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Cadmiom, Magnesium, Calcium and Mercury. Moreover the prin-
ciple of combination appears to point here to summational and
differential vibrations of the intensest (first) lines of the already known
series, so that we can account for the new lines without making
use of a spectral formuly. In PascHEN’S recent paper on the systems
of series in the spectra of Zinc, Cadmium and Mercury it is parti-
cularly the wery intense lines Zn 2138,6, Cd 2288,1 and Hg 1849,
which oceur in combinations; they must be cousidered as first line
of a pringipal series, lying in the ultra-violet. This principal series
is indicated ¥) by 1,5 S—mP, a second subordinate series being
indicated by 2 P--mS. The series 2,5 S—inIis a differential vibration
of the lines of the principal series with the firs¢ line of the 2nS.S..
2,5 S—mP ={1,5 S—mP)— (1,5 S—2P)} — 2P—2,5 S)
= m line P.S. — 15t line P.S. -~ 1st line II S.8. =
= mt line D.S. — 15t line IL S.S.

In vhis I have called 1% line IIS.S. (m =2,5), what is con-
sidered the 2 line by Rirz.

Mathematics. — “On the conoids belonging to an arbitrary surface.”
By Prof. Hx. o Vwies. (1%t part).

§ 1. Among the examples current in Descriptive Geometry of
non-developable scrolls we meet the so-called right sphere conoids,
formed by all the lines which intersect a given direcirix, run parallel
to a plane perpendicular on that directrix, and touch a given sphere;
it is a surface of order four, which has the given directrix as well
as the line at infinity of the director plane as nodal lines, and the
points of intersection of these two straight lines with the sphere
as cuspidal points; the generatrices passing through these points coincide
namely in so-called torsal lines, distinguished from the other genera-
trices on account of the tangential planes coinciding in all their points.

If we substitnte for the sphere an arbitrary surface of order n,
then the right conoid appears belonging to this arbitrary surface,
which conoid seen from a mathemalical point of view does not differ
from the scroll formed by all the lines intersecting two arbitvary
divectrices »,, 7,, crossing each other, and touching a surface P»
of order n; on this surface some observations follow.

§ 2. We suppose the surface @ to be point general. A plane

1) F, PascHEN, Ann. d. Phys. 35, 1911, p. 863.
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brought through a<point A, of 7, and through »,, cuts out of ®* a
curve £* of order » and class n (n—1), from which ensues that
the two directrices v, ,r, are n{n—1) fold lines of the scroil -
under examination. _

A plane through », contains the n (n—1) fold line r,, likewise
the n (n—1) single generatrices through the point of intersection of
that plane with »,: so £ is a surface of order 2n (n—1).

Let S, be a point of intersection of 7, and . The plane S,7, now cuts
@ according to a 4, containing the point S, itself, from which ensues
that two of the n (n—1) generatrices of £ through .S, coincide with
the tangent in S, to &"; through each of the n points S, passes
lherefore a torsal bme of L, and the tangential plane belonging to 1,
which for convenience’ sake we shall call “torsal plane”, is evidently
the plane S,r,. The same holds of course for r,.

There are however more cuspidal points on 7,. If namely we
imagine a tangential plane through r, to @, then it will intersect ®
in & 4 with a node in the point of contact; the line connecting this
point of contact with “the point of intersection C, of the indicated
tangential plane and », counts for two coinciding generatrices of £
through C, and is thus likewise a torsal line; so the points C,
are also cuspidal points of . Their number is equal to the class
of @, thus n(n—1)*, and the corresponding torsal planes are the
planes C,r,. The same holds of course for r,.

Other cuspidal points on r, or r, are not possible. For, if for a point
A, of r, two tangents to the curve £ lying in the plane 4,r, are to
coincide, then this is only possible either in one of the manners
described just mow or because an inflectional tangent or a double
tangent of " passes through 4,. These last cases appear in reality
(comp. §§ 4, 6), however, they evidently do not lead {o torsal lines,
but to cuspidal edges and nodal generatrices. The complete number
of cuspidal points on v, (or v,) amounts therefore to

n -+ nn—1)> =n n'—2n-+2).

§ 3. As each generatrix of £ is a tangent of @ the scroll £ and
the sarface @ will touch each other along a certain ‘curve, whilst
both surfaces will possess in general a proper curve of intersection
besides; for, of the n points of intersection of a generafrix of £
with @ only two (coinciding ones) belong to the curve of contact,
the remaining 7 — 2 to the curve of intersection.

The ovder of the curve of contact we can find in the following
way. A plane through », and a point 4, of », intersects & in a
curve 4", and the points of contact of the tangents drawn out of
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A, to this curve, are the points of intersection of 4* with the first
polar curve p,*—! of A, with respect to #*. The locus of all these
curves p,"—' is a surface, which for convenience’ sake we shall call
“fivst polar surface of r, with respect to @ and »,”; the intersection
of this surface and @ is the curve of contact to be found.

It is easy to.see that the first polar surface of r, with respect to
@ and r, is of order » and contains the line », as single line. A
plane through 7, namely contains the first polar curve p,»—! of the
point of intersection A, of that plane ‘with r,; if now the plane
rotates round 7,, then the points of intersection of p,»—' and », will
travel in ‘general along the line r,, from which ensues that r, itself
lies on the polar surface to be found; so the question is only how
many different polar curves p,"—! pass through an arbitrary point
of r,, We choose as this point one of the points of intersection S,
of », and @. If the first polar carve p,»—! of a certain point 4, of
r, is to pass through S,, then one of the tangenis drawn in the plane
A,r, to the carve 4 lying in that plane must have its point of
contact in S,, and it must therefore touch the surface @ in §S,. Now
the tangential plane in S, to @ intersects the line », only in one
point; so only one curve p,"—1 passes through .S,, and so also through
.an arbitrary other. point of 7,.

Each plane 4,r, contains thus of the surface to be found a curve
“pn—t and the single line 7y the surface is thus of order n. We
shall indicate it by the symbol II». It intersects @ in a curve of
order n*, and this s the required curve of contact ¢c* of £ and
@, Also », possesses of course a first polar surface, IT", but now
with respect to @ and r ; it intersects @ according to the same
curve ¢*. It is clear that ¢»* contains the = points of intersection
S, of », and @ as well as the n points of intersection S, of r, and
@ ; the torsal lines through these points touch here ¢"*, because they
touch @ as well as JI, and II,. In a point S, namely the torsal line
touches a curve 47, thus @, and a curve p,"—1, thus I7,, and therefore
also the section ¢** of these two surfaces.

We control these results analytically. Let », coincide with the
edge 4,4, (¢, =a, =20), and », with the edge 4,4, (¢, =2, =0) of
the fundamental tetrahedron, and let ® be a homogeneous polynomium
of order » in a,,...2, and let & =0 be the equation of the
surface P,

For a plane through r,=A4,4, the two homogeneous coordinates
§, and are zero, so the equation ruus:

&ty + vy =0
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if this plane is to pass through a point (2',, ') of 4,4,, then we -
tind
§a*'”’3 + §4‘7"’( =0,
so that finally the equation of this plane runs:
&2y —a'yw, = 0.
If we now take of the point (', #',) the first polar surface

, 0P 0D -
8 BT‘ + @ 4 Tv“ =0

with respect to @, then the section of this surface with the plane

o' @, —a'yx, == 0 is the polar curve p,»—1; the locus of these, hence
the surface II,”, we find by elimination of 2', and 2/, out of both
equations; so the equation runs:

oD 0P
H‘:m’(ﬂ—-i_m‘aT:O’
“s vy

&

really a surface of order n containing the line »,(z, =2, =0) as a
single line.
The equation of & can be written in the form
L 0
= =0;
i=1 0;
so the coordinates of the points of intersection with r, (¢, = 2, =0),
satisfy

oD oD
&, gb—! 2, 6_7,: ==
ie. the equation of IT,.

In the case of the right sphere conoid one of the two polar surfaces
is a parabolic cylinder, the other a cylinder of revolution. Let us
call the director line »,, the line at infinity of the director plane r,_,
then each plane through a point 4, of r, and through r,, intersects
the sphere according to a circle, so that the first polar curve of A4,
becomes a line normal to the plane through » and the centre of
the sphere; this line as well as »,, form the complete intersection of
the considered plane with 17,. If however we consider in particular
the plane at infinity we have to take the polar line of the point of 7,
at infinity with respect to the absolute cirele, which coincides
with 7,,; so II, is indeed a parabolic cylinder whose generatrices
are normal to the plane through », and the centre of the sphere.
In the planes through », on the other hand we have to take the
vertical diameters of the circles of intersection with the sphere lying
in that plane, from which ensues immediately that II, becomes a
guadratic cylinder with vertical generalrices. The points of intersection
of r,, with the sphere arve isotropic points; the circle lying in the

0,
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plane through such a point and », passes itself (hrough that point
and touches here the absolute circle, so that the polar line of {hat
point becomes a tangent (o the absolute circle; so the cylinder touches
the absoluie circle twice and is therefore a cylinder of rotation. The
sphere aud these two cylinders intersect each other according to a
twisted curve of order 4 and the 15t species, containing among others
the isotropic points of intersection of r,. with the sphere; on the
plane through », and the centre of the sphere it projects itself as a
parabola, on a horizontal plane as a circle.

§ 4. We again imagine a point A4, of r,, then a plane A r,, and
the section with 77, lying in this plane and consisting of the curve
p,»-1 and the line »,. We take this system as a curve of order n
and we determine the first polar curve ¢,"—! for the pole 4,, which
is of order n—1, and contains ihe n—71 points of intersection of
p,"~! and r,, but moreover the points of contact of the (n—1)(n—2)
tangents which can be drawn ont of 4, to p,*—'. We now look
for the locus of the curves ¢,»~! and show that this is again a
surface of order n, having 7, as a single line. The first polar sutface
of the point (2, 2',) with respect to II, = 0 bas for equation

aII1 + .’l"4 a_li —_
0z,

!

&'y — 0,
T 0z,
hence (see § 3):

od 0° P 0'® od 0'd

.q;'a_a_z_{..@'sm;aﬁ —{-(mgw-{:“a,a)a a —+1,4a +w,“8 =0,
a surface of order n—1 and which, cut by the plane &' wy— 'y, = 0,
furnishes the curve ¢,*~1. The locus of this curve, found by elimination
of «', and &', out of the last two equations, is therefore the surface

G2 , 00D 0*d 0P 6’

Klz‘vaﬁ;—{— . 5.3 +2.7:8.z4awaaw4+w4a—z4+ a =0;

it is indeed of order n and contains 7, (¢, = 2, = 0) as aSmgle line,
just as I7,. The section with II, is therefore a curve of order n?, of
which », forms a part; it is however easy to show that r, must be
counted twice, so thal tliere remains a residual section of order n*— 2.
The section of II, and K, lies namely evidently also on the surface :

0P 0*P b" @
K* = 2w, =0,

RO e Sl e i
which has evidently the line 4,4, as a double line. For the section
‘of I, and K* or K, and K.¥, the director », counts douable; thus
it must also count double for the section of I7, and X, with which

33
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is shown that these two surfaces' have in each point of », the same
tangential plane.

) . ) 0P
The equation of @ can not only be written in the form =, a——:O,
_ 2,
. . o)’ .
but also in the symbolic form Z’x,é—- =0. Let us put in it
Ty

#,=a,=0 in order to defermine the n points of intersection S,
with »,, then exactly the equation K,* =0 remains, from which
follows that the n points .S, lie at the same time on X, * and therefore
also on X ; it is even easy to show that each of these points counts
double among the number of points of intersection of the three
surfaces @, IT,, K,”. In a plane S,r, lie namely, as intersection with
@, a curve 4", as inlersection with IZ, the first polar curve of these,
pi"~1, and these curves touch each other in S,. Now however the
cnrve ¢,"~! is again the first polar curve of .S, with respect to the
curve of order 7, consisting of p,"~! and 7,; so ¢,"! touches in S,
the two other curves. The tangential planes in S, to the three mentioned
surfaces intersect each other according to the same line, namely
the torsal line of £ through S, (§ 2); each of these points counts
thus indeed for two points of intersection of the three surfaces. Now
outside r, (see above) lie n (n* — 2) of these points; if moreover we
subtract still the 2n points .S, then n (n* —4) points remain, lying
neither on #», mnor op r, If we suppose a plane through such a
point P and »,, which is intersected in 4, with r,, then the curves
kr, pyt=1, ¢"t lying in this plane (and therefore also the second
polar curve p,"~% of 4,) all pass through P, from which ensues that
P is for Ar an infleclional point and therefore A,P one of the two
principal tangents (osculating tangents) of & in . With this we
have shown, that in the congruence of the principal tangents of the
general surface of the n'* order n (n* —4) of these lines rest on two
arbitrory lines, or in other words, that the principal tangents intersecting
an arbitrary line form a scroll of order n(n* — 4).’ '

Through an arbitrary point of space pass n (n—1) (n—2) of those
lines *); for we have but to take the points of intersection of the
surface itself with the first and the second polar surface of the chosen
point; the surface just found has thus the right line on which all
generatrices rest, as an n{n—1) (n—2)-fold line.

A plane through this line contains, besides the n (n—1) (n—2)-fold line,
a curve of intersection of order n (n*—4) —n (n—1) (n—2) = 3n (n—2),

Iy CreMoNa—CURTZE: “Grundziige einer allgemeinen Theorie der Oberflichen”,
p. 64, or SaLmMoN—FiEDLER: “Anal. Geom. des Raumes”, IL. Theil, S. 24.
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of which it is easy to show that il consists of 3n (n—2) lnes; for,
through an arbitrary point of this section a principal tangent of the
surface must pass resting on the multiple line, therefore lying entirely
in the plane. The 3n(n—2) lines are evidently the inflectional tangents
of the section of the plane under consideration with the suiface of
order n.

An ordinary point of contact of a geneiatrix of £ with @ is a
single point of the curve of contact ¢* (§ 3), in each of the n(n’~ 1)
points P just now found, however, the generatrix 4, P has with @
a three point contact, with II, a two point one, and therefore
also with ¢ a two powmt one; so there are n(n'—4) generatrices of
L touching c*.

§ 5. A generatrix of £ {ouches @, and has thus, besides the
point of contact, still (n—2) points in common with this surface; in a
plane A,r, lie therefore n (n—1) (n—2) such points, namely on each
of the n{n—1) generatrices in this plane every time n—2. All these
points lie on a curve of order (n—1)(n—2), the satellite curve of
the first polar curve p,"! of A, with respect to 4. If the plane
revolves around 'rz, the satellite curve will generate a surface which
we shall call “the satellite surface” of r, with respect to @ and r,,
and which will evidently cut out of @ the residual intersection of
L with @.

The intersection of the satellite surface = with a plane 4,7, consists
of a safellite curve s, of order (n — 1) (n — 2), and of the line r,;
the question is how many different satellite curves pass through an
arbitrary point of »,. In order to answer this question we shall
consider again in particalar a poiut of intersection S, of r, and .
If the curve s, lying in a plane A,r, is to pass through S,, then
4,8, must be a tangent to @ without the point of contact coinciding
with S,. Now the plane »,S, cuts @ in a curve of order »
containing the point S, itself and to which n (n—1) — 2 tangents
can be drawn out of §,, not touching in S, itself; in the planes
through these tangents and r, the curves s, will pass through S;.
So we find jfor the satellite surface =, a surface of order
(n—1) (n—2) 4+ n (n—1) — 2 = 2n (n—2), with an {n (n—1 — 2}-fold
tine ry. The satellite curve of cv, the intersection of ® and X, is
thus a curve of order 2 n* (n—2), with {n (n—1) — 2}-fold poinis in
the n points of intersection S, of ® and r,.

Now however it is clear, that just as there is only one curve of
contact ¢"*, immaterial whether we start from the polar surface of
r, or of r,, there is also only one satellite curve; for the curve of

33+



( 488 )

contact is simply the lpcus of the points of conlact of the generatrices
of £ with @, and the satellite curve is the locus of the points of
intersection of the same generafrices with ®. However, if we start
from r,, we find as salellite surface &', a surface of order 2n(n—2)
with an {n (n—1)— 2}-fold line »,, from which ensues that the
satellite curve of ¢ has also {n (n—1) — 2}-fold points in the n
points of intersection S, of 7, and ®. This result is also easy to
control with the aid of Z,; this = namely does no¢ contain the
line 7, but it does the points S,, and it has in these points a
contact with @ of higher order, and inversely =, does not contain
the line 7,, but it does the points /S,, and it has likewise in these
points a contact of higher order with .

Let us imagine a point ,S, and the section & of the plane S,r,
with @®. The point S, lies on £7; so through S, pass, besides the
tangent in .S, itself, n (n—1) — 2 tangents more, from which ensues
that the satellite curve s, of S, has in this point with &7 an {n(n—1)—2}-
pointed contact. If we allow the plane under consideration to revolve
a little about », in one sense as well as in the other, then S, passes
into a point A, ; the tangeni in .S, itself passes in one caseinto two
different real ones, in the other into two conjugate complex ones; on
the reality, however, of the other tangents the slight difference in
position of the plane will have no influence, and so we see by
direct observation that through S, pass n (n— 1) — 2 branches of the
salellite curve of ¢. So the points .S, must lie also on X,: the
remaining points of 7, however lie in general not on it, because the
satellite curve s, of an arbitrary point A, does in general not pass
through A, itself; so the points .S, must thus be either singular points
of X, or X, and ® must have in those points a contact of higher
order. If .S, were a singular point, thus a multiple point with a tangen-
tial cone of order n (n—1) — 2, then each plane through this point
would have to cut ¥, according to a cuvve with an {n(n—1)—2}-fold
point in S,; we saw, however just now that the plane S, cuts
the surface X, according to a curve, which has in .S, an ordinary
point, but with 4» an {rn»m—1) — 2}-pointed contact; so S, is also
an ordinary point of X, but an {n(n—1)— 2}-fold point for the
intersection with .

We control the preceding results in the following way. The complete
intersection of &£ and @ is a curve of order 2n*(n—1); it consists
of the curve of contact ¢**, counted double, and of the satellite curve;
and 2% 4 2n* (n—2) really furnishes 2n* (n—1).

§ 8. ‘The surface £ contains in general a certain number of
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double generatrices, i.e. double tangents of &, cutting », and r,;
we determine their number by determining the order of the scroll
formed by all the double -tangents of & which intersect r,. A plane
through 7, cuts @ in a 4" and this possesses § n(n—2) (n*—9) double
tangents, and through an arbitrary point of r, pass { n(n—1)(n—2)(n—3)
double tangents;') the surface to be found is therefore of order
3 n(n—-2) (n*—9) + $ n (n—1) (n—2) (n—3) = (n-1) (n) (n—2) (n—3),
and it has r, as an 4 nn—1) (n— 2) (n—3)-fold line. The number of
double generatrices of 2 is equal to the number of points of inter-
section of this surface with r,, so equal to (n+1) (n) n—2) (n—3).

With the aid of the points of contact of the double generatrices
with &, likewise of the n (n® —4) points found in § 4 on principal
tangents of &, we can now entirely survey the mutual position of
the four surfaces £, @, I7,, ¥, likewise of their intersections. We
fix our attention in particular on the curve of contact ¢** and the
corresponding salellite curve. According to §4 there are n(n* — 4)
generatrices of £ touching ¢ *; if P is one of the points of contact,
A, the point of intersection with », then [ is an inflectional point
for the section £* with @ lying in the plane 4,7, A, P the corre-
sponding inflectional tangent, and it counts for two of the n(n — 1)
tangents which can be drawn out of A, to £, so that besides the
inflectional tangent only n(n—1)— 2 t{angents pass through A .
Each of these intersects A* in n— 2 points, altogether thus in
fn(n—1)—2}(n—2), whilst the complete number of poinis of
intersection of the satellite curve of p»—! with £* amounts to
n (n—1) (n—2); the missing 2 (n — 2) must thus be furnished by
the inflectional tangent. Now il is easy {o see, that by a slight
change of position of A, the inflectional tangent would break up
into (wo separale tangents; by attending in this position to the
satellite curve and then by returning to the inflectional tangent we
convince ourselves that the satellite curve of p,»~! touches %" in
the n — 3 points of intersection of the inflectional tangent.

Now but two points are missing and these can lie nowhere else
but in P; so the satellite curve of p,"—! touches in P the curve &,
Now this satellite curve lies on the satellite surface X, which inter-
secls @ according {o the satellite curve of ¢»*; so this one too must
touch in P the line 4, P, just as ¢, so that the n(n® — 4) points £
mentioned above represent 2 n (n* —4) poinis of intersection of ¢**
with its salellile curve.

Let us further consider one of the (n-1) (n) (n—2) (n—3) double
generatrices of &£ with the points of contact £, /,, and the point

1) Cremona—Cunrze, I ¢, p. 64. Satmon—|IEDLER, 1. ¢. p. 25.

-10 -
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of intersection 4, with »,. In the plane 4,7, now pass also through
A,, besides the double tangent, only n(n— 1) — 2 tangents to &, so
that now again on the line A, P, P, must lie 2 (n — 2) points of
intersection of %* with the satellite curve of p,»—'. In the n —4
points of intersection of the double tangent with £» the satellite curve
of p,»—! will again touch £"; the missing four points must be divided
regularly among the two points of contact P, and P,, from which
ensues that the satellite curve of p,”—! touches the double generatrix
of & in P, and P,. The satellite curve of ¢»* will thus also have
this property ; however as regards c»® itself, it passes also through
P, and P,, but without touching the line 4,P, P, in these points;
so on all the double generatrices of & together lie 2 (n+1)(n)n—2)(n—3)
points of intersection of ¢"* with its satellite curve.

Now c¢** and its satellite curve have more points in common still,
but these lie all on », and r,. The surface II, has r, as asingle line
(§ 3), on the other hand X, has r, as an {n(n-—1)—2}-fold line, so
the intersection of the two breaks up into acurve and the line r,, the
latter counted {n(n — 1) — 2] times. The surface @ cuts 7, in the
n points S,; so these count for n{n(n —1) —2} points of inter-
section of the three surfaces @, II,, =, and therefore for as many
points of intersection of ¢»* with its satellite curve. We saw further
in §5 that the satellite curve of ¢»*, thns the intersection of @ and =,
has in the » points .S, on », again {n(n—1)—2}-fold points; as @
contains these points also, they count for n{n (n—I1)—2} points of
intersection of ¢#* with its satellite curve.

We now add the different amounts found, thus 2n (n* —4),
2(n+1) (n) (n—2) (n—3), .2n {nin—1) —2} together, and we find
2u® (n—2), just the complete number of points of interscction of the
three surfaces @, II,, &, of order n,n,2n(n—2).

§ 7. Through a point 4, of », pass n(n—I1) tangents to the
curve £ lying in (he plane A,r, and these intersect r, in n (n—1)
points A,; inversely to such a point 4,, n(n—1) poinis 4, cor-
respond, from which ensues that we can regard the surface &
as generated by the lines connecting the corresponding points of iwo
series of points lying on r, and 7,, between which there is a
{n(n—1), n(n—1)}-correspondence. If we project these two series out
of an arbitrary line /, then two collocal pencils of planes ave formed,
between which there is likewise an {n (n—1), n (n—1)}-correspondence;
the 2n (n—1) coincidences are planes each containing the line con-
necting two corresponding points, thus a genevatrix of £, out of
which follows 2n (n—1) for the order of L (§ 2).

-11 -
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On each of the two bearers lie 2n(n—1){n(n~1)~1} = 2n(n*-2n*4-1)
branch points'), i. e. points of whose corresponding points on the
other bearer two coincide, which coinciding points are then called
double points; we shall now investigate how in our case the branch
points put in an appearance. We consider therefore in the first place
the n points of intersection S, of », with &. In the plane S,r, lies
a curve An passing through S;; so through S, pass n (n—1)—2
tangents which do not touch in S, and two coinciding ones which do
touch in S,; so evidently S, is a branch point on 7»,, and the point
of intersection of the torsal line passing through .S, with », is the
corresponding double point. Number n.

Through r, pass n (n—1)* tangential planes of @, and each of these
cuts @ in a curve A» with a node. If the point of intersection
of such a plane with », is a point A,, then out of A4, start
n (n—1) —2 proper tangents to £°, whilst the line connecting 4, and
the node counis for fwo coinciding ones; so 4, is also a branch
point. Number n (n—173.

Further in § 4+ we found n(n'—4) generatrices of £ which are
at the same time principal tangents of &. If the point of contact of
such a principal line with @ is P and A, the point of intersection
of the plane Pr, with =, , then from 4, start n (n—1)—2 ordinary
tangents to 47 and moreover the inflectional tangent 4,P to be
counted twice;- so 4, is again a branch point. Number n (n’—4).

* Pinally in § 6 we found (r-1) () (n—2) (n—3) double generatrices
of &; it is clear, that also the points of intersection of these with
r, and r, are branch points. Number (n-41) (n) (n—2) (n—3).

Other branch points there are none. If e.g. a point A, is to be
a branch -point, then two of the naﬁgents out of A4, to £* must
coincide, and thal is only possible in one of the four ways described
above. If now the four mentioned numbers are added up we do
not find the required complete number of branch points 2n(n*—2n*4-1),
but only n@®—2n*—n -4 4), i.e. for very great values of n only
half; on the other hand we find the exact number, if we bring the
n(n*--4) points of the third group three times into account, and the
m-4+1)(n)(n—2)(n—3) of the last twice. The question is how
to explain this.

If we bring a plane through an arbitrary point O of space and
a generatrix & of £, and likewise through an adjacent generatrix
b*, and if we then let & tend to &* to coincide with it finally, then
at the limit the line of interseclion OBB* of the two planes passes

1) Eyor WEYR “Beitrige zur Curvenlehre”, S. 3.
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into an edge of the circumscribed cone of £ having O as vertex;
B becomes the point of contact of that edge with £, thus a point
of the intersection of £ with the first polar surface of O. Let us

imagine a point 4, of »,, lying in the immediate vicinity of a branch ~

point, then from this point among others two generatrices of & lying
very close together will start; the planes through those genera-
trices and () are two tangential planes of the circnmseribed cone
lying very close together, and ()4, is therefore a line lying in the
immediate +icinity of that cone. At the transition to the limit the
bianch point becomes, just like the point B mentioned above, a point of
intersection of £ with the first polar surface of O. This inter-
section, however, in our casc breaks up into a number of separate
parts. Through a double edge of 2 e.g. pass two sheets of £ and
passes one sheet_of the first polar surface; the double edge forms
thus a part of the intersection of the two surfaces, counts however
double, and it furnishes therefore in 1ts point of intersection with
7, two coinciding branch points. Of course likewise for r,.

Suchlike considerations hold also for the = (n* — 4) cuspidal edges
cof 2. Each plane through O culs £ according to a curve having
cusps on the cuspidal edges, and it is well known {hat the lirst
polar eurve of O with respect to that curve contains the cusps and
touches the cuspidal tangents. From this ensues that the first polar
surface of (), with respect to &, contains {he cuspidal edges, and has
in each point of such an edge the tangential plane in common
with £; each cuspidal edge counts thus three times for the
intersection and furnishes also three coinciding branch points on
r, and 7,.

All branch points have been accounted for in this way.

§ 8. The apparent civcuit of the surface £ out of an arbitrz;,ry
point O of space on a plane e.g. is the section of thal plane with
the projection (out of O as cenire) of the intersection of £ with the
first polar surface of 0. This intersection consists however, as we
already saw in § 7, of a number of separate parts. For £ the directors
r, and r, are n (n—1)-fold lines, for the polar surface {n (n—1) — 1}-
fold lines; for the intersection of both they count n(n—1){n(n—1)—1}
times. Bach of the (n41)(n)(n—2)n—3) double edges counts twice,
each of the n (n’—4) cuspidal edges’ three times, and as the complete
intersection is of order 2n (n—1){2n (n—1) — 1}, there remains a
proper curve of intersection of order
2n(n-1)2n(n-1)-1} - 2n(n-1){n{n-1) - 1}- 2(n + L)(n)(n-2)(n-8) - Bn(n’-4) =
20t — 9n® 4+ 10n° 4+ 10n — 12. _This is thus at the same time the

-13 -



(493 )

order of the projecting cone out of O or of the apparent circuit on
a plane, or the class of a plane section of L.

For the class of ihe apparent circuit we must know the number
of tangents through an arbitrary point / of the plane of projection.
Now OP culs the surface £ in 2n (n—1) points; through each of
these passes a generatrix, and the plane through these and OP is
a tangential plane through OP, so the trace of that plane is a
tangent to the apparent circuit; the class of the apparent circuit is
therefore 2n (n—1). i

Let us bring a plane through () and a torsal line shose cusp lies
on r,. It cats £ according to a curve of order 2n (n—1)—1, and
as the complete intersection, consisting of this curve and 7,
must. have n(n—1)-fold points on », and r, the curve itself
has on the directors {n (n—1) — 1}-fold points. These points lie at
the same {ime on the generatrix; the only still missing point of
intersection with this generafrix coincides with the cusp, and in
projection the apparent circuit touches in this point the torsal line.

A plane through O and a double edge of & contains as residual
section only a curve of order 2n (n—1)— 2 with {n(n—1)— 2}-
fold points on », and #,, and which thus cuts the double edge in
two points more; a plane through a double edge is therefore a double
tangential plane and the two points just mentioned are the points
of contact. The projection of the double edge is a double tangent
of the apparent circuit; the points of contact are the projections of
the two points just mentioned on L.

In a plane through O and a cuspidal edge the Ilatter counts
likewise for two, so that bere {00 remains a residual section of
order 2n (n—1) —2 with {n(n—1) — 2}-fold points on r, and r,;
the two missing points of intersection with the cuspidal-edge coineide
here and the projection of this edge becomes an inflectional tangent
of the apparent circuit.

Let us now imagine a plane through O and »,. Let .S, be the
point of intersection of this plane with #,, then to this point correspond
n(n—1) points on 7, and the projection of r, touches the apparent
circuit in the projections of those points; the apparent circuit has
_therefore the projections of r, and », as n (n—1)-fold tangents. 1f
we now reduce these multiple tangents to double ones and if we
then, suppose that the double tangents and the inflectional tangents
just now found are the only ones that the curve possesses, and if finally
we remember that the class of the curve is 21 (n—1), then the PLtcker
formula to determine the order becomes identical to the formula at
the Dbeginning of this paragraph, and so we find for the order the,
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exact number; so we also possess the exact numbers of the double
tangents and the inflectional ones, so that only those of the double
points and cusps are missing. The Prtckir formula ¢ — %=23 (»—p)
furnishes us with 2= ¢ 3 (u—7n); if we introduce the values, we
find x=6n'—26n’ 4 24n* - 32n—36. Finally the formula
v = u (u—1) — 24 — 3« furnishes us with the double number of double
points: 2d = p (n—{) —— v — 3, hence:
2d = (2n*—9In*410n*-4+10n—12) 2n*—90*+10n*4-10n—13) —
— 2n (n—1) — 3 (6n*—26n°+24n*+4-32n—36).

Summing up we have thus found: the apparent circuit of  on
an arbitrary plane is a curve of order 2n* —9n® 4-10n* 4 10n — 12,
of class 2n (n—1), with a nuinber of doudle points =0 (see above),
a number of cusps == (see above), with (n+-1)(n) (n—2) (n—3)
double tangents, the projections of the double generatrices of L, with
n (m*—4) flectional fungents, the projections of the cuspidal edges
of 2, and with two n (n—1)-fold tangents, the projections of the two

_directors v, and v, . ,

¥

$ 9. If £ is really a conoid, i.e. if r, is the line at infinity of
a director plane, then as a rule the latter 1s chosen as plane of pro-
jection, and so the projection of the surface on a plane through one
of the two directors becomes of importance. In the numbers men-
tioned at the end of the preceding § no change takes place; so in
the case of the conoid the apparent circuit on a director plane
possesses 7 (n—1) parabolic branches. It is a different thing, however,
if the conoid is a right one, i.e. if r, is normal to the director plane;
if then the latter is horizontal, and if the apparent circuit of £ is
required for the point Z, as cenire, then we have to project out
of a point of the surface itself, and that one lying on the n (n—1)
fold line r,. 1t is now iminediately clear that the apparent circuit is
entirely modified; for a line through Z. cnts £ besides Z. only
in n(n—1) points, and only the generatrices passing through these
points give rise, when projected out of Zx, to tangents of the apparent
circuit; however, they all pass in projection through the point of
intersection 2, of », with the director plane, from which ensues that
the pencil round R, is discarded and that n (n—1) times.

The plane through Z, and one of the n (n—1) generatrices of
(lying entirely at infinity) is indefinite, i.e. each suchlike plane is a
tangential plane through Z.; of the apparent circuit we have to
discard » (n—1) pencils whose Vertices are the points of intersection
of the generatrices through Z, with r,,. These pencils and those
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round R, the latter counted 1 (n—1) times, form the complete apparent
circuit, indeed a degenerated curve of class 2n (n—1).

For the vertical projection the centre Y _ lies on»,_; the apparent
circuit on the vertical plane consists therefore of n (n—1) pencils
round points on the projection of r,, and of a pencil whose vertex
is the point at infinity on the w«-axis and which pencil must be
counted 7 (n —1) times.

Mathematics. — “Surfaces, twisted curves and groups of poinis
as loci of wvertices of certain systems of cones” by Prof. P. H.
Scroute *). First paper.

1. We consider as given (n-+2), pairs of straight lines crossing
each other, (a,d,), (0,6"), where 7 assumes successively the values
1,2,...,4n(n-}3). We represent by #, a transversal of (a.,da"), by
fy a transversal of (b,5’). The points P emitting (n - 2), trans-
versals fa, % lying on a cone C" of order n form a surface (P) of

-which the order is to be determined.
However we remark first, that the 2n-42), given lines (n,, a.),

(b, b") are lines of multiplicity » on (P). For, the cone C" with an
arbitrary point P of b as vertex and the transversals ta, emitted by

this point as edges, cuts the line &’ in points and is therefore to

be counted n times among the considered system of cones C", i.e.
once for each of these points of intersection. -

Moreover it is immediately evident, that each point of each of
the two common transversals #,; and ¢z of the pairs (u,, ) and
(ary @';) is vertex of a cone of the system, as we find for this point
(n+2),—1 edges only. So these lines, 6(n+43), in number, are single
lines of ().

2. In order to determine the ordexr of (P) we try to find the
number of points P satisfying the conditions of the problem lying
on an arbitrary transversal f,, by means of a figure lying in an
arbitrarily chosen plane & connected with our figure in space in the
following way.

We consider the transversals f,, emitted by the points P of 2

and remark that they form a regulus (3, @,, a') of which &, q;,

1) Suggested by the last communication of Prof. JAN pE VRIES (These Proceedings,
XIV, p. 2569).
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