI07T) — 92,114

be 3mi—2n  id—2 X 0,969 1,740

So we see that the ordinary theory of association, though g differs
only little from 1, and in consequence m and n only deviate liltle
from 1, is perfectly adequale o accouni for the very considerable
diminution of the ratio v;:d; from 3 1o aboui 2,1, a value which
is in perfect harmony with the value compuied by different investi-
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cators led by other considerations. Thus we may s&y that the values
of B and ¢, which we originally caleulated from f =7 and p = 0,265
are also 7reversely able, o reduce vy : 0 from 3 to 2,1, ffrom4 to 7,
" and w from 0,375 to 0,265. The ordinary theory of the apparent
diminution with the coefficients «, B, ele. in the expression

b =10, (1—-a + {3( ") — etc) has always failed to do this, (see also

Tryner, 1901, “Sur linfluence des corrections efe.”, p. 1—10, spe-
cially p. 10 at the top).

It in formula (7) @ and b, are made to refer to simple molecular
(uantities, the second member has to be wmultiplied by the factor
142 (=v), and we get: )

1+2 8 a n*(3m*—2n)

RT} = — 2
L I

) .8 a , 7
So it we put = f, the factor of . —, we find fora =1, as m =—
275 m 8

I

, 2 7\*3 1,107)* — 2 X 0,969

1,955 (1,107) ’
hence
49 1,740
= 1,023 = 1,004.
h= >< >< 1,357 \
This is in perfect accordance with v. p. WaaLs' observation, that
— even if w;=2,10; instead of 30y — BT} yet becomes again

a
= —— with a high degree of approximation.
27 by, =

Further we have, according to (8):
1 o (3m*—2u)° (472———6)7»)

Pr =

27 I? m®
1 thus the factor of ! b
and thus the factor o 2_71) . becomes:
1,740 05536 1,676
— ( ) X ’ = 6 = 1,007.
1,226 X 1,357 1,664  ———
. . 1 «
Here too il appears once more, that py remains:ﬁ% approxi-
20 O
mately.
Clarens, Aug. 22 1911. (To be continued).
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Chemistry. — «On the benzenchecacllorides and their splitting up
nto  irichlorebenzenes”. By Dr. T. vay pur Lizvmy. (Com--

municated by Prof A. F. Howreman).

(This communication will not be published in these Proceedings).

(October 26, 1911).
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