Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

Vries, H. de, On the conoids belonging to an arbitrary surface. (1st part), in: KNAW, Proceedings, 14 I, 1911, Amsterdam, 1911, pp. 481-495

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Cadmium, Magnesium, Calcium and Mercury. Moreover the principle of combination appears to point here to summational and differential vibrations of the intensest (first) lines of the already known series, so that we can account for the new lines without making use of a spectral formula. In Paschen's recent paper on the systems of series in the spectra of Zinc, Cadmium and Mercury it is particularly the very intense lines $\mathrm{Zn} 2138,6, \mathrm{Cd} 2288,1$ and Hg 1849, which occur in combinations; they must be considered as first line of a principal series, lying in the ultra-violet. This principal series is indicated ${ }^{1}$) by $1,5 S-m P$, a second subordinate series being indicated by $2 P-m S$. The series $2,5 S-m P$ is a differential vibration of the lines of the principal series with the first line of the $2^{\text {nul }}$ S.S.

$$
\begin{aligned}
2,5 S-m P & =\{(1,5 S-m P)-(1,5 S-2 P)\}-(2 P-2,5 S) \\
& =m^{\text {th }} \text { line P.S. }-1^{\text {st }} \text { line P.S. }-1^{\text {st }} \text { line II S.S. }=
\end{aligned}
$$

$=m^{\text {th }}$ line D.S. $-1^{\text {st }}$ line II S.S.
In this I have called $1^{\text {ss }}$ line IIS.S. ($m=2,5$), what is considered the $2^{\text {nd }}$ line by Ritz.

Mathematics. - "On the conoids belonging to an arbitrary surface." By Prof. Hk. de Vries. (1 ${ }^{\text {st }}$ part).
§1. Among the examples current in Descriptive Geometry of non-developable scrolls we meet the so-called right sphere conoids, formed by all the lines which intersect a given directrix, run parallel to a plane perpendicular on that directrix, and touch a given sphere; it is a surface of order four, which has the given directrix as well as the line at infinity of the director plane as nodal lines, and the points of iutersection of these two straight lines with the sphere as cuspidal points; the generatrices passing through.these points coincide namely in so-called torsal lines, distinguished from the other generitrices on account of the tangential planes coinciding in all their points.

If we substitute for the sphere an arbitrary surface of order n, then the right conoid appears belonging to this arbitrary surface, which conoid seen from a mathematical point of view does not differ from the scroll formed by all the lines intersecting two arbitrary directrices r_{1}, r_{1}, crossing each other, and touching a surface Φ^{n} of order n; on this surface some observations follow.
§2. We suppose the surface $\n to be point general. A plane

[^0]brought through a point A_{1} of r_{1} and through r_{2}, cuts out of $\boldsymbol{\Phi}^{n}$ a curve k^{n} of order n and class $n(n-1)$, from which ensues that the two directrices r_{1}, r_{2} are $n(n-1)$ fold lines of the scroll Ω under examination.

A plane through r_{1} contains the $n(n-1)$ fold line r_{1}, likewise the $n(n-1)$ single generatrices through the point of intersection of that plane with r_{2} : so Ω is a surface of order $2 n(n-1)$.

Let S_{1} be a point of intersection of r_{1} and $\boldsymbol{\Phi}$. The plane $S_{1} r_{2}$ now cuts $\boldsymbol{\Phi}$ according to a k^{n}, containing the point S_{1} itself, from which ensues that two of the $n(n-1)$ generatrices of $\boldsymbol{\Omega}$ through S_{1} coincide with the tangent in S_{1} to l^{n}; through each of the n points S_{1} passes therefore a torsal lane of Ω, and the tangential plane belonging to it, which for convenience' sake we shall call "torsal plane", is evidently the plane $S_{1} r_{3}$. The same holds of course for r_{3}.

There are however more cuspidal points on r_{1}. If namely we imagine a tangential plane through r_{2} to Φ, then it will intersect Φ in a k^{n} with a node in the point of contact; the line connecting this point of contact with the point of intersection C_{1} of the indicated tangential plane and r_{1} counts for two coinciding generatrices of Ω through C_{1} and is thus likewise a torsal line; so the points C_{1} are also cuspillal points of Ω. Their number is equal to the class of Φ, thus $n_{(}(n-1)^{2}$, and the corresponding torsal planes are the planes $C_{1} r_{2}$. The same holds of course for r_{2}.

Other cuspidal points on r_{1} or r_{3} are not possible. For, if for a point A_{1} of r_{1} two tangents to the curve k^{n} lying in the plane $A_{1} r_{2}$ are to coincide, then this is only possible either in one of the manners described just now or because an inflectional tangent or a double tangent of k^{n} passes through A_{1}. These last cases appear in reality (comp. $\$ 4,6$), however, they evidently do not lead to torsal lines, but to cuspidal edges and nodal generatrices. The complete number of cuspidal points on r_{1} (or r_{2}) amounts therefore to

$$
n+n(n-1)^{2}=n\left(n^{2}-2 n+2\right) .
$$

§ 3. As each generatrix of Ω is a tangent of $\boldsymbol{\Phi}$ the scroll $\boldsymbol{\Omega}$ and the surface \boldsymbol{D} will touch each other along a certain curve, whilst both surfaces will possess in general a proper curve of intersection besides; for, of the n points of intersection of a generatrix of Ω with Φ only two (coinciding ones) belong to the curve of contact, the remaining $n-2$ to the curve of intersection.

The order of the curve of contact we can find in the following way. A plane through r_{2} and a point A_{1} of r_{1} intersects Φ in a curve k^{n}, and the points of contact of the tangents drawn out of
A_{1} to this curve, are the points of intersection of k^{2} with the first polar curve p_{1}^{n-1} of A_{1} with respect to z^{n}. The locus of all these curves p_{1}^{n-1} is a surface, which for convenience' sake we shall call "first polar surface of r_{1} with respect to Φ and r_{2} "; the intersection of this surface and $\boldsymbol{\Phi}$ is the curve of contact to be found.
It is easy to. see that the first polar surface of r_{1} with respect to $\boldsymbol{\Phi}$ and r_{2} is of order n and contains the line r_{2} as single line. A plane through r_{2} namely contains the first polar curve $p_{1}{ }^{n-1}$ of the point of intersection A_{1} of that plane with r_{1}; if now the plane rotates round r_{2}, then the points of intersection of $p_{1}{ }^{n-1}$ and r_{2} will travel in general along the line r_{2}, from which ensues that r_{2} itself lies on the polar surface to be found; so the question is only how many different polar curves $p_{1}{ }^{n-1}$ pass through an arbitrary point of r_{2}. We choose as this point one of the points of intersection S_{2} of r_{3} and $\boldsymbol{\Phi}$. If the first polar curve p_{2}^{n-1} of a certain point A_{1} of r_{1} is to pass through S_{2}, then one of the tangents drawn in the plane $A_{1} r_{2}$ to the curve k^{n} lying in that plane must have its point of contact in S_{2}, and it must therefore touch the surface $\boldsymbol{\Phi}$ in S_{2}. Now the tangential plane in $S_{2}{ }^{\circ}$ to \boldsymbol{T} intersects the line r_{1} only in one point; so only one curve $p_{1}{ }^{n-1}$ passes through S_{3}, and so also through an arbitrary other. point of r_{2}.

Each plane $A_{1} r_{2}$ contains thus of the surface to be found a curve ρ_{1}^{n-1} and the single line r_{2}; the surface is thus of order n. We shall indicate it by the symbol $\Pi_{1}{ }^{n}$. It intersects Φ in a curve of order n^{2}, and this is the required curve of contact $c^{n^{3}}$ of Ω and D. Also r_{2}, possesses of course a first polar surface, $\Pi_{2}{ }^{n}$, but now with respect to Φ and r_{1}; it intersects Φ according to the same curve $c^{n^{2}}$. It is clear that $c^{n^{2}}$ contains the n points of intersection S_{1} of r_{1} and Φ as well as the n points of intersection S_{2} of r_{2} and Φ; the torsal lines through these points louch here $c^{n^{2}}$, because they touch Φ as well as Π_{1} and Π_{2}. In a point S_{1} namely the torsal line touches a curve i^{n}, thus Φ_{1}, and a curve p_{1}^{n-1}, thus Π_{1}, and therefore also the section $c^{n=}$ of these two surfaces.

We control these results analytically. Let r_{1} coincide with the edge $A_{9} A_{4}\left(x_{1}=x_{2}=0\right)$, and r_{2} with the edge $A_{1} A_{2}\left(x_{3}=x_{4}=0\right)$ of the fundamental tetrahedron, and let Φ be a homogeneous polynomium of order n in $x_{1}, \ldots x_{4}$, and let $\boldsymbol{T}=0$ be the equation of the surface Φ.
For a plane through $r_{2}=A_{1} A_{y}$ the two homogeneous coordinates ξ_{1} and are zero, so the equation runs:

$$
\xi_{3} x_{3}+\xi_{1} v_{4}=0 ;
$$

(484)
if this plane is to pass through a point $\left(x_{3}^{\prime}, x_{4}^{\prime}\right)$ of $A_{3} A_{4}$, then we find

$$
\xi_{8} x_{3}^{\prime}+\xi_{4} x_{4}^{\prime}=0,
$$

so that finally the equation of this plane runs:

$$
x_{4}^{\prime} x_{8}-x_{3}^{\prime} x_{4}=0 .
$$

If we now take of the point ($x_{3}^{\prime}, x_{4}^{\prime}$) the first polar surface

$$
x_{3}^{\prime} \frac{\partial \Phi}{\partial x_{2}}+x^{x^{\prime}} \frac{\partial \Phi}{\partial x_{4}}=0
$$

with respect to Φ, then the section of this surface with the plane $x_{4}^{\prime} x_{3}-x_{8}^{\prime} x_{4}=0$ is the polar curve $p_{1}{ }^{n-1}$; the locus of these, hence the surface $\Pi_{1}{ }^{n}$, we find by elimination of x_{s}^{\prime} and x_{4}^{\prime} out of both equations; so the equation runs:

$$
\Pi_{1}=x_{8} \frac{\partial \Phi}{\partial x_{3}}+x_{4} \frac{\partial \Phi}{\partial x_{4}}=0,
$$

really a surface of order n containing the line $r_{2}\left(x_{s}=x_{4}=0\right)$ as a single line.

The equation of Φ can be written in the form

$$
\sum_{i=1}^{4} x_{i} \frac{\partial \Phi}{\partial x_{i}}=\dot{0} ;
$$

so the coordinates of the points of intersection with $r_{1}\left(x_{1}=r_{2}=0\right)$. satisfy

$$
x_{3} \frac{\partial \Phi}{\partial x_{3}}+x_{4} \frac{\partial \Phi}{\partial x_{4}}=0,
$$

i.e. the equation of Π_{1}.

In the case of the right sphere conoid one of the two polar surfaces is a parabolic cylinder, the other a cylinder of revolution. Let us call the director line r_{1}, the line at infinity of the director plane $r_{r_{\infty}}$, then each plane through a point A_{1} of r_{1} and through $r_{2 \infty}$ intersects the sphere according to a circle, so that the first polar curve of A_{1} becomes a line normal to the plane through r_{1} and the centre of the sphere; this line as well as $r_{2 \infty}$ form the complete intersection of the considered plane with Π_{1}. If however we consider in particular the plane at infinity we have to take the polar line of the point of r_{2} at infinity with respect to the absolute circle, which coincides with $r_{2 \infty}$; so I_{1} is indeed a parabolic cylinder whose generatrices are normal to the plane through r_{1} and the centre of the sphere. In the planes through r_{1} on the other hand we have to take the vertical diameters of the circles of intersection with the sphere lying in that plane, from which ensues immediately that Π_{2} becomes a quadratic cylinder with vertical generatrices. The points of intersection of $r_{2 x}$ with the sptere are isotropic points; the circle lying in the
plane through such a point and r_{1} passes itself through that point and touches here the absolute circle, so that the polar line of that point becomes a tangent to the absolute circle; so the cylinder touches the absolute circle twice and is therefore a cylinder of rotation. The sphere and these two cylinders intersect each other according to a twisted curve of order 4 and the $1^{\text {st }}$ species, containing among others the isotropic points of intersection of $r_{z 0}$ with the sphere; on the plane through r_{1} and the centre of the sphere it projects itself as a parabola, on a horizontal plane as a circle.
§ 4. We again imagine a point A_{1} of r_{1}, then a plane $A_{1} r_{2}$, and the section with Π_{1} lying in this plane.and consisting of the curve $p_{1}{ }^{n-1}$ and the line r_{2}. We take this system as a curve of order n and we determine the first polar curve $q_{1}{ }^{n-1}$ for the pole A_{1}, which is of order $n-1$, and contains the $n-1$ points of intersection of $\nu_{1}{ }^{n-1}$ and r_{2}, but moreover the points of contact of the $(n-1)(n-2)$ tangents which can be drawn ont of A_{1} to $p_{1}{ }^{n-i}$. We now luok for the locus of the curves $q_{1}{ }^{n-1}$ and show that this is again a surface of order n, having r_{2} as a single line. The first polar sufface of the point ($x_{3}^{\prime}, x_{4}^{\prime}$) with respect to $\Pi_{1}=0$ bas for equation

$$
x^{\prime}: \frac{\partial \Pi_{1}}{\partial x_{2}}+x_{4}^{\prime} \frac{\partial \Pi_{1}}{\partial x_{4}}=0
$$

hence (see § 3):

$$
x_{8}^{\prime} \frac{\partial \Phi}{\partial x_{5}}+x_{8}^{\prime} x_{3} \frac{\partial^{2} \Phi}{\partial x^{2}}+\left(x_{8}^{\prime} x_{4}+x_{4}^{\prime} x_{\mathrm{z}}\right) \frac{\partial^{2} \Phi}{\partial x_{8} x_{8} x_{4}}+x_{4}^{\prime} \frac{\partial \Phi}{\partial x_{4}}+x_{4}^{\prime} u_{4} \frac{\partial^{2} \Phi}{\partial x_{4}{ }^{2}}=0,
$$

a surface of order $n-1$ and which, cut by the plane $x_{4}^{\prime} x_{5}-x_{3}^{\prime} x_{4}=0$, furnishes the curve $q_{1}{ }^{n-1}$. The locus of this curve, found by elimination of x_{8}^{\prime} and x_{4}^{\prime} out of the last two equations, is therefore the surface

$$
K_{1}=x_{\mathrm{z}} \frac{\partial \Phi}{\partial x_{\mathrm{B}}}+x_{8}{ }^{2} \frac{\partial^{2} \Phi}{\partial x_{\mathrm{s}}{ }^{2}}+2 x_{\mathrm{s}} x_{4} \frac{\partial^{2} \Phi}{\partial x_{\mathrm{z}} \partial x_{4}}+x_{4} \frac{\partial \Phi}{\partial x_{4}}+x_{4}{ }^{2} \frac{\partial^{2} \Phi}{\partial x_{4}{ }^{2}}=0 ;
$$

it is indeed of order n and contains $r_{9}\left(x_{8}=x_{1}=0\right)$ as a single line, just as Π_{1}. The section with Π_{1} is therefore a curve of order n^{2}, of which r_{2} forms a part; it is however easy to show that r_{2} must be counted twice, so that there remains a residual section of order $n^{2}-2$. The section of Π_{1} and K_{1} lies namely evidently also on the surface:

$$
K_{1}^{*}=x_{3}{ }^{2} \frac{\partial^{2} \Phi}{\partial x_{\mathrm{s}}{ }^{2}}+2 x_{\mathrm{s}} x_{4} \frac{\partial^{2} \Phi}{\partial x_{\mathrm{s}} \partial x_{4}}+r_{4}{ }^{2} \frac{\partial^{2} \Phi}{\partial x_{4}{ }^{2}}=0,
$$

which has evidently the line $A_{1} A_{2}$ as a double line. For the section of $I I_{1}$ and K_{1}^{*}, or K_{1} and K_{1}^{*}, the director r_{2} counts donble; thus it must also count double for the section of Π_{1} and K_{1}, with which

Proceedings Rnyal Acad. Amsterdam. Vol. XIV.
is shown that these two surfaces have in each point of r, the same tangential plane.
The equation of Φ can not only be written in the form $\Sigma_{x_{2}} \frac{\partial \Phi}{\partial x_{l}}=0$, but also in the symbolic form $\left\{\Sigma x_{i} \frac{\partial \Phi}{\partial x_{2}}\right\}^{2}=0$. Let us put in it $x_{1}=x_{2}=0$ in order to determine the n points of intersection S_{1} with r_{1}, then exactly the equation $K_{1}^{*}=0$ remains, from which follows that the n points S_{1} lie at the same time on $K_{1}{ }^{*}$ and therefore also on K_{1}; it is even easy to show that each of these points counts double among the number of points of intersection of the three surfaces Φ, Π_{1}, K_{1}^{*}. In a plane $S_{1} r_{2}$ lie namely, as intersection with Φ, a curve k^{12}, as intersection with Π_{2} the first polar curve of these, $p_{1}{ }^{n-1}$, and these curves touch each other in S_{1}. Now however the cnrve $q_{2}{ }^{n-1}$ is again the first polar curve of S_{1} with respect to the curve of order n, consisting of $p_{1}{ }^{n-1}$ and r_{2}; so $q_{1}{ }^{n-1}$ touches in S_{1} the two other curves. The tangential planes in S_{1} to the three mentioned surfaces intersect each other according to the same line, namely the torsal line of Ω through $S_{1}(\$ 2)$; each of these points counts thus indeed for two points of intersection of the three surfaces. Now outside r_{3} (see above) lie $n\left(n^{2}-2\right.$) of these points; if moreover we subtract still the $2 n$ points S_{1} then $n\left(n^{2}-4\right)$ points remain, lying neither on r_{1} nor on r_{2}. If we suppose a plane through such a point P and r_{2}, which is intersected in A_{1} with r_{1}, then the curves $k^{n}, p_{1}^{n-1}, q_{1}^{n-1}$ lying in this plane (and therefore also the second polar curve $p_{1}{ }^{n-2}$ of A_{1}) all pass through P, from which ensues that P is for h^{n} an inflectional point and therefore $A_{2} P$ one of the two principal tangents (osculating tangents) of Φ in P. With this we have shown, that in the congruence of the principal tangents of the general surface of the $n^{\text {th }}$ order $n\left(n^{2}-4\right)$ of these lines rest on two arbitrary lines, or in other words, that the principal tangents intersecting. an arbitrory line form a scroll of order $n\left(n^{2}-4\right)$."
Through an arbitrary point of space pass $n(n-1)(n-2)$ of those lines ${ }^{1}$); for we have but to take the points of intersection of the surface itself with the first and the second polar surface of the chosen point; the surface just found has thus the right line on which all yeneratrices rest, as an $n(n-1)(n-2)$-fold line.

A plane through this line contains, besides the $n(n-1)(n-2)$-fold line, a curve of intersection of order $n\left(n^{2}-4\right)-n(n-1)(n-2)=3 n(n-2)$,

[^1]of which it is easy to show that it consists of $3 n(n-2)$ lines; for, through an arbitrary point of this section a princupal tangent of the surface must pass resting on the multiple line, therefore lying entirely in the plane. The $3 n(n-2)$ lines are evidently the inflectional tangents of the section of the plane under consideration with the surface of order n.

An ordinary point of contact of a geneatrix of Ω with $\boldsymbol{\Phi}$ is a single point of the curve of contact $c^{\prime 3}(\$ 3)$, in each of the $n\left(n^{2}-4\right)$ points P just now found, however, the generatrix $A_{1} P$ has with Φ a three point contact, with Π_{1} a two point one, and therefore also with $c^{4^{2}}$ a two point one; so there are $n\left(n^{2}-4\right)$ generatrices of Ω touching $c^{4^{2}}$.
§ 5. A generatrix of \mathbb{S} touches \boldsymbol{D}, and has thus, besides the point of contact, still ($n-2$) points in common with this surface; in a plane $A_{1} r_{3}$ lie therefore $n(n-1)(n-2)$ such points, namely on each of the $n(n-1)$ generatrices in this plane every time $n-2$. All these points lie on a curve of order $(n-1)(n-2)$, the satellite curve of the first polar curve $p_{1}{ }^{n-1}$ of A_{1} with respect to k^{n}. If the plane revolves around r_{2}, the satellite curve will generate a surface which we shall call "the satellite surface" of r_{1} with respect to Φ and r_{2}, and which will evidently cut out of the residual intersection of \leq with Φ.
The intersection of the satellite surface Σ_{1} with a plane $A_{1} r_{2}$ consists of a satellite curve s_{1} of order $(n-1)(n-2)$, and of the line r_{2}; the question is how many different satellite curves pass through an arbitrary point of r_{2}. In order to answer this question we shall consider again in particular a point of intersection S_{2} of r_{2} and Φ. If the curve s_{1} lying in a plane $A_{1} r_{2}$ is to pass through S_{2}, then $A_{1} S_{2}$ must be a tangent to without the point of contact coinciding with S_{2}. Now the plane $r_{1} S_{3}$ cuts Φ in a curve of order n containing the point S_{3} itself and to which $n(n-1)-2$ tangents can be drawn out of S_{2}, not touching in S_{2} itself; in the planes through these tangents and r_{2} the curves s_{1} will pass through S_{2}. So we find for the satellite surface Σ_{1} a surface of order $(n-1)(n-2)+n(n-1)-2=2 n(n-2)$, with an $n(n-1-2\}$-fold line r_{3}. The satellite curve of $c^{n^{2}}$, the intersection of $\boldsymbol{\Phi}$ and Σ_{1}, is thus a curve of order $2 n^{2}(n-2)$, with $\{n(n-1)-2\}$-fold points in the n points of intersection S_{2} of Φ and r_{2}.

Now however it is clear, that just as there is only one curve of contact $c^{n^{2}}$, immaterial whether we start from the polar surface of r_{1} or of r_{2}, there is also only one satellite curve; for the curve of
contact is simply the locus of the points of contact of the generatrices of Ω with \mathscr{O}, and the satellite curve is the locus of the points of intersection of the same generatrices with \boldsymbol{T}. However, if we start from r_{2}, we find as satellite surface $\dot{\Sigma}_{2}$ a surface of order $2 n(n-2)$ with an $\{n(n-1)-2\}$-fold line r_{1}, from which ensues that the satellite curve of $c^{n^{2}}$ has also $\{n(n-1)-2\}$-fold points in the n points of intersection S_{1} of r_{1} and Φ. This result is also easy to control wilh the aid of Σ_{1}; this Σ_{1} namely does not contain the line r_{1}, but it does the points S_{1}, and it has in these points a contact with of higher order, and inversely Σ_{2} does not contain the line r_{2}, but it does the points S_{2}, and it has likewise in these points a contact of higher order with T.

Let us imagine a point S_{1} and the section k^{n} of the plane $S_{1} r_{3}$ with $\boldsymbol{\Phi}$. The point S_{1} lies on $k^{\prime \prime}$; so through S_{1} pass, besides the tangent in S_{1} itself, $n(n-1)-2$ tangents more, from which ensues that the satellite curve s_{1} of S_{1} has in this point with k^{n} an $\{n(n-1)-2\}$ pointed contact. If we allow the plane under consideration to revolve a little about r_{2} in one sense as well as in the other, then S_{1} passes into a point A_{1}; the tangent in S_{1} itself passes in one case into two different real ones, in the other into two conjugate complex ones; on the reality, however, of the other tangents the slight difference in position of the plane will have no influence, and so we see by direct observation that through S_{1} pass $n(n-1)-2$ branches of the satellite curve of $c^{n^{2}}$. So the points S_{1} must lie also on Σ_{1}; the remaining points of r_{1} however lie in general not on it, because the satellite curve s_{1} of an arbitrary point A_{1} does in general not pass through A_{1} itself; so the points S_{1} must thus be either singular points of Σ_{1}, or Σ_{1} and Φ must have in those poiuts a contact of higher order. If S_{1} were a singular point, thus a multiple point with a tangential cone of order $n(n-1)-2$, then each plane through this point would have to cut Σ_{1} according to a curve with an $\{n(n-1)-2\}$-fold point in S_{i}; we saw, however just now that the plane $S_{1} r_{2}$ cuts the surface Σ_{1} according to a curve, which has in S_{1} an ordinary point, but with k^{n} an $\{n(n-1)--2\}$-pointed contact; so S_{1} is also an ordinary point of Σ_{1}, but an $\{n(n-1)-2\}$-fold point for the intersection with \mathscr{D}.

We control the preceding results in the folluwing way. The complete intersection of Ω and \mathbb{T} is a curve of order $2 n^{2}(n-1)$; it consists of the curve of contact $c^{n^{2}}$, counted double, and of the satellite curve; and $2 n^{2}+2 n^{2}(n-2)$ really furnishes $2 n^{2}(n-1)$.

\$6. The surface Ω contains in general a certain number of

double generatrices, i. e. double tangents of $\boldsymbol{\Phi}$, cutting r_{1} and r_{2}; we determine their number by determining the order of the scroll formed by all the double tangents of Φ which intersect r_{2}. A plane through r_{1} cuts Φ in a k^{n} and this possesses $\frac{1}{2} n(n-2)\left(n^{2}-9\right)$ double tangents, and through an arbitrary point of r_{1} pass $\frac{1}{2} n(n-1)(n-2)(n-3)$ double tangents; ${ }^{1}$) the surface to be found is therefore of order $\frac{1}{2} n(n-2)\left(n^{2}-9\right)+\frac{1}{2} n(n-1)(n-2)(n-3)=(n+1)(n)(n-2)(n-3)$, and it has r_{1} as an $\frac{1}{2} n(n-1)(n-2)(n-3)$-fold line. The number of double generatrices of Ω is equal to the number of points of intersection of this surface with r_{2}, so equal to $(n+1)(n)(n-2)(n-3)$.

With the aid of the points of contact of the double generatrices with Φ, likewise of the $n\left(n^{2}-4\right)$ points found in $\$ 4$ on principal tangents of \boldsymbol{P}, we can now entirely survey the mutual position of the four surfaces $\Omega, \Phi, \Pi_{1}, \Sigma_{1}$, likewise of their intersections. We fix our attention in particular on the curve of contact c^{48} and the corresponding satellite curve. According to $\$ 4$ there are $n\left(n^{2}-4\right)$ generatrices of Ω touching c^{2}; if P is one of the points of contact, A_{1} the point of intersection with r_{1}, then P is an inflectional point for the section k^{2} with Φ lying in the plane $A_{1} r_{2}, A_{1} P$ the corresponding inflectional tangent, and it counts for two of the $n(n-1)$ tangents which can be drawn out of A_{1} to k^{n}, so that besides the inflectional tangent only $n(n-1)-2$ tangents pass through A. Each of these intersects $k:$ in $n-2$ points, altogether thus in $\{n(n-1)-2\}(n-2)$, whilst the complete number of points of intersection of the satellite curve of $p_{1}^{u^{n-1}}$ with k^{n} amounts to $n(n-1)(n-2)$; the missing $2(n-2)$ must thus be furnished by the inflectional tangent. Now it is easy to see, that by a slight change of position of A_{1} the inflectional tangent would break up into two separale tangents; by attending in this position to the satellite curve and then by returning to the inflectional tangent we convince ourselves that the satellite curve of $p_{1}{ }^{n-1}$ touches k^{n} in the $n-3$ points of intersection of the inflectional tangent.

Now but two points are missing and these can lie nowbere else but in P; so the satellite curve of $p_{1}{ }^{n-1}$ touches in P the curve k^{n}, Now this satellite curve lies on the satellite surface Σ_{1}, which intersects Φ according to the satellite curve of ${c^{n}}^{n}$; so this one too must touch in P the line $A_{1} P$, just as $c^{n^{2}}$, so that the $n\left(n^{2}-4\right)$ points P mentioned above represent $2 n\left(n^{2}-4\right)$ points of intersection of $c^{n^{2}}$ with its satellile curve.
Let us further consider one of the $(n+1)(n)(n-2)(n-3)$ double generatrices of Ω with the points of contact P_{1}, P_{2}, and the point

[^2]of intersection A_{1} with r_{1}. In the plane $A_{1} r_{2}$ now pass also through A_{1}, besides the double tangent, only $n(n-1)-2$ tangents to k^{n}, so that now again on the line $A_{1} P_{1} P_{2}$ must lie $2(n-2)$ points of intersection of k^{n} with the satellite curve of $p_{1}{ }^{n-1}$. In the $n-4$ points of intersection of the double tangent with k^{n} the satellite curve of $p_{1}{ }^{n-1}$ will again touch k^{n}; the missing four points must be divided regularly among the two points of contact P_{1} and P_{2}, from which ensues that the satellite curve of $p_{1}{ }^{n-1}$ touches the double generatrix of Ω in P_{1} and P_{9}. The satellite curve of $c^{n^{2}}$ will thus also bare this property; however as regards $c^{n^{2}}$ itself, it passes also through P_{1} and P_{2}, but without touching the line $A_{1} P_{1} P_{2}$ in these points; so on all the double generatrices of Ω together lie $2(n+1)(n)(n-2)(n-3)$ points of intersection of $c^{n 3}$ with its satellite curve.

Now $c^{n e}$ and its satellite curve have more points in common still, but these lie all on r_{1} and r_{2}. The surface Π_{1} has r_{2} as a single line ($\$ 3$), on the other hand Σ_{1} has r_{2} as an $\{n(n-1)-2\}$-fold line, so the intersection of the two breaks up into a curve and the line r_{3}, the latter counted $\{n(n-1)-2\}$ times. The surface Φ cuts r_{2} in the n points S_{s}; so these count for $n\{n(n-1)-2\}$ points of intersection of the three surfaces $\Phi, \Pi_{1}, \Sigma_{1}$, and therefore for as many points of intersection of $c^{n^{2}}$ with its satellite curve. We sarv further in $\S 5$ that the satellite curve of $c^{n^{3}}$, thas the intersection of Φ and Σ_{1}, has in the n points S_{1} on r_{1} again $\{n(n-1)-2\}$-fold points; as Φ contains these points also, they count for $n\{n(n-1)-2\}$ points of intersection of $c^{n^{2}}$ with its satellite curve.

We now add the different amounts found, thus $2 n\left(n^{2}-4\right)$, $2(n+1)(n)(n-2)(n-3), .2 n\{n i n-1)-2\}$ together, and we find $2 u^{3}(n-2)$, just the complete number of points of intersection of the three surfaces $\boldsymbol{\Phi}, \Pi_{1}, \Sigma_{1}$ of order $n, n, 2 n(n-2)$.
§7. Through a point A_{1} of r_{1} pass $n(n-1)$ tangents to the curve k^{n} lying in the plane $A_{1} r_{2}$ and these intersect r_{2} in $n(n-1)$ points A_{2}; inversely to such a point $A_{2}, n(n-1)$ points A_{1} correspond, from which ensues that we can regard the surface Ω as generated by the lines counecting the corresponding points of two series of points lying on r_{1} and r_{8}, between which there is a $\{n(n-1), n(n-1)\}$-correspondence. If we project these two series out of an arbitraxy line l, then two collocal pencils of planes are formed, between which there is likewise an $\{n(n-1), n(n-1)\}$-correspondence; the $2 n(n-1)$ coincidences are planes each containing the line connecting two corresponding points, thus a generatrix of Ω, out of which follows $2 n(n-1)$ for the order of $\Omega(\$ 2)$.

On each of the two bearers lie $2 n(n-1)\{n(n-1)-1\}=2 n\left(n^{3}-2 n^{2}+1\right)$ branch points ${ }^{1}$), i. e. points of whose corresponding points on the other bearer two coincide, which coinciding points are then called double points; we shall now investigate how in our case the branch points' put in an appearance. We consider therefore in the first place the n points of intersection S_{1} of r_{2} with $\boldsymbol{\Phi}$. In the plane $S_{1} r_{2}$ lies a curve k^{n} passing through S_{1}; so through S_{1} pass $n(n-1)-2$ tangents which do not touch in S_{1}, and two coinciding ones which do touch in S_{1}; so evidently S_{1} is a branch point on r_{1}, and the point of intersection of the torsal line passing through S_{1} with r_{2} is the corresponding double point. Number n.

Through r_{2} pass $n(n-1)^{2}$ tangential planes of Φ, and each of these cuts Φ in a curve k^{n} with a node. If the point of intersention of such a plane with r_{1} is a point A_{1}, then out of A_{1} start $n(n-1)-2$ proper tangents to $k^{\prime \prime}$, whilst the line connecting A_{1} and the node counts for two coinciding ones; so A_{1} is also a branch point. Number $n(n-1)^{2}$.

Further in $\$ \pm$ we found $n\left(n^{3}-4\right)$ generatrices of Ω which are at the same time principal tangents of $\boldsymbol{\Phi}$. If the point of contact of such a principal line with Φ is P and A_{1} the point of intersection of the plane $P r_{2}$ with r_{1}, then from A_{1} start $n(n-1)-2$ ordinary tangents to k^{n} and moreover the inflectional tangent $A_{1} P$ to be counted twice; so A_{1} is again a branch point. Number $n\left(n^{3}-4\right)$.

- Finally in $\oint 6$ we found $(n+1)(n)(n-2)(n-3)$ double generatrices of Ω; it is clear, that also the points of intersection of these with r_{1} and r_{2} are branch points. Number $(n+1)(n)(n-2)(n-3)$.

Other branch points there are none. If e.g. a point A_{1} is to be a branch point, then two of the tangents out of A_{1} to k^{n} must coincide, and that is only possible in one of the four ways described above. If now the four mentioned numbers are added up we do not find the required complete number of branch points $2 n\left(n^{3}-2 n^{2}+1\right)$, but only $n\left(n^{3}-2 n^{2}-n+4\right)$, i. e. for very great values of n only half; on the other hand we find the exact number, if we bring the $n\left(n^{2}--4\right)$ points of the third group three times into account, and the $(n+1)(n)(n-2)(n-3)$ of the last twice. The question is how to explain this.

If we bring a plane through an arbitrary pōint O of space and a generatrix b of Ω, and likewise through an adjacent generatrix b^{*}, and if we then let b tend to b^{*} to coincide with it finally, then at the limit the line of intersection $O B B^{*}$ of the two planes passes
${ }^{1}$) Emil Weyr "Beiträge zur Curvenlehre", S. 3.
into an edge of the circumscrived cone of Ω having O as vertex; B becomes the point of contact of that edge with Ω, thus a point of the intersection of Ω with the first polar surface of O. Let us imagine a point A_{1} of r_{1}, lying in the immediate vicinity of a branch point, then from this point among others two generatrices of $\boldsymbol{\Omega}$ lying; very close together will start; the planes through those generatrices and O are two tangential planes of the circumscribed cone lying very close together, and $\left(A_{1}\right.$ is therefore a line lying in the immediate vicinity of that cone. At the transition to the limit the branch point becomes, just like the point B mentioned above, a point of intersection of Ω with the first polar surface of O. This intersection, however, in our caso breaks up into a number of separate parts. Through a double edge of Ω e.g. pass two sheets of Ω and passes one sheet_of the first polar surface; the double edge forms thus a part of the intersection of the iwo surfaces, counts however double, and it furnishes therefore in its point of intersection with r_{1} two coinciding branch points. Of course likewise for r_{2}.

Suchlike considerations hold also for the $n\left(n^{2}-4\right)$ cuspidal edges of Ω. Each plane through O cuts Ω according to a curve having cusps on the cuspidal edges, and it is well known that the lirst polar curve of O with respect to that curve contains the cusps and touches the cuspidal tangents. From this ensues that the first polar surface of 0 , with respect to Ω, contains the cuspidal edges, and has in each point of such an edge the tangential plane in common with Ω; each cuspidal edge counts thus three times for the intersection and furnishes also three coinciding branch points on r_{1} and r_{2}.

All branch points have been accounted for in this way.
\$8. The apparent circuit of the surface Ω out of an arbitrary point O of space on a plane e.g. is the section of that plane with the projection (out of O as centre) of the intersection of Ω with the first polar surface of 0 . This intersection consists however, as we already saw in $\S 7$, of a number of separate parts. For $\boldsymbol{\Omega}$ the directors r_{1} and r_{1} are $n(n-1)$-fold lines, for the polar surface $\{n(n-1)-1\}$ fold lines; for the intersection of both they count $n(n-1)\{n(n-1)-1\}$ times. Each of the $(n+1)(n)(n-2)(n-3)$ double edges counts twice,' each of the $n\left(n^{2}-4\right)$ cuspidal edges' three times, and as the complete intersection is of order $2 n(n-1)\{2 n(n-1)-1\}$, there remains a proper curve of intersection of order
$2 n(n-1)\{2 n(n-1)-1\}-2 n(n-1)\{n(n-1)-1\}-2(n+1)(n)(n-2)(n-3)-3 n\left(n^{2}-4\right)=$ $2 n^{4}-9 n^{3}+10 n^{2}+10 n-12$. This is thus at the same time the
(493)

Order of the projecting cone out of O or of the apparent circuit on a plane, or the class of a plane section of Ω.

For the class of the apparent circuit we must know the number of tangents through an arbitrary point P of the plane of projection. Now OP culs the surface Ω in $2 n(n-1)$ points; through each of these passes a generatrix, and the plane through these and $O P$ is a tangential plane through $O P$, so the trace of that plane is a tangent to the apparent circuit; the class of the apparent circuit is therefore $2 n(n-1)$.
Let us bring a plane through O and a torsal line whose cusp lies on r_{1}. It cuts Ω according to a curve of order $2 n(n-1)-1$, and as the complete intersection, consisting of this curve and r_{1}, must. have $n(n-1)$-fold points on r_{1} and r_{2}, the curve itself has on the directors $\{n(n-1)-1\}$-fold points. These points lie at the same time on the generatrix; the only still missing point of intersection with this generatrix coincides with the cusp, and in projection the apparent circuit touches in this point the torsal line.

A plane through O and a double edge of Ω contains as residual section only a curve of order $2 n(n-1)-2$ with $\{n(n-1)-2\}$ fold points on r_{1} and r_{2}, and which thus cuts the double edge in two points more; a plane through a double edge is therefore a double tangential plane and the two points just mentioned are the points of contact. The projection of the double edge is a double tangent of the apparent circuit; the points of contact are the projections of the two points just mentioned on $\boldsymbol{\Omega}$.

In a plane through O and a cuspidal edge the latter counts likewise for two, so that bere too remains a residual section of order $2 n(n-1)-2$ with $\{n(n-1)-2\}$ fold points on r_{1} and r_{2}; the two missing points of intersection with the cuspidal-edge coincide here and the projection of this edge becomes an inflectional tangent of the apparent circuit.

Let us now imagine a plane through O and r_{1}. Let S_{2} be the point of intersection of this plane with r_{n}, then to this point correspond $n(n-1)$ points on r_{1}, and the projection of r_{1} touches the apparent circuit in the projections of those points; the apparent circuit has therefore the projections of r_{1} and r_{2} as $n(n-1)$-fold tangents. If we now reduce these inultiple tangents to double ones and if we then, suppose that the double tangents and the inflectional tangents just now found are the only ones that the curve possesses, and if finally we remember that the class of the curve is $2 n(n-1)$, then the Plücker formula to determine the order becomes identical to the formula at the beginning of this paragraph, and so we find for the order the,
exact number; so we also possess the exact numbers of the double tangents and the inflectional ones, so that only those of the double points and cusps are missing. The Plückle formula $\iota-x=3(x-\mu)$ furnishes us with $x=\iota+3(\mu-r)$; if we introduce the values, we find $x=6 n^{4}-26 n^{3}+24 n^{2}+32 n-36$. Finally the formula $v=\mu(u-1)-2 s-3 \%$ furnishes us with the double number of double points: $2 \delta=\mu(u-1)--v-3 \%$, hence :

$$
\begin{aligned}
& 2 \delta=\left(2 n^{4}-9 n^{3}+10 n^{2}+10 n-12\right)\left(2 n^{4}-9 n^{3}+10 n^{2}+10 n-13\right)- \\
&-2 n(n-1)-3\left(6 n^{4}-26 n^{2}+24 n^{2}+32 n-36\right) .
\end{aligned}
$$

Summing up we have thus found: the apparent circuit of Ω on an arbitrary plane is a curve of order $2 n^{4}-9 n^{3}+10 n^{2}+10 n-12$, of class $2 n(n-1)$, with a nuinber of double points $=\boldsymbol{d}$ (see above), a number of cusps $=x$ (see above), with $(n+1)(n)(n-2)(n-3)$ double tangents, the projections of the double generatrices of Ω, with $n\left(n^{2}-4\right)$ inflectional tungents, the projections of the cuspidal edges of Ω, and with two $n(n-1)$-fold tangents, the projections of the two directors r_{1} and r_{2}.
§ 9 . If Ω is really a conoid, i. e. if r_{z} is the line at infinity of a director plane, then as a rule the latter is chosen as plane of projection, and so the projection of the surface on a plane through one of the two directors becomes of importance. In the numbers mentioned at the end of the preceding $\$$ no change takes place; so in the case of the conoid the appareni circuit on a director plane possesses $n(n-1)$ parabolic branches. It is a different thing, however, if the conoid is a right one, i. e. if r_{1} is normal to the director plane; if then the latter is horizontal, and if the apparent circuit of Ω is required for the point Z_{o} as centre, then we have to project out of a point of the surface itself, and that one lying on the $n(n-1)$ fold line r_{1}. It is now immediately clear that the apparent circuit is entirely moditied; for a line through Z_{∞} cuts Φ besides Z_{∞} only in $n(n-1)$ points, and only the generatrices passing through these points give rise, when projected out of Z_{∞}, to tangents of the apparent circuit; however, they all pass in projection through the point of intersection R_{1} of r_{1} with the director plane, from which ensues that the pencil round R_{1} is discarded and that $n(n-1)$ times.

- The plane through Z_{∞} and one of the $n(n-1)$ generatrices of Ω (lying entirely at infinity) is indefinite, i. e. each suchlike plane is a tangential plane through Z_{∞}; of the apparent circuit we have to discard $n(n-1)$ pencils whose vertices are the points of intersection of the generatrices through Z_{∞} with $r_{2 \infty}$. These pencils and those
round R_{1}, the latter counted $n(n-1)$ times, form the complete apparent circuit, indeed a degenerated curve of class $2 n(n-1)$.

For the vertical projection the centre Y_{∞} lies on $r_{2 \infty}$; the apparent circuit on the vertical plane consists therefore of $n(n-1)$ pencils round points on the projection of r_{1}, and of a pencil whose vertex is the point at infinity on the x-axis and which pencil must be counted $n(n-1)$ times.

Mathematics. - "Surfaces, twisted curves and groups of points as loci of vertices of certain systems of cones" by Prof. P. H. Schoute ${ }^{1}$). First paper.

1. We consider as given $(n+2)$, pairs of straight lines crossing each other, $\left(a_{1}, a_{2}^{\prime}\right),\left(b, b^{\prime}\right)$, where i assumes successively the values $1,2, \ldots, \frac{1}{2} n(n+3)$. We represent by $t_{a_{2}}$ a transversal of $\left(a_{2}, a_{1}^{\prime}\right)$, by t_{b} a transversal of $\left(b, b^{\prime}\right)$. The points P emitting $(n+2)_{2}$ transversals $t_{a_{i}}, t_{b}$ lying on a cone C^{n} of order n form a surface (P) of -which the order is to be determined.

However we remark first, that the $2(n+2)_{z}$ given lines $\left(a_{l}, a_{2}^{\prime}\right)$, $\left(b, b^{\prime}\right)$ are lines of multiplicity n on (P). For, the cone C^{n} with an arbitrary point P of b as vertex and the transversals $t_{a_{2}}$ emitted by this point as edges, cuts the line b^{\prime} in n points and is therefore to be counted n times among the considered system of cones C^{n}, i.e. once for each of these points of intersection.

Moreover it is immediately evident, that each point of each of the two cummon transversals $t_{i, k}$ and $t_{i, k}^{\prime}$ of the pairs (a_{t}, a_{t}^{\prime}) and $\left(a_{k}, a_{h}^{\prime}\right)$ is vertex of a cone of the system, as we find for this point $(n+2)_{2}-1$ edges only. So these lines, $6(n+3)_{4}$ in number, are single lines of (P).
2. In order to determine the order of (P) we try to find the number of points P satisfying the conditions of the problem lying on an arbitrary transversal t_{t}, by means of a tigure lying in an arbitrurily chosen plane π connected with our figure in space in the following way.

We consider the transversals $t_{a_{i}}$ emitted by the points P of t_{b} and remark that they form a regulus ($t_{b}, a_{1}, a_{2}^{\prime}$) of which $t_{b}, a_{i}, a_{t}^{\prime}$

[^3]
[^0]: ${ }^{1}$) F. Paschen, Ann. d. Phys. 35, 1911, p. 863.

[^1]: ${ }^{1}$) Gremona-Curtze: "Grundzüge einer allgemeinen Theorie der Oberflächen", p. 64, or Sammon-Fiedler: "Anal. Geom. des Raumes", II. Theil, S. 24.

[^2]: ${ }^{1}$) Gremona-Guntze, l. c. p. 64. Salmon-lifedeer, l. c. p. 25.

[^3]: ${ }^{1}$) Suggested by the last communication of Prof. Jan de Vries (These Proceedings, XIV, p. 259).

