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only in large crystals, and exclusively after the colourless minerals.

In the aegirinenephelinesyeniteporphyries from Olivenfontein (145),
which are very rich in nepheline, the first crystallized mineral is
the apatite; it was followed by small crystals of nepheline and
sodalile, still later by larger crystals of perforated nepheline, sodalite
and felspar, simulianeously with the enclosed small needles of
aegirine ; finally the perforated aegirines could still.be formed in
large crystals. .

On account of the tardy crystallization of the larger crystals the
order of succession of the crystallizations can be studied more easily
in these rocks than in their normalgrained equivalents.

The sieve structures described above, can be distinguished from
those of the contactrocks and crystalline schists by the occurrence
of exclusively idiomorphic or rounded inclusions, according to their
relative age. From the real phenocrysts of the porphyric rocks the
larger crystals here described differ in this vespect that the inclusions
are not ranged afler the laws of crystailization of the enclosing
crystal. X

As the perforated crystals usually show a perfectly idiomorphic form,
we see that the rule according to which the relative age of the
erystals in igneous rocks is proportional to their idiomorphism, does
not hold good here. '

Mathematics. — “dAn extension of the integral theorem of Fourirg.”
By Mr. J. Drosrr. (Communicated by Prof. J. C. Kruyver).

(Communicated in the meeting of September 30, 1911).

As is known, for an extensive class of functions f{a) the equation

© b
fla) = fz fw (s 9 @) Ay) dy
0 a

becomes an identify in 2, if we pul b=—a=o and ¢(@,y,¢)=
= cos a(v—y); in this way we find the integral theorem of Fouwrur
which can be regarded as a limiling case of {he series of Fourigr.

In the theory of the integral equations Hrserr and Scimnbpt have
proved developments in series of which those of Fourirr are special
cases. The following is a theorem which is in such a manner an
extension of the integral theorem of FoURIER.

Let, K (z,) be a continuous symmetrical kernel, ¢, (2), ..., ¢ (), . . .
o complele system of normalized orthogonal functions of that kernel
and belonging {o the limils of infegration « and &, and 2,,...,7,,..
the corresponding roots (“Eigenwerle”).
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we find .
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and consequently the series
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then we find
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converges absolutely and for constant @ uniformly in (y, ¢). So if
JS(y) is a continuous function of y and it m >0, we find:
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if both sums appefumg here converge. If we put
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Let p now be an integer, salisfying the condition
+@+d<r<@rdd+2 . . . .. (2

We find then, if
b
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and /(7)) is continuous,
b

1] b
fm ) f) dy = f ) dy f K. 8) M)

a

b b
b - - 1 g
19 46 [ K008 1) dy = 5 (165 60

D)
a a a

and so the second member of (1) is equal or smaller than
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The sum appearing here converges according to § 2 of Scumipr’s
paper on integral equalions in the Math. Anu. vol. 63, whilst from
the given supposilions about fz) follows that the sum in the first
member of (1) is equal (o f#). For /mm =co follows therefore
oul of (1)
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From (2) follows that the smallest value of p is two. If we take
e.g. ¢q=0, d=14, gle)=sin*a, then M =1, N<V'» and

A= 224 = V@,
ol
0

If therefore f{z) is a continuous function in 2, for which the
integral equation of the first kind
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has a continuous solution A(y), then (3) holds if we put
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If however we put ¢ =0,0=1, ¢ (¢) =sin® ¢, then M =N=1

and
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and therefore

8

1
=P (@) P (y) — sin (af37),
whilst p = 3.

It is easy to see that after a choice of ¢ and 4 we can always
suffice by taking

14
g(a)= (sinza)T,
or also, if = is an inleger and
1+d<rL 244,
g(a) = sin’ .
Another example is

v = 2 3@y _(y)

=1 ., o v (p=29)
A4 ’E
which is found for ¢ =0 and d=1, if we take
al+
9 (@) = e



