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Mathematics. — “General considerations on the curves of contact of
surfaces with cones, with application o the lines of saturation
and binodal lines in ternary systems.”” (Communicated by
Prof. D. J. Korrowee and Prof. F. A. H. ScHREINEMAKERS).

Introduction.

It is a known fact that in the study of the ternary solutions
which for given temperature and pressure can be in equilibrium
with a solid substance a great part is played by the curve of contact
of the tangential cone of the &-surface with a given point as vertex.

If namely we project the vertex of the cone and its curve of
contact on the horizontal plane, then the projection of the curve of
contact represents a ternary line of saturation, namely the series of
the solutions, which for assumed temperature and pressure are
saturated with the solid substance indicated by the projection “of the
vertex of the cone.

The form of the line of saturation of a solid substance being
thus determined by the form of the curve of contact of a cone, it
was our aim to investigate which peculiarities this curve of contact
could display in some points of a given surface and in particular
of the &-surface.

We choose as origin of the system of coordinates a point O of
the surface. ‘We assume the X- and J-axis in the tangential plane
of the surface in point O.

For the equation of the surface in the vicinity of point O we can
then write:

z=cafoay-teyt+ da* 4 doaty+day’ +d,yt e at ety . L (1)
The equation of a langential plane in a point &, y, 2z of this surface
becomes: ’
’ 0z 0z
7 —e=X—a)—+ (Y—y) —.
Z— 2= (X—a) 5=+ ( 2w
If we wish to let this tangential plane pass through a point
P(p.q) of the X. Y-plane, then we must have
0z 0z
- ) — —y) — = 0.
(P@M+@w@+z
_ . ) . 0z dz
If in this equation we substitute the values of ZFw and 5~out of
‘ ¥
1) we get:
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@e,p + a9z + (e,p + 20,9)y + (3dyp + dig —¢)2" +
+ @d,p + 2dyq — c)wy + (dyp + 3d,g — ¢)y* +
+ (4’81 p ‘I" €9 — Zdl)lﬂa + (33217 + zeag - Zdz) 'mgy +
+ (2e,p + 3e,g — 2dy)ay® + (e,p + deg — 24" +....=0 . (2

The above form (2) is therefore the equation of the curve of
contact of a cone touching the surface and having point P(p.¢) as
vertex.

We shall now distinguish three cases: "

I. O is not a parabolic point.
II. O is a parabolic point.
III. O is a point of osculation.

L. Point O is not a parabolic point.

As O is an elliptic or a hyperbolic point, it follows that

1
€6y — Zosz We now assume the line OP as X-axis, so that
g=0. We can now distinguish two cases according to OP being
an asymptote of the indicatrix or not.

l4. The line OP is not an asymptote of the indicatriz.

We assume QP as X-axis and the conjugate diameter of the
indicatrix as Y-axis; so ¢ =0 aud ¢, = 0. From (2) follows then:
‘ 2¢, pa + (34, p—rc,)a* + 2dpay + (dyp —e)y* + ... =0 . (3)

The curve of contact tonches therefore the Y-axis in, point O.
As the A-axis (the line OP) and the Y-axis are conjugate diameters
of the indicatrix, it follows that the line OP, connecting the vertex
P of a cone with a point O of its curve of contact, and the tangent
in point O to this curve of contact are conjugate diameters of the
indicatrix of point O.

In general the curve of contact in the vicinity of point O is of
finite curvature and determined by :

2¢,p8 + (dp—e)y*=0. . . . . . . 4

If p is chosen in such a way thar d,p — ¢, =0 then the equa-

tion is
2¢,p2 4 (e,p—2d)y* =0 . . . . . . (5)
so that the curve of contact has a point of inflection in point O.

Several ternary lines of saturation with one or more points of

inflection are known. We find e.g. on the line of saturation of the
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nitril of ambric acid in the system: water — alcohol — nitril of
ambric acid }) at 4°.5 two points of inflection. o

Ip. The line OP is an asympiote of the indicutriz.
i b- - ! 1

We- assume ‘OP as X-axis, the other asymptote as F-axis so that
¢ =05 ¢, =0 and ¢, =0. ‘

Then the curve of contact is determined by:

e,py + 8d,pa* + Qdyp—c)ay + dypy* + ... =0 . . (6)

So the generairix OPF of the cone touches the curve of contact
in 0%).

We have here thus the case that through point P we can draw a
tangent to the line of saturation of the solid substance represented
by F. This point‘of contact, however, being a hyperbolic point, this
case can appear only on the unstable part of the line of saturation.

1I. Pomnt O is a parabolic pgint.

\

. , i 1 |
As O is a parabolic point, it follows that 66— ¢' =0 Point

O lies thus on the parabolic or spinodal line of the surface.

Tl4. The Tine OP does not coincide with the direction of the
. uxis of the parabola. -

. In fig. 1 let a¢Ob be the spinodal line,
¢Od the section of the tangential plane in
O with the surface;- 0¥ is the: tangent in
the cusp O of this section and at the same

X time the direction of the axes.
We now assume OP as X- and OY as
Y-axis, so that ¢==0, ¢;==0 and ¢, = 0.

Fig. 1.
Then we find for the equation of the curve of contact:
20,p0 + (8, p—,) @ + 2d,pay + dypy® + ...+ 0

or:

S e 202 +dy*=0. . . . )]
So the curve of contact touches in Q the line OF. ’I‘he du'ect;lon

of the curve of contact in the vicinity of its point of intersection

with the .spinodal, line-is therefore independent of the position of

the ,vertex P of the cone.

SR A H ScuremNenaxers, 4, f. Phys, Chem. 27 114 (1898)
¢« '® See also: H. A. Lonentz. Z, f. Phys. Chem. 22 §23.
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We can express this property also-as follows: ‘all the'lines of satu-
ration passing- through a point O of the .spinodal line touch each
other in this-point O. / « .

We have drawn the curve cOd in fig. 1 in such a way sthat' the
tangent O intersects the spinodal line in-(0. That this is true in
general is evident from the following.

The equation of the spmodal line is:

6’,., azz 62 2
W’&F—(W)“O U (-

0%z 0% , 0%
If now we calculate out of (1) the values of —, — and —,
. . - -da®’ Oy? 0ady

after having put there ¢,=0 and ¢, =20, we'find for (8).
(2¢,+6d,x +2dy +..) 2die +-6dy +..) — (Qd,z+2d,y+...)* = 0.
As ¢, is not'zero, we find by first app10x1mat1on for tHe equation
of the spinodal line:

i

2dz +-6dy =0 . . . . . . . . (9

From this ensues therefore that the tangent in @ to the spinodal
line @0b forms an angle with the line -0 Y .unless d, = 0.

If however d, =0, then it follows from (9) that the tangent in
O to the spinodal line coincides with the line OY. As then at the
same time

¢, =0, ¢,=0 and d,=0
point O under. consideration is a plaitpoint’). Hence: only in a
plaitpoint the spinodal line and the curve of contact of a cone can
touch each other. '

11y Point O is a plaitpoint.

As ¢,=0, ¢,=0 and d,=0%, the equation of the curve of
contact becomes ’

2o +dyy' 4o =0 . .. L L (10

So all the curves of contact passing thlough the plattpomt touch
each other there and their curvature is independent of the distance
from the vertex P of the cone to the plaitpoint.

That this curvature is also independent of the direction of the line
OP and therefore guite independent of the situation of P will soon
be evident. ’

From (8) follows for the equation of the Sp‘inodal line:

1) D. J. Korrewee Arch. Néerl. (1) 24 60 (1891)
2) D. J. KorrEwee. Le. 63 (1891).
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(2¢,-}6d,2+2d,y + ..) (2d,x - 2¢,2° 4 e, 0y -+ 12¢,9% + ) —
— (2d,2+2d,y+-8e,a* - de, vy +Be,y* 4. ) =0
or at first approximation for the equation of that line in the vicinity
of the plaitpoint :

de dyw + (24c,,—4d,)y* =0 . . . . . (1)
The equation of thé binodal line in the vicinity of point O is!):
dw + 2¢y*=0. . . . . . . . (12)

We now write (10), (11) and (12" in such a way that the coefficient
of z is the same for these three; so we find:

for the curve of contact: 2¢,dw 4+ d,*y*=0. . . . . (13)
» » spinodal line: ° 2¢,dw - 2 (6c,e,—d,’)y* =0 . (14)
,» 5 Dbinodal line: 20, dye 4 4cey* =0 . . . . (1)

We shall now restrict ourselves, as only this is liable to realisation,

to a plaitpoint of the first kind *), so that
dee, —d >0, . . . . L 0. (16)
thus also ¢,e, >0 and 6¢,e,—d,* > 0.

From this ensues immediately that in the vicinity of the plaitpoint
the curve of contact, the spinodal line, and the binodal line are curved
in the same direction. ’

Out of (16) we can deduce:

2 (60,6,—d,") > dee, >d2 . . . . . . (1)

If we call the radii of curvature of the spinodal line, the binodal
line, and the curve of contact R, R;, and R,, it follows from (13),
(14) and (15):

- Glds —_ 6,4, — ¢,d,
~ (12,624, ) sin 6 ' ' dog,5in6' " d sind
where 6 represents the angle between the line OP and the tangent
in the plaitpoint to the binodal line.

In connection with (17) follows from this that the spinodal line
has the smallest radius of curvature and the curve of contact the

(18)

¥

largest.
From (18) we can furthermore deduce:
2 3 1
737 = E; —_ _-l_f: L (l 8‘1)

Qut of this relation it is evident that &, is also independent of
the direction of the line OP; for R, and R, are quantities, which
depend exclusively on the shape of the surface at point O. -

'

1) D. J. Korreweé. lLe. 61 (1891), ' -
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If we introduce instead of the radii of curvature B the curvatures
K we find

oK, =3Ky —Ks . . . . . . . (189

For the rost the curve of contact has nothing remarkable in the
vicinity of the plaitpoint except that its course there is in a high
degree independent of the situation of the vertex P of the cone, if
but this vertex is not too close to the plaitpoint or not too close to
the tangent to the spinodal line in the plaitpoint. .

In fig. 2 sOs" represents the spinodal line,

v ¢ s 60b’ the bhinodal line, and rOr’ the curve of

contact of the cone P, or in other words the

line of saturation of the solid substance P. As

ensues out of the curvatures (18% and 18%)-of

these three lines, these must have a position
N\’ with respect to each other as in fig. 2.

v If we draw in this figure a line mnp parallel

Fig. 2. to and in the vicinity of OP, then np must be

equal to 2mn. If namely we calculate z,, 5, and 23 out of (13), (14)

and (15) we find for a same value of y:

2 (2p—ay) =@ — p -

In so far as the binodal line has been drawn in fig. 2 the con-
jugated pairs of fluids represented by it are metastable; they all
break up into the solid substance P and a solution of the line of
saturation »Or’.

In fig. 3 the point P lies on the other side
of the tangent in O as in fig. 2. Line 7Or is
the line of saturation, &0b’ the binodal line;
the spinodal line has not been drawn.

In the vicinity of the plaitpoint the line of
saturation must be curved, as has been repre-
spnted in fig. 3, in the same direction as the
binodal line. In its further course two or more
points of inflection can of course appear. If e.g. P is a ternary
solid substance, so that the line of saturation is a curve enclosing
point P, then at least two points of inflection must appear, as has
been assumed in fig. 3.

If now we change the temperature or the pressure, then the &-
surface changes according to position and form; point P rises and
falls. Now the binodal line and the line of saturation of course also
change their form.

Fig. 3.
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- We now imagine temperature or pressure
changed a little in such a direction that 'the
. two “curves of fig. 3 move away from each
P other. We then obtain fig. 4, in which the
line of saturation has been represented bt

"t ‘ £’ Dpartly. "Tt is clear that it now 111‘(ew1se has

" to show two points of infleétion. If both curves
Fig, 4. move still farther from each other, then of
course both points of inflection can vanish,

If we change temperature or pressure in opposite direction, then
we cause both curves of fig. 3 to overlap somewhat. We-thén find
fig. 5, in which baa’b’ represents the binodal line and ma’; - the
line of saturation of P. -

On the part aa’ notrepresented of the binodal
line lies the plaitpoint; the part aa’ of the
line of saturation lies between the part aa’ of
the binodal line and the straight line aa’. The line
of saturation of P is only partly drawn.

As long as a and o’ lie but close enough to
each other, ar and a’s’ must lie as in fig. 5,
they must run pamely from « -and o’ to that i
side of line aa’, where the stable part of the Fig. 5.
binodal line lies. In their further course the lineg a7 and a’r’ can of
course intersect the line aa’.

We now have besides a series of solutivns saturated with P (ar
and a’/’) and a series of conjugate solutions (ab and a’b) also a
conjugate pair of fluids L.t Ly saturated with solid P.

As the pieces aa’ left out of the binodal line and of the hne of
saturation” lie inside the three- -phase-triangle Paa’, the ﬂu1ds 1epre-
sented by, them Separate into P+ Lo+ Lo,

Examples of lines of saturation with two points of 1nﬂect10n
between which a curvature in the same direction as the binodal’
line, we find e.g. in the system?): water-AgNO, ethylene oyamde

At = 11° the line of saturation of 2 C,H, (CN), . AgNO, . HO'
touches the bmodal line m its plaitpoint and two points ofmﬂectlon
appear as in fig. 3.

With a rise of temperature both lines move away “from edichi
other; the lines of saturation determined experimentally at 12°, 20°
and 25° show distinctly the type of fig. 4.

T \

1) W. Mwobeisere. Z. f. Phys. Chem. 48. 805 (1908). - e
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If we lower the temperature below
11°, then the isotherins in the vicumty
of the three-phase-triangle show a form
as in fig. 5. Lines of saturation are
also known which furn in their whole
course their concave side to the plait-
point of the binodal line; they bave a
form as »r’ in fig. 6.

In the system?) water (C)—ether
(A)—malonic acid () such a line of
saturation and binodal line are determined at 15°.

In the system?): water (C') — ethylene cyanide (4)—-benzoic
acid (P) we find above 51° likewise 1sotherms as in fig. 6. When
lowering the {emperature the two curves of fig. 6 approach each
other; at 51° the line of saturation 77’ of the benzoic acid touches
the binodal line in s plaitpont 0. At still lower temperaiures a
three-phase-triangle appears and the isotherms in the vicinity of that
triangle show a form as in fig. 5. ,

Also in the systems')" water-phenol-alkali hnesof saturation appefu
of the type as m fig. 4.

Tig. 6

A

11 The line OP has the direction of the axis of the parabola.

We assume OF as J-axis, then p=20, ¢,=0 and ¢, =0. So
the equation of the curve of contact becomes:

) (d,g—c)e* + 2dygay 4 3d,qy* +....=0 . . . (19)

3o the curve of contact has m point O a node, therefore it consists,
as 15 drawn 1n fig. 8, of two intersecling branches rad and 7’abd.

By a vaviation of parameter (on the &-surface temperature and
pressure come into consideration for this) out of fig. 8 are formed

fig. 7 and fig. 9. So fig. 8 is the transition form between fig, 7
and fig. 9.

[ g o] - e _/c
Fig. . Fig. 9.

1) B, A. Kuoppie. Z. f. Phys, Chem. 24. 625,
?) . A, H. Scoreivewaxers, Z f. Phys. Chem. 26. 249 (1898).

35
Proceedings Royal Acad. Amsterdam. Vol XIV,

\
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In fig. 7 ss’ represents the spinodal line; rab and 2’ed are two
branches of the curve of contact having in a and e atangent passing
through point P. In these points a and ¢ we have the case considered
sub Ip; a and ¢ lie therefore both on the hyperbolically curved
part of the surface. )

If we pursue the branches b and ed, these can of course pass
into each other'); in fig. 7 this continuation is represented by the
dotted curve dcd.

In fig. 9 the curve of contact consists of the two branches 7’
and abed, separated from each other by the spinodal line ss’ *).

The equation (19) can, however, also represent an isolated point;
the curve of contact then consisis of a single isolated point, lying
on the spinodal line. For a small change in parameter this point
then vanishes or a closed curve of contact is generated.

Inversely the closed curve of contact abed of fig. 9 can thus
contract so as to disappear in a point of the spinodal line.

To investigate whether the curve can possess other nodes or isolated
points (in ordinary not conical points), we cause the F-axis to
coincide with OP. This is of ‘course always possible and then we
have p = 0.

From (2) follows now as condition for a node ¢, =0 and 2¢,¢ =0.

So we find:

6,=0 ¢, =0 and therefore also ¢, c, vy ¢t, = 0.

This is just the condition for the generation of case I/p. So we
find the nodes and isolated points only in case //p, except of course
in the points of osculation which ¢an be regarded as a special case
of it, where ¢, = 0. o

So we can say :

“Nodes and isolated points of the curve of contact always lie on
the spinodal line.”

There would be an exception only if point P were on the surface
itself; then of course there would always be in that place an isolated
point or node; this however we do not discuss.

1lp.. Point O is a plutpoint.

We assume (fig. 10) OP as Y-axis so that besides p =0, ¢,=0
and ¢, =0, we find also d, =0°?).

1) Comp. F. A. H. Scorcinewakers. Z. . Phys. Chem. 22. 532 (1897).
)y Comp. F. A. H. Scirervesaxers. Z. f. Phys. Chem, 22 531 (1897).
8 D. J. Korrcwre. Avch. Neéerl. (1), 24 61. (1891).

-10 -
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Out of (19) now follows that the plaitpoint
is a node of the curve of contact and at the
same time that the line OP itself is one of
the tangents. To investigate this curve of
contact further we wrile (2) (after having put
there p =0, ¢,=0, ¢,=0 and d,=0) in
the form :

Fig. 10.
Aw?* + Bay + Ca® + Da*y + Eey® + Fy* +-...=0. . (20)
To satisfy this by

z = ky*

we must have Bk - F=0. From this ensues now, as B=2d,q
and F'=4 ge,:

e= =Tyt o el L@

8
thus reproducing the equation (12) of the binodal line in the yicinity
of the plaitpoint.

Therefore the curve of contact coincides in the vicinity of the
plaitpoint with the binodal line. '

This coincidence does not hold for the higher terms, as is natural
and as is shown still more clearly by the following.
We put namely:
& = ky* + my®
and we substitute this value in (20). As will immediately become
evident, we must include in (20) still the term 3*. We write for it Gy*.
So we find:

(Bt + F)y* + (4k* + Bm + Ek -+ Gyt 4 . .. =0.
From this ensues:
Ak* + Bk + @
B

Now follows out of (2): A=d,q—c,, B=2d,q, £=3¢,g— 2d,.
It we calculate the coefficient & of y* in (2) we find:

G=(fir+ 5]".;9—36’5),

m =

@2)

so here, as p=10:

G=5f,q— 3¢,
So we find, if we putl for the curve of contact m =m,:
4e,? 2¢ X
(Ul_dn(]) dﬁ-; + (— Zda '+' 364(1) -c—lj + 3(’5 - 5faq
- J J - (28
m 5 dq (23)
35%

-11 -
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For the second term muy* of the binodal line we have:?)

= oG~ BS) ey
d,?
so that the curve of contact and the binodal line differ in the term %"

We now write:
’ o, =ky’ +my® - ..
ay=1rky* +mpy®*+ . ..
from which ensues:

wp— = (my —mp)y* 4+ . .. . . . . . (2D)

Out of (25) it is evident, that the Linodal line 000’ and ihe curve
of contact »0r’ must have with respeet to cach other a position as
in fig. 10. In this figure the part »0 of the curve of contact has
heen drawn outside, the part 'O inside the binodal line.

If we calculate with the help of (23) and (24) m, — m, we then
see that the sign of this difference depends on ¢, thus on the position
of P. It is therefore also possible that for the same surface 7O lies
inside and ' O outside the binodal line.

The curve of contact:

a

p— 285 2 ’
L = — ds y "‘l" ]
and the spinodal line (11):
6 c05—d,* ,
T e YT

differ already in the coefficient of y*. Hence for a plaitpoint of the
first kind the curve of contact will always fall as in fig. 10, just like
the binodal line, on the outer side of the spinodal line.

As we have seen above the curve of contact consists of two
branches intersecting in the plaitpoint; one is the branch »0y’,
considered above, the other the branch »,Or,’.

P

p
7
g A
A’
%0
£ : d
Kig. 11. Fig. 12,

If in fig. 10 we restrict owrselves to that part of ihe lines repres
senting stable conditions, we find fig. 11. Also the case represented

D . KORTEWEG; lLe. 69, 70,

-12 -
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in fig. 12 can of course appear, so thal the binodal line vanishes
because it falls inside the sector POr’.

Remarkable in both cases is that the stable part of the line of
saturation of P, although it represents an unbroken series of solutions,
yet shows a discontinuity. This makes its appearance in the critical
solulion saturated with solid P.

LI, Pomt O is a point of osculation.

As in a point of osculation we have ¢, =0, ¢;=0 and ¢, =0,

we get from (2) for the equation of the carve of contact:
Bd,p v, & + 2d,p+2d,9) wy + (dyp+3d,g)y* 4+ ... =0
or if we make the X-axis to coincide with OP:
8d,a® + 2dywy +dyy' +...=0. . . . . (26)

So the corve of contact consists either of an isolated point or it
shows in O a node. From (26) it is evident that the directions of the
two tangents are independent of the distance from point P to point
O; they depend only on the direction of the line OP.

The above-mentioned property that the curve of contact and the
binodal line are curved in the same direction in the vicinity of the
plaitpoint ([14,) caused us to surmise that this also would be the
case with a s2cond branch of the binodal line, should such a one
pass through the plaitpoint ).

This surmise can be affirmed in the following way and it can also
be shown that the curvation of such a branch corresponds entirely
to that of the curves of contact passing through the plaitpoint.

y ,  To that end we assume again as Y-axis the
’ Y ¢ tangent to the spinodal and the binodal line

x of the plaitpoint O, (fig. 13); for the X-axis

a

7 4 we choose the line of conjugation 0,0, and
2 ¢ we put 0,0, =p.
/ The tangential plane in a point 2, y,, 2,
Fig. 13. in the vieinity of O, is

0z 0z
Z — 5, = (X)) —2 4+ (Y —y,) =t
1 ( Q’l) awl + ( .7/1) ayl !
the one in a point @,,y,,2, in the vicinity of O is:
0z,

- 5—32:(4\ P a‘{’b_z—"'(y Jn)a

1) Comp. the paper of Mr. Kuency (Proceedings of Oct. 1911, p. 420).

-13 -
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The conditions that ., y,,2, and 2,,7,,2, are conjugaled points
thus become:

0z, Oz,
— = B 1
oz, Oa, @7
e
0y, Oy,

dz, GER 0z 0z

&= — — 2 T &, — T 4!

7’.6‘01’}‘:‘/1 3y, 1 "’.amg‘}‘?/zayﬂ 3 (29)

In consequence of the choice of the T-axis we find:
z, = ¢,&,° + do® + daly, + dryt et .
If we pnt &, =p 4§, so that § is a small gnantity we have:
2, ==¢,§, + &y, iyt oo ‘
We now wrile the equations (27) (28) and (29) in full; we then
directly leave out the terms which are certainly small with respect to

those written down, setting aside of what order z, y, & and y, will
prove to be with respect to each other. We then find:
200, +dy+... =2 & +dy, +... . . . 2T
de* + 2dgwyy, + dey P+ .. =8, + 2y, ... . (28)
o, 4 2oy Sey,t . =208, Fpdy, 4. (@9)
1t we solve out of (27) and (28) §, and y, at first approximation
we find:
€, =ax, 4 Bv," and Y= de, + By,
where ¢, ,B; ¢ and ' have definite values.

From "this ensues that & and y, will be of the same order of
magnitude as 2, and %%, when namely those two correspond in
order. If on the contrary z, and y,* are of different order, then §,
and y, must be of the lowest order as one of them (namely 2, or y,*).

From (29) however ensues that 2pc’ & +pc,y, and so also
2¢', §,+¢,y, are of higher ovder than @, or y,* or both; hence out
of (27) may be concluded at first approx:mation :

202, Tdy =0 . . . . . . (39)

The equation of the branch 60,6’ of the binodal line (fig. 13) is
therefore represented at first approximation by (30). This equation (30),
however, corresponds entirely to (10) representing a curve of contact
which touches the binodal lme aO,a' (fig. 13) in the plaitpoint.

In an entirely similar way as in /4., we can now deduce:

“an accidental branch of a binodal line passing through a plaitpoint
is in this point always curved in the same direction as the binodal
line to which the plaitpoint belongs.”
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Between the radii of curvature B, R', and Es exisis of couise
also the relation
2 3 1

B~ R R
in which R, represents the radius of curvature of the binodal line to
which the plaitpoint belongs and R, the radius of curvature of the
accidenial branch of the binodal line passing through the plaitpoint.
We now substitute in (28)’ and (29)':

dy
""1:—2_01'."/1
and we find: ‘
4¢ e.—d,*?
0'152—1—20'3_1/2:——01—;—13/1"—[—.... N 1)
1
: , 3 (4¢, e,—d,?)
2¢, 8§+, v, = i——a Lyt oL (39)
P 0
From this now follows:
(0'2§J+2d3y2)4:a(20’1§2 +0’zy2)3 . * * M (33)

in which:

3

64 4o e,—df
—_—, p »

¢ = —
27 ¢

1
The equation (33) represents at approximation the curve ¢ O, ¢’
(fig. 13); its tangent in point O is determined by .
2¢, 8 +¢,y,=0. . . . . . . . (34)
The line détermined by (34) is the diameter conjugated to the
X-axis of the indicatrix in O,; so we find that the tangent in O,
and the conjugated line in (O, O, are conjugated diameters of the
indicatrix in O,. This property however has been known already
for a long time?).
We now take that tangent in O, as new Y-axis, whilst we
keep the line O, O, as the X-axis.
Equation (33) now changes into:
’ (AX 4 pY)t = XP
where 2, & and » have definite values. From this ensues as a firsi
approximation of the binodal line in the vicinity of point O,:
Wt =»X’,
or
Y*=KX' . . . . . . . . (35)
If we calculate the radius of curvature in point O, we then find

1) D, J. Korrowre. 1.c. p. 299,
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that it is zero The branch ¢0,c’ of the binodal line has thus in -
point O, a somewhat angular shape, without however an angular
point being really formed.

This shape is, indeed, the preparation to the wellknown
form shown in fig. 14, generated in (), when the con-
jugated branch 60,6’ in fig. 13 begins to intersect the
plait 2 0,a’. \

Moreover ‘it is evident from the-fact that & and v, in
the vicinity of the points O, and O, are of the same
order of magnitude as ¥,* and therefore much smaller

Mg 14 yhan y,, that the connode O, will displace itself there
much quicker than the connode O,.

~

Astronomy. — “The Milky way and the star-streams.” By Prof. J. C.
KarreyN.

In a lecture, delivered before the Congress of Physicists and
Physicians in the month of April, I arrived at’ the conclusion that
“in passing from the stars of the spectral type B (Helium-stars) to
those of the type A (Sirius-stars) and fiom these to those of the
type G (solar-stars) there is a gradual change in the direction of
the streams.

The stream-velocity was also found to be different. Owing to want
of materials, however, the latter result was still even more uncertain
than the former. Partly by the publication of Camesrri's radial
velocities of BB stars?), partly by (not yet published) observations made
on Mount Wilson, I have been able this summer materially to
diminish this uncertainty.

It is true, that the increase of our data represents but a small
fraction of what is urgently wanted. Still however, so much seems
to have been gained already, that there is a pretty strong probability
m favour of the conclusion that: not only the direction but also
the velocity of the two great star-sireams g¢radually changes in
passing from type B to type 4 and thence to type .

In these circumstances I fecl justified in no longer suppressing a
conclusion which was not yet communicated in my Aprl lecture.

In what follows, stream-direction and stream-velocity will mean
divection and velocity relaiive to the solar system, unless the contrary

1) In what follows the notations of HARVARD college observatory have heen
adopled.
?) Lick Bulletin N°, 195,
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