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Mathematics. — “Continuous one-one transformations of surfaces
in themselves.” (4™ communication ?)). By Dr. L. E. J. BRouwEa.
(Communicated by Prof. D. J. KorTeEwEe). :

(Communicated in the meeting of May 27, 1911).

In this communication as in the preceding one we shall occupy
ourselves with continuous one-one transformations with invariant
indicatrix of a two-sided surface in itself,

If for such a {ransformation there is an invariant arc of simple
curve, it contains at least oneinvariant point; more than one invariant

point need not appear.

f, however, each of ils two sides is invariant, then the arc contains
at least #wo invariant points; more than two invariant points need
not appear. ’

Of the former of these two evideni theorems we have shown in
§ 2 of the third communication that it can be extended to the most
general circular continaum (of which the arc of simple curve can
be regarded as the simplest type); to the latter theorem we shall

give the same extension in the following.

A segment of the circunference formed by the accessible points
of a circular continuum will be called a complete circumference
segment, if the set of its limiting points is identical to the circular
continuum itself.

As the generalization of the arc of simple curve with two invariant
sides we can consider a circular continuum ¢’ whose circumference
can be divided by two “Schnitte” into two complete circumference
segments, both invariant for the transformation. '

Of ¢ together with a certain vicinity ¢’ we constructacontmuous
one-one representation on a finite region of a Cartesian plane, where
they pass successively into ¢ and ¢, and we draw in that Cartesian
plane a simple closed curve x lying together with its image and its
counterimage in 1, whilst its inner domain contains .

ANl figures to be constructed in the following and likewise their
images and their counterimages we suppose to lie in 9. ' '

According 1o the third communication ¢ possesses a point [ invariant
for the transformation; we shall suppose that this point /is the only
invariant point of ¢. ’

The two Schnitte determining on ¢ the two invariant complete
circumference segments o, and o,, we shall represnnt by S, andS

1) See these Proceedings Vol. XI, p. 788, Vol, XII, p. 286, Vol, XIII, p. 767.
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An arc of simple curve joining two points of the circumference
of p, and for the rest not meeting ¢, will he called a skeleton arc.
We surround ¢ by a fundamental series of polygons P, P, Ps..-.

1
approximating ¢ at distances &, &,.8,..... (Ek+l < T s;c). The side

of the largest square whose inner domain lies between ¥, and ¢,
we represent by e,; for indefinitely increasing n we find that ¢,
converges to zero.

Each polygon P we divide into segments in which the distance
of the endpoints lies between 4s; and 12, and the distance of two
arbitrary points does not exceed 24¢., and we draw from the points
which separale these segments, t0 ¢ paths < 2g; not intersecting
each other, and cutting each polygon P, (n > £) only once. Each
two of these paths which immediately succeed each other, form
together with the segment of P connecting them a skeleton arc.

We first suppose that the Schnitt S, is no¢ determined by an
accessible poini, and we choose on a fundamental series of polygons
P, Py, ... a fundamental series of skeleton arcs s, ,S,,..., not
intersecting each other, converging to a single point P, and all
containing between their endpoints the Schnitt .S,. The arc of %,p

belonging to Sa, We shall represent by Gz,

We then construct an arc of simple curve 6 ending in P, inter-
secting each element sz, of a certain fundamentfal series s, s,,...
(contained in the series of the 3“") once and only once in a point
P of qrp, and passing there from the outside of 5= io its inner
side. The part of 6 contained between pr_l and P,P we represent
by b:p, the part of QLP preceding resp. following 9=, and lying inside
S, by t, Yesp. s . Then it is impossible that as well the part
of b, lying to the right of b’p’ as the part ofvfp lying to the left of
b,”, converge to zero; for, in that case P would be an accessible point.

So out of the series of the 7, we can select such a fundamental
series 3,,8,,... (preceded in the series of the 7, successively by the
elements y,,7,,-..), and determine to that series such a quantity ¢
that for each B, is attained on e.g. the part of g, lying to the right

of b,a” a maximum Qistange > 32¢ from P by a certain point Q,gp’
whilst , neither $,» BOT S, NOr bﬁp reach a distance > ¢ from P,
a,nd.e,p‘ as well as ¢, are <ec.
Then on vg ' lies a point Rg which can be joined with Qﬁ” inside
21*
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9,3,3'0 by a path ge,,p V2, whilst farthermore Q,gp and R,gp may be

connected with ¢ by paths Qﬁ I—I,g and R,; K,g <§e,g, lying

oulside )D/; , and not culting SE thus containing S, between them.
These tlnee paths form a skeleton arce ]:Iﬁ Qp Rﬁ K,g whose size

for indefinitely increasing p converges to zero, and Whlch we shall
represent by %,

So out of the series of the B, we can select a fundamental series
ry Fyy .., in such a way that forindefinitely increasing p the skeleton
arc 6, converges to a single point V' not identical to P. . . =«

We shall now suppose that the Schnitt .S, is determined by an
accessible point P. Let in that case w be a path leading to P, and
let $,,$,, ... be a fundamental series of skeleton arcs separating .S,
from =, and whose size converges to zero. Then as soon as p has
exceeded a certain value, all s, must cut w, and that in points which
for indefinitely increasing p uniformly converge to P, so thats, con-
verges for indefinitely increasing p uniformly to P.

So if S, resp. S, is not determined by an accessible point coin-
ciding with [/, we can construct a skeleton arc U,V resp. U,V as
small as we like, separating S, resp. .S, from %, and not cutting its
image U', V', resp. U',V",, so that either the circumference segment
UV, resp. UV, is a part of the circumference segment U', V',
resp. U',V',, or the circumference segment U', V' resp. U', V', isa
part of the circumference segment UV, resp. U, V,.

Farthermore it is impossible that S, and S, are determined by
accessible points coinciding with each other, for, in that case the
derived sets of 0, and o, would have only that one point in common,
so that o0, and 0, would not be complete circumference segments.

On o, we choose a point P not coinciding with [; the image of
P we vepresent by P', the image of P' by P", the counterimage
of P by P, From = we draw to P, P', P", P, paths w, z, u, v not
meeting each other, and containing such endsegments ¢, ¢, ¢", ¢, that
¢ is the image of ¢, ¢" the image of ¢, ¢; the counterimage of ¢, and.
we construct an arc of simple curve % starting in P, not passing
through 7, cutting o,, and not meeting w; the image of % we repre-
sent by &, the image of #' by %", the counterimage of % by #;, the
size of &, &, k", k; successively by g¢,¢',¢", ¢i, the largest resp. smallest
one of the latter four quantities by g vesp. ¢;.. We describe circles
a,a,a',a, containing in their inner domains j,7,J", j; at a distance
g successively the arcs £, &, %", k;, and we ftake care to choose %
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.50 small that two arbitrary ones of the sets of points w 4 j, 2 47,
a g% v j; possess a distance > 8 gn from each other, that the
parts of w, z, u, v contained in j, 7, ", j; belong entirely to ¢, ¢,¢", ¢,
and that Z cannot contain a skeleton arc separating a Schnitt S, or
S, determined by an accessible point coinciding with 7, from the infinite.

Either £ or 4’ contains a point @ of o0, accessible from s alonga
path not cutting ¢ -+ % -4 Z. In the following we shall assume Q
to belong to %; if it were to belong to &', we might consider instead
of the given transformation its inverse, and then follow the reasoning
of the text.

From x to @ we lay a path m not cutting ¢ + £+ % -+ w.

The part of £ contained between P and  we represeni by 7,
its image by ¢/, the image of »' by +". If we then approximate ¢ - r
at a sufficiently small distance by a polygon ¥, this polygon P con-
tains two ares p, and p, both connecting w and m, and having no
point in common. Together with certain parts of w - r 4 m these
arcs p, and p, form two polygons P, and P, whose inner domains
have no point in common, so that the inner domain of e.g. P, does
not contain the point /. We then determine the positive sense of
circuit of the circumference of ¢ by a circuil from P to () inside %,.

The circumference segment PQ contains one and not more than
one of the two Schnitte S, and S,: we may assume the Schnitt
S, to belong to the circumference segment PQ.

Then S, 'cannot be determined by an accessible point coinciding
with I; for, in that case » could not contain a skeleton arc separating
S, from the infinite, so that the point I would be accessible inside
P,, which is impossible, / lying outside P,.

We represent the image of Q by @, and according o the manner
of succession of the points P, P, Q, ¢ for a positive sense of circuit
we distinguish four cases.

© First case: P’ precedes P, and Q' precedes Q.

In this case » contains a skeleton arc d separating ( from the
infinite, and accessible from the infinite without a crossing of p--r--r'.
Let M be ‘the endpoint of d preceding @ on the circumference of
p, t a segment of d containing M, ¢ the part of r that remains after
destroying in » all skeleton arcs separating @' from the infinite.

Between * the image w’ of w and ¢ we construct a polygonal line
P',, and :between ¢ and the image m’ of m a polygonal line P', which
both approximate ¢ - ¢4 - " at a dislance s.

The segment cut off from w’ resp. ¢ by 9, we represent by
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F' resp. v,; the segment cut off from ¢ resp. m’ by 9, we represent
by =, resp. u’; the part of ¢ contained between the endpoints of
W, and 9, we represent by 7. The arcs o, F,P,, «/ ¥, ¢ form
together a polygon %'; I lies outside this polygon. For the lengths
of the transformation vector and of the inverse transformation vector
mside ' there exisls a certain mimmum 7.. Let f be a quantity

1,
smaller than ¢; and smaller than 5 t.; then we take care to choose

¢ so small that
1, , 1, , t . 1, . 1
E<@fv”<3—2J‘,M<§fﬂs<§fvﬁ<é§f-

We divide 9, and 9, into segments in which the distance of the

1 8
endpoints hies between ry S and T J>and the distance of two arbitrary

3
pomnts 15 smaller than T J- From the points separating these segments
we draw to ¢ 4 ¢ 42 4" rectilmear paths whose lengths he
1 3
between 3¢ and 5 but among these paths we retain only those

whose endpoints do not lie on », 7' or r'. These remaining paths
determine together with «’, m’, +,, and <, skeleton ares lying
agamst P, and ¥,, and not meeting their counterimage skeleton
arcs, whilst these counterimage skeleton arcs can meet neither » nor 7'

The last point of intersection with 9, of the counterimage skeleton
arc s separating (' from the infinite, we represent by L ; the image
of L we represent by L’, the image of s by &', the first point of
intersection of r with 9" by E, the image of F by E'.

A). s’ 15 separated by s from the infinite.
Our aim is to find the total angular varia-
tion w, of the inverse transformation vector
for a positive circuit of the polygon ¥,
and we represent by y, the total angle
described by the inverse iransformation
vector from P’ to L’ along P'; by vy, the
total angular variation of a nowhere
vamshing vector of which the origin runs
from P’ to L’ along P, and the endpoint
as a continuous function of the origin
from P to L along path arcs nowhere
passing outside ¥, constructed according
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1to § ‘2 of the third communication®); by ¢, the total angle described
by the inverse transformation vector along the segment L’ J of P';
by ¢, the total angular variation of a nowhere vamshing vector of
which the origin runs, from L’ to £’ along ¥, and the endpoint as
a Continuous function of the origin from L tot £ along a curve p
lying inside P'%); by y, the total angle described by the inverse
Aransformation vector along the segment £’ P’ of ', by vy, the
total angular variation of a nowhere vanishing vector of which the
origin runs from £’ to P’ along 7', and the endpomnt as a con-
tinuous function of the origin from Z to P along a curve obtamned
by replacing in the segment EP of r each part lying outside ' by
the segment of ', joining the same endpoints.

Then the following equations hold:

fr =z + 2nm (n = 0)
Pr =Py

P =1,

wl :Xl + (pl + 1"1'

Now y, + ¢, + ¥, represents the total angular varianon of a
nowhere vanshing vector of which the origin describes the polygon
P’ in a positive sense, and the endpont as a contnuous functhon
of the origin .a closed curve nowhere passing outside IV, so thatl
we have:

Xz + (/72 + 4’2 = 2“‘
Hence:

w, = 2am (n 2 1),

PN

Fig, 1.

1) See these Proceedings Vol. XIlI, p. 770.
% If I’ lies not on %, but on one of the paths connecting 9’ and ¢, we must
take care that p does not meet this path.
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50 that we arrive at the absurd result that inside ¥ must lie an
invariant pomt
B). s s not separated by s from the infinite. Then the two end-
pomts of s’ as well as the two endpoints of s .lie on o0,. Defining
OS> Koo Prs Por Wys P, in the same way as just now, we arrive here
at the following equations :
% =% + 2n7 (n 2 1, because between P’ and ¢’ lies the Schmtt S)
Iy=py — 27
W, =1,
W, =% + ¢+
%+ Py P, =27,
Thus agawn w, = 2nx (n2.1), so that inside P there ‘would have
to lie an 1nvariant pomnt.

Second case: P follows P, and Q' precedes Q.

A). @ is separated by v from the infinite. 'We construct the
polygonal lmes ¥, and ¥',, and the polygon P' with its skeleton
atcs 1n the same way as in the first case. Then the counterimage
of P 15 a sumple closed curve P bearing skeleton arcs which, like
those of ¥, cut neither » nor /. We want to find the total angular
variation & of the transformation vector for a positive cireuit of .

We represent by £’ the endpoint of P,
on ¢; by £ the counterimage of E’; by %,
the total angle described by the transforma-
tion veclor along the segment PE of P;by
¥, the total angular variation of a nowhere
vanishing vector of which the origin runs
from P to I/ along P, and the endpoint as
a continuous function of the origin from 2’
to £’ along path arcs nowhere passing out-
side P; by w, the total angle described by
the transformation vector along the segment

Fig. 2a. EP of P; by w, the total angular variation
of a nowhere vanishing vector of which the origin runs from & to
P along P, and the endpoint as a continuous function of the origin
along a curve obtained by replacing in the segment /P’ of P each
part lying outside P by the segment of r joining the same endpoints.

From the equations

% =Y + 207 (2 0)

P, =,
=% + P
12+1P2:2‘7F ¢
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then ensues &, = 2nx (n = 1), so tlmt inside 9 there would have to
lie an invariant point.

B). Q’ 1s not separated by r from the infinite. We construet between
w’ and m’ a polygonal line approximating ¢-»--+'4+" at a distance
&, cutting off fiom w’ resp. m’ the segment #' resp. ', and forming
with £, », and ¢’ a polygon . The deter-
mination of ‘e, and the construction of the
skeleton arcs of )V take place in the same
way as in the first case. We want to find
the total angular variation &, of the trans-
formation vector for a positive cireuit of the
counterimage P of P, and we understand
by &, the total angular variation of a no-
where vanishing vector of which the origin
describes P, and the endpoint as a continuous
function of the origin runs first from P’ to
Q' along path arcs nowhere passing outside
P, and finally describes r’.

D=9, + 2nzw (n20)
P, = 2x

Hence ¥, = 2nar (n = 1), so that inside P there would have to lie
an invariant point.

Then we have:

Third case: P’ follows P, and Q' jfollows Q.

In this case r contains a skeleton arc d separating Q' from the
infinite, and accessible from the infinite without a crossing of p~-r—-r'.
We determine ¢, ¢, and & and we construct P, ¥,, P, ¥, and the
skeleton aves of these polygons in the same way as in the second
case under A).

The last point of intersection with P of the skeleton are s’ of
9, separating ) from the infinite, we represent by L’; the counter-
image of L’ we represent by L, the counterimage of s by s, the
endpoint of 9, on ¢ by E’, the counterimage of &' by .

A). s is separated by s’ from the injinite. Our aim is to find the
total angular variation 9, of the transformation vector for a positive
circuit of P, and we represent by y, the total angle described by
the transformation vector from [ to L along P; by yx, the total
angular variation of a nowhere vanishing vector of which the origin
runs from P to L along %, and the endpoint as a continuous function
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of the origin from P’ to L/ along path
arcs nowhere passing outside P; by
@, the total angle described by the
transformation vector from L to E
along P; by ¢, the total angular
variation of a nowhere vanishing
vector of which the origin runs from
L to E along %, and the endpoint
as a continuous function of the origin
inside P from L’ to I along an
arc of simple curve p; by 1, the
total angle described by the trans-
formation vector from £ to P Fig. 3a.

along P; by v, the total angular variation of a nowhere vanishing
vector of which the origin runs from £ to P along P, and the
endpoint as a continuous function of the origin along a curve obtained
by replacing in the segment &/ P’ of 9’ each part lying outside P
by the segment of r joining the same endpoints.

Then the following equations hold:

A =% + 227 (n 2 0)
=9, + 2x

Y, =1, L.
P ::X1+§01+‘P1

X + @, -+ P, = 22

Hence &, = 2nar (n22), so that inside P there would have to lie
an invariant point.

B). s is not separated by ' from the
infinite. Then the two endpoints of s
as well as the two endpoints of s’ lie
on 0,. Defining &, %y Agr F1s Par W1y P,
in the same way as just now, we arrive
here at the following equations:

%o =%y + 2nw (n 2 1, because between
P and s lies the Schnitt S))

P =9,
P, =1,
Fig. 3b. . =+ + ¢,

x:+ms+w2:2“'

Thus again &, = 2nw (n 2 2), so that inside P there would have
to lie an invariant point.

-10 -
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Fourth case: P’ precedes P, and Q' follows' Q.

A). Q' is separated by v from the infinite. We construct the polygon
P’ with its skeleton arcs in the same way as in the third case. We
want to find the total angular variation w, of the inverse transfor-
mation vector for a positive circuit of ¥, and we represent by %,
the total angle described by the inverse , y
transformation vector along the segment P’ Q’ v 7 &
of P’; by y, the total angular variation of
a nowhere vanishing vector of which the
origin runs from P’ to Q' along ¥, and 72’ P
the endpoint as a continuous function of the
origin from P to @ along path arcs nowhere
passing outside P’; by 1, the total angle
described by the inverse transformation vector
from Q' to P’ along »’; by w, the total
angular variation of a nowhere vanishing
vector of which the origin runs from @’ to Fig. 4a.

P’ along »’, and the endpoint as a continuous function of the origin
from @ to I’ along a curve obtained by replacing in r each part
lying outside P’ by the segment of ¥, joining the same endpoints.

From the equations

=% + 227w (n 2 0)

P, =1,
o, =%+
X + P, = 2 ’

then ensues w, = 2nxr (n 2 1), so that inside P’ there would have to
lie an invariant point.
/ ; B). Q' s not separated by v from the
Vd & infinite. We construct the polygon P’ with
its skeleton arcs in the same way as in the
second case under B). We want to find the
total angular variation «, of the inverse
transformation vector for a positive circuit
of P, and we understand by w, the total
angular variation of a nowhere vanishing
vector of which the origin describes ¥, and
the endpoint as a continuous function of the
origin runs first from P to @ along path
arcs nowhere passing outside P’, and finally
describes 7.

-11 -
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Then we have:
w, = w, + 2nx (n 2 0) v
w, =2x
" Hence w, = 2nx (n>1), so that inside P’ thele would have to lie
an 1nvauant pomt
With this we have completely proved the following
Trrorem. For a continuous one-one transformation with mvariant
mdicatriz of a two-sided surface in Uself a circular contiuum with
two separated invariant complete circumference segments contains at
least two invariant poinis.

r

ERRATA.

In the 3'4 communication on this subject, these Proceedings Vol. XIIT

1

p- 767, 1. 6-from top for: indicated. but read: indicated but
1. 20 from top  for: paraboli read: parabolic

Physiology. — C. A. PekerasrIiNG reads a paper on: ““ZThe excretion
of creatinin in mnan under the influence of musculur tonus”,
after experiments by Mr. J. HARKINK.

(Communicated in the meeting of September 30, 1911).

Some time ago I reported here on an investigation by Mr. Van
Hooeennuvze and myself, proving that in vertebrates the content
of creatin in the voluniary muscles increases during the tonus, but
not during simple contractions of the muscles. We may therefore
expect thal by merease of the muscular tonus more creatin passes
into the blood than in other circumstances. Moreover a later inves-
tigation showed us that creatin, when gradually mtroduced into the
cuculatmg blood, is partly excrcted by the kidneys as creatinin ). So
we may conclude that an increased tonus will lead to a larger
excretion of creatlnm

A series of ‘estimations by Van HOOGLNHUY?I} and VERPLOEGH
showed indeed that less creatinin is excreted per hour during the
night when the muscles as a rule are relaxed din sleep, than in the
daytlme when the muscles are now in a tighter, now in a less
intense tonus. Besides they stated that a smaller amouni of creatinin

1) Onderzoekingen Physiol. Laborat, Utrecht, 5de R. XI. p. 236.
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