Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

M.J. van Uven, Homogeneous linear differential equations of order two with given relation between two particular integrals. (4th comm.), in:
KNAW, Proceedings, 14 II, 1911-1912, Amsterdam, 1912, pp. 1010-1017

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Mathematics. - "Homogeneous linear differential equations of order two with given reelation between two particular integrals". (4 $4^{\text {th }}$ communication). By Dr. M. J. van Uven. (Communicated by Prof. W. Kaptern).
(Communcated in the meeting of February 24, 1912).
In the preceding communications we have discussed the parity of function $I(\boldsymbol{\tau})$ in connection with the parity of the functions $x(\boldsymbol{\tau})$ and $y(\boldsymbol{\tau})$. It then became evident that the same function $l(\tau)$ determines two mutually semi-equivalent curves $F(x, y)=0$ when it is a univalent even function of τ.

Let us now suppose that $l(\boldsymbol{\tau})$ is determined as root of even power ont of a certain function of τ, then to the same curve $F(x, y)=0$ belong two opposite functions I, from which ensues that $F^{\prime}(x, y)=0$ is then semr-equivalent to itself.

We shall occupy ourselves in the following, in connection with the remark made here, in particular with algebraical curves $F(x, y)=0$.

Just as in equation (31) and (32) ($1^{\text {st }}$ commonication page 398) we have expressed l in the integrals x and y, we shall now also give $\dot{l}=\frac{d I}{d \boldsymbol{\tau}}$ such a form.

We shall make use of the following abridgments:

$$
\begin{aligned}
& \bar{\Phi}=\Phi_{2} F_{y}^{\prime}-\Phi_{y} F_{x}^{\prime} \\
& \overline{\bar{\Phi}}=\left(\bar{\Phi}_{)_{z}} F_{y}-(\bar{\Phi})_{y} F_{x}\right. \\
& \text { etc. }
\end{aligned}
$$

Whth the aid of this we can write equation (31) in the form

$$
G=F_{z} \bar{H}-3 H \overline{F_{z}} .
$$

We then find
$\dot{I}=\frac{d I}{d \tau}=I_{x} \frac{d x}{d \tau}+I_{y} \frac{d y}{d \tau}=\frac{(n-1) F_{z}^{\frac{1}{2}}}{2^{\frac{1}{2}} H H^{\frac{1}{2}}}\left(I_{z} F_{y}-I_{y} F_{z}\right)=\frac{(n-1) F_{z^{\frac{1}{2}} \bar{I}}^{z^{\frac{1}{2}} H^{\frac{1}{2}}}}{}$.
If we calculate I_{x} and I_{y} out of (32), we shall finally find:
$\Lambda=\frac{d I}{d \tau}=\frac{(n-2)^{2}}{2 z F_{z} H^{3}}\left(4 F_{z} H \overline{F_{z}} \bar{H}+2 F_{z}^{2} H \overline{\bar{H}}-6 F_{z} H^{2} \overline{\bar{F}_{z}}-3 F_{z}^{2} \bar{H}^{2}+3 H H^{2} \overline{F_{z}^{2}}{ }^{2}\right)$. (51)
For I^{2} we can 'write

$$
\begin{equation*}
I^{2}=\frac{(n-1)^{2}}{z F_{z} H^{3}}\left(F_{z} \bar{H}-3 H \overline{F_{.}}\right)^{2} \ldots \ldots . \tag{52}
\end{equation*}
$$

In the supposition that $F(x, y, z)=0$ is an algebraical equation we shall arrive by eliminating the homogeneous variables x, y, and z out of (51), (52), and $F(x, y, z)=0$ at a rational equation between I^{2} and \dot{I} :

$$
\dot{l}=\boldsymbol{\Psi}\left(I^{2}\right)
$$

If the solution is

$$
\begin{equation*}
\boldsymbol{\Phi}\left(I^{n}, I\right)=0 \tag{53}
\end{equation*}
$$

we then find $\boldsymbol{\tau}$ out of

$$
\begin{equation*}
\tau-\boldsymbol{\tau}_{\mathrm{a}}=\int \frac{d I}{\boldsymbol{T}\left(I^{2}\right)}=\Omega(I) \tag{54}
\end{equation*}
$$

and $I(\boldsymbol{r})$ by reversing the function $\boldsymbol{O}(I)$.
As $\boldsymbol{\Psi}\left(l^{3}\right)$ is an algebracal function τ is an algebraical integral-function of I, and $I(\tau)$ is the reverse of it.

If we take $I^{2}=X$ and $I=Y$ as rectangular coordinates then

$$
\Phi(X, Y)=0
$$

will represent some algebraical curre.
We can conjugate the curve $\boldsymbol{\Phi}(X, Y)=0$ to the system of all curves $F(x, y)=0$ which are mutually equivalent. A curve $F_{1}(x, y)=0$, which is semi-equivalent to $F=0$, determines an opposite I, hence an equal X and an opposite Y. The curve $F_{1}=0$ conjugate to $\Phi_{1}=0$ is thus the image of $\Phi=0$ with respect, to the X-axis.

The curve $\Phi=0$, which is conjugate to a curve $F=0$ semiequivalent to itself, is therefore symmetrical with respect to the X-axis.

We shall now give a somewhat extensive treatment of the case in which $F=0$ represents a conic.

By means of a homogeneous linear substitution (if necessary with complex coefficients) we can always make one of the points at anfinity to be in the direction of the Γ-axis. In this case the equation $F(x, y)=0$ is linear in y and the equation $y=\varphi(x)$ is rational, so that operation with the equations (20),(21), and (22) ($1^{\text {sti }}$ communication page 366) gives rise to few algebranc complications.
llowever as we have our formulae ready for l and \dot{I}-expressed by means of the implicit equation $F(x, y, z)=0$ we shall, likewise with a view to greater symmetry, make use of the unsolved equation $F(x, y, z)=0$.

Beforehand we remark that not all conics can be transformed into each other by means of homogeneous linear substitutions. For, only those conics can be transformed into each other by means of these substitutions where the anharmonic ratio δ between the points S_{1} and S_{2} at infinity and the points of contact R_{1} and R_{2} of the tangents out of the origin have the same value; in other words: equivaleni conics have equal δ.

We shall now first express the value of δ in the coefficients of the ${ }^{\top}$ equation ${ }^{\top} F=0$.

The anharmonic ratio $\delta=\left(S_{1} S_{2}, R_{1} R_{2}\right)$ is the anharmonic ratio of the four rays which join these points with a fifth point of the
conic or of the four pomts which their tangents describe on a fifth langent of the conic. Let us take as fifth tangent one of the tangents $O R_{1}$ our of O, then the point of contact R_{1} must be considered as point of intersection of $O R_{1}$ with itself. The sccond tangent $O R_{2}$ out of O intersects $O R_{1}$ in O. Let us noreover call S_{1}^{\prime}, S_{2}^{\prime} the points of intersection of $O R_{1}$ with the asymptotes of S_{1}^{∞} and S_{2}^{∞} then we can write

$$
\delta=\left(S_{1} S_{1} \cdot R_{1} R_{2}\right)=\left(S_{1}^{\prime} S_{2}^{\prime}, R_{1} O\right)=\frac{S_{1}^{\prime} R_{1}}{S_{2}^{\prime} R_{1}}: \frac{S_{1}^{\prime} O}{S_{2}^{\prime} O}
$$

or, because $S_{1}^{\prime} R_{1}=-S_{2}^{\prime} R_{1}$,

$$
\delta=-\frac{S_{2}^{\prime} O}{S_{1}^{\prime} O}
$$

The ratio $\frac{S_{2}^{\prime} O}{S_{1}^{\prime} O}$ can now be replaced by the ratio of the abscissae x_{2} and a_{1} of S_{2}^{\prime} and S_{1}^{\prime}, so that we find as simplest expression

$$
\begin{align*}
& \delta=-\frac{x_{2}}{x_{1}} \cdot . \cdot . \cdot . \cdot . . \tag{55}\\
& \text { ented by the equation } \\
& +a_{22} y^{2}+2 a_{13} z+2 a_{23} y z+a_{33} z^{2}=0
\end{align*}
$$

The conic may be represented by the equation

$$
\begin{equation*}
F^{\prime}(x, y, z) \equiv a_{11} z^{2}+2 a_{12} x y+a_{22} y^{2}+2 a_{13} z+2 a_{23} y z+a_{38} z^{n}=0 . \tag{56}
\end{equation*}
$$

We now put

$$
\left|\begin{array}{lll}
a_{11}, & a_{12}, & a_{13} \\
a_{12}, & a_{23}, & a_{23} \\
a_{13}, & a_{23}, & a_{33}
\end{array}\right|=\Delta
$$

and we indicate the subdeterminants of $a_{11} \ldots a_{9,3}$ respectively by $A_{11} \ldots A_{33}$. The pair of asymptotes is then represented by the equation

$$
a_{11} x^{2}+2 a_{12} x y+a_{2} y^{2}+2 a_{18} z z+2 a_{23} y \bar{z}+\left(a_{33}-\frac{\Delta}{A_{38}}\right) z^{2}=0
$$

The points of intersection of this pair of lines with the line

$$
y=m x
$$

through O are now determined by

$$
\begin{equation*}
\left(a_{22} m^{2}+2 a_{13} m+a_{11}\right) w^{2}+2\left(a_{23} m+a_{13}\right) x z+\left(a_{83}-\frac{\Delta}{A_{33}}\right) \tilde{\varepsilon}^{2}=0 \tag{57}
\end{equation*}
$$

If the iudicated line through O is to touch the conic, then m must satisfy

$$
A_{12} m^{2}-2 A_{12} m+A_{22}=0
$$

or

$$
\left(a_{12} a_{38}-a_{23}{ }^{2}\right) m^{2}-2\left(a_{1}, a_{28}-a_{12} a_{33}\right) m+\left(a_{11} a_{38}-a_{18}{ }^{8}\right)=0
$$

or

(1013)

$$
\begin{equation*}
\left(a_{23} n+a_{13}\right)^{2}=a_{33}\left(a_{21} m^{2}+2 a_{12} m+a_{11}\right) . . . \tag{58}
\end{equation*}
$$

Out of (57) and (58) follows for both roots x_{1}, z_{1} and $x_{2}: z_{3}$ or x_{2} and x_{2} :

$$
\frac{\left(x_{1}+x_{2}\right)^{2}}{4 x_{1} x_{2}}=\frac{\left(a_{23} m+a_{13}\right)^{2}}{\left(a_{22} m^{2}+2 a_{12} m+a_{13}\right)\left(a_{33}-\frac{\Delta}{\Lambda_{33}}\right)}=\frac{a_{33}}{a_{33}-\frac{\Delta}{A_{33}}}=\frac{a_{33} A_{33}}{a_{33} A_{33}-\triangle}
$$

hence

$$
\frac{\left(x_{1}+x_{2}\right)^{2}}{\left(x_{1}-v_{2}\right)^{4}}=\frac{a_{38} A_{35}}{\triangle}
$$

and, on account of (55),

$$
\begin{equation*}
\left(\frac{1-\delta}{1+\delta}\right)^{2}=\frac{a_{38} A_{33}}{\Delta}=2^{2} . \tag{59}
\end{equation*}
$$

From this ensues

$$
\frac{1-\delta_{1}}{1+\delta_{1}}=+2, \quad \frac{1-\delta_{2}}{1+\delta_{3}}=-2 .
$$

so

$$
\begin{equation*}
\delta_{1}=\frac{1-\lambda}{1+\lambda}, \quad d_{2}=\frac{1+\lambda}{1-\lambda} \tag{60}
\end{equation*}
$$

So we find as was to be expected two reciprocal values for δ. Equivalent conics have cqual $\boldsymbol{\delta}$, therefore also equal 2. So for equivalent conics holds

$$
\frac{a_{33} A_{33}}{\triangle}=\text { constant. }
$$

To investigate how the value of of depends on the form of the conic and on its situation with respect to the origin and of the line at infinity we can invert the relative siluation of conic and origin. So we base our considerations on a fixed conic and we have then to investigate how the value of δ depends on the stiuation of the point O thought as variable with respect to the fixed conic.

We take for the conic of reference the hyperbola

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 .
$$

If later on we wish to herasfer our results to the ellipse, we have but to suppose b imaginary.

If x_{0}, y_{0} are the coordinates of point O, and x_{1}, y_{1} and v_{2}, y_{2} those of the points $S_{1}{ }^{\prime}$ and $S_{2}{ }^{\prime}$, then holds

$$
\delta=-\frac{O S_{2}^{\prime}}{O S_{1}^{\prime}}=-\frac{x_{2}-v_{0}}{x_{1}-v_{0}}=-\frac{y_{2}-y_{0}}{y_{2}-y_{0}},
$$

(1014)

$$
(1+\delta) x_{0}=\delta x_{1}+x_{2}, \quad(1+\sigma) y_{0}=\delta y_{3}+y_{2}
$$

Because $\left(r_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ lie on the asymptotes and their midpoint $\left(\frac{x_{2}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$ on the conic, we find

$$
\frac{x_{1}}{a}=\frac{y_{1}}{b} \quad, \quad \frac{x_{2}}{a}=-\frac{y_{2}}{b} \quad, \quad \frac{\left(x_{1}+v_{2}\right)^{2}}{a^{2}}-\frac{\left(y_{1}+y_{2}\right)^{2}}{b^{2}}=4
$$

from which ensues

$$
\frac{x_{1} x_{2}}{a^{2}}-\frac{y_{1} y_{2}}{b^{2}}=2
$$

so that
$(1+\delta)^{2}\left(\frac{x_{0}{ }^{2}}{a^{2}}-\frac{y_{0}{ }^{2}}{b^{2}}\right)=d^{2}\left(\frac{x_{1}{ }^{2}}{a^{2}}-\frac{y_{1}{ }^{2}}{b^{2}}\right)+2 d\left(\frac{x_{1} w_{2}}{a^{2}}-\frac{y_{1} y_{2}}{b^{2}}\right)+\left(\frac{x_{2}{ }^{2}}{a^{2}}-\frac{y_{2}{ }^{2}}{b^{2}}\right)=4 \delta$, or

$$
\begin{equation*}
\frac{x_{0}{ }^{2}}{a^{2}}-\frac{y_{0}{ }^{2}}{b^{2}}=\frac{4 \delta}{(1+d)^{2}}=1-\lambda^{2}=k \tag{61}
\end{equation*}
$$

So points O of equal δ lie on a conic simılar and homothetic to the conic of reference.

In this way we can represent the values of d in connection with those of λ and λ in the following plan:

	I	II	III	VI	V	VI	$\mathrm{VII}=\mathrm{I}$
2	$(+)$	$>-\infty,<0$	0	$>0,<+1$	$+1$	$>+1,<+\infty$	(- ${ }^{\infty}$
2	$+\infty$	$<+\infty\rangle+1$	+1	$<+1,>0$	0	$2{ }^{\prime}, 0<\gamma<\infty$	$\infty,+\infty$
∂_{1}	-1	$>-1,<0$	0	$>0,<+1$	$+1$	$e^{-25}, 0<1<\tau$	-1
∂_{2}	-1	∞	$+^{\infty}$	$\langle+\infty\rangle+$,	+1	$e^{+15}, 0<1<$	-1

For the parabola $A_{33}=0$, hence $\lambda=0$, so always $\delta_{1}=\delta_{2}=+1$. For the hyperbola we find the following state of affairs:
I. At infinity
$\delta_{1}=-1$
, $d_{2}=-1 ;$
II. In the domain of the conjugate hyperbola
$-1<d_{1}<0$
, $-1>\delta_{2}>-\infty$;
III. on the asymptotes
$\delta_{1}=0$
, $\delta_{2}=\mp \infty$;
IV. between the asymptoles and the curve

$$
0<\delta_{1}<+1 \quad,+\infty>\delta_{2}>+1 ;
$$

V. on the curve
$d_{1}=+1$
, $\delta_{2}=+1$;
VI. at the concave side of thecurve $\delta_{1}=e^{-\nu}, 0<\boldsymbol{\psi}<\boldsymbol{\pi}, \delta_{2}=e+w, 0<\boldsymbol{\psi}<\boldsymbol{\pi}$.

For the ellipse hoids.
VII. Al infinity
VI. outside the curve

V . on the curve
IV. inside the curve
III. in the centre

$$
\begin{array}{ll}
\delta_{1}=-1 & , \delta_{2}=-1 ; \\
\delta_{1}=e^{-2 \nu}, \pi>\psi>0 \\
\delta_{1}=+1 & , \delta_{2}=e^{+2}, \pi>\psi>0 ; \\
+1>\delta_{1}>0 & ,+1<\delta_{2}<+\infty ; \\
\delta_{1}=0 & , \delta_{2}=+\infty .
\end{array}
$$

We shall now determine the form of the function $I(\boldsymbol{r})$.
From (53) follows:

$$
\begin{aligned}
& F_{2}=2\left(a_{11} x+a_{12} y+a_{13} z\right) \quad, \quad F_{y}=2\left(a_{12} z+a_{22} y+a_{23} z\right) . \\
& F_{z}=2\left(a_{13} x+a_{23} y+a_{33} z\right)=2 g . \\
& H=\left|\begin{array}{lll}
2 a_{11}, & 2 a_{12}, & 2 a_{13} \\
2 a_{12}, & 2 a_{22}, & 2 a_{23} \\
2 a_{13}, & 2 a_{23}, & 2 a_{33}
\end{array}\right|=8 \Delta, \bar{H}=0, \overline{\bar{H}}=0 . \\
& \bar{F}_{z}=F_{x z} F_{y}-F_{y z} F_{\lambda}=4\left\{a_{13}\left(a_{12} x+a_{22} y+a_{23} z\right)-a_{23}\left(a_{11} v+a_{12} y+a_{13} z\right)\right\}= \\
& =4\left(A_{29} 2-A_{13} y\right) \text {. } \\
& \overline{\overline{F_{z}}}=\left(\overline{F_{z}}\right)_{x} F_{y}-\left(\overline{F_{z}}\right)_{y} F_{x}=8\left\{A_{23}\left(a_{19} x+a_{29} y+a_{23} z\right)+A_{13}\left(a_{12} x+a_{12} y+a_{18} z\right)\right\}= \\
& =8\left\{\left(a_{11} A_{13}+a_{12} A_{23}\right) x+\left(a_{12} A_{13}+a_{22} A_{23}\right) y+\left(a_{13} A_{13}+a_{13} A_{98}\right) z\right\}= \\
& =8\left\{-a_{13} A_{38} x-a_{23} A_{38} y+\left(\triangle-a_{33} A_{39}\right) z\right\}=8\left(\triangle z-A_{3} g\right) . \\
& I^{2}=\frac{3^{2} \cdot 2^{10} \cdot \Delta^{2}\left(A_{28} z-A_{18} y\right)^{2}}{2^{10} z g \Delta^{3}}=9 \frac{\left(A_{28} v-A_{18} y\right)^{2}}{z g \triangle}, \\
& \dot{I}=\frac{-3 \cdot 2^{11} \cdot \Delta^{2} g\left(\triangle z-A_{83} g\right)+3.2^{10} \cdot \Delta^{2}\left(A_{23} x-A_{13} x\right)^{2}}{2^{11} z g \Delta^{3}}= \\
& =\frac{3}{2 z g \triangle}\left\{\left(A_{28} x-A_{13} y\right)^{2}-2 g\left(\triangle z-A_{33} g\right)\right\} .
\end{aligned}
$$

We now find:

$$
\begin{aligned}
& \left(A_{28} x-A_{18} y\right)^{2}+A_{39} g^{2}-2 \Delta g z= \\
& =\left(A_{23}{ }^{9}+a_{19}{ }^{2} A_{33}\right) x^{2}+2\left(-A_{13} A_{23}+a_{13} a_{23} A_{33}\right) x y+\left(A_{19}{ }^{2}+a_{23}{ }^{2} A_{33}\right) y^{2}+ \\
& +2\left(a_{12} a_{33} A_{33}-\triangle a_{13}\right) x z+2\left(a_{13} a_{13} A_{33}-\triangle a_{23}\right) y z+\left(A_{33} a_{33}{ }^{2}-2 \Delta a_{33}\right) z^{2}= \\
& =\left(a_{33} A_{33}-\Delta\right)\left(a_{11} x^{2}+2 a_{12} x y+a_{2}, y^{2}+2 a_{19} x z+2 a_{29} y z+a_{33} z^{2}\right)-\triangle a_{33} z^{2} \\
& =\left(a_{38} A_{38}-\triangle\right) F-\triangle a_{98} z^{2}, \\
& \text { or, - because (} x, y, z \text {) satisfy } F=0 \text {, } \\
& \left(A_{38}{ }^{2}-A_{13} y\right)^{2}+A_{83} g^{2}-2 \Delta g z=-\Delta a_{8}, z^{2} .
\end{aligned}
$$

Hence we find

$$
\begin{align*}
& I^{2}=\frac{9}{z g \triangle}\left(-A_{\mathrm{a}} g^{2}+2 \Delta g z-\triangle a_{3} z^{2}\right), \quad . \quad . \quad . \tag{62}\\
& \dot{I}=\frac{3}{2 z g \Delta}\left(A_{3} g^{3}-\Delta a_{8} z^{2}\right) \tag{63}
\end{align*}
$$

By elimination of g we find

$$
\begin{equation*}
36 \dot{I^{2}}=I^{4}-36 I^{2}+324\left(1-\frac{a_{38} A_{83}}{\triangle}\right), . \tag{64}
\end{equation*}
$$

or, on account of (59),

$$
\begin{equation*}
36 \dot{I}^{2}=\left(I^{2}-18\right)^{2}-18^{2} \lambda^{2}, \tag{65}
\end{equation*}
$$

so

$$
6 \dot{I}= \pm V\left\{I^{2}-18(1+\lambda)\right\}\left\{I^{2}-18(1-\lambda)\right\}
$$

or

$$
\begin{equation*}
\tau-\tau_{0}= \pm \int \frac{6 d I}{V\left\{I^{2}-18(1+2)\right\}\left\{I^{2}-18(1-\lambda)\right\}} \vdots \tag{66}
\end{equation*}
$$

So I proves to be an elliptic function of τ.
[f we introduce $I^{2}=u$ as variable we find:

$$
36 I^{2} I^{2}=I^{6}-36 I^{4}+324\left(1-\lambda^{2}\right) I^{2}
$$

or

$$
\begin{aligned}
9\left(\frac{d u}{d r}\right)^{2} & =u^{3}-36 u^{2}+324\left(1-\lambda^{2}\right) u \\
& =u\{u-18(1+\lambda)\}\{u-18(1-\lambda)\},
\end{aligned}
$$

thus

$$
\tau-\tau_{0}= \pm \int \frac{3 d u}{V u\{u-18(1+\lambda)\}\{u-18(1-\hat{\lambda})\}}
$$

The singular points are now $u_{1}=\infty, u_{2}=0, u_{3}=18(1+\lambda)$, $u_{4}=18(1-\lambda)$.

One of their six anharmonic ratios is therefore

$$
\frac{u_{4}}{u_{3}}=\frac{1-\lambda}{1+\lambda}=\delta_{1} .
$$

The anharmonic ratio of the elliptic function $u=J^{2}=Q(\boldsymbol{r})$ is therefore equal to the auharmonic ratio of the four characteristic points $S_{1}^{\infty}, S_{2}{ }^{\infty}, R_{1}, R_{2}$ of the conics $F=0$.

Evidently the invariant of this elliptic function is:

$$
\begin{equation*}
i=\frac{4\left(\delta^{2}-\delta+1 j^{3}\right.}{27 \delta^{2}(1-\delta)^{2}}=\frac{\left(1+3 \lambda^{2}\right)^{3}}{27\left(1-\lambda^{2}\right)^{2} \lambda^{2}}=\frac{\left(\Delta+3 a_{33} A_{33}\right)^{3}}{27 a_{38} A_{38}\left(\triangle-a_{33} A_{38}\right)^{2}} . \tag{68}
\end{equation*}
$$

Before transforming the elliptic integral we shall first investigate in what case it degenerates. Degeneration takes place, when the equation $\frac{d u}{d \tau}=0$ has two coinciding roots. This occurs :

1. When $\lambda=0$, thus $\delta_{1}=\delta_{2}=+1$; in this case either $a_{33}=0$, holds or $A_{33}=0$, i.e. ether: the conic passes through O, or it touches the line at infinity, in other words it is a parabola. These two types of curves are not equivalent, but they are semi-equivalent: so they have opposite functions I. This now coincides with the faci, that for

(1017)

$\lambda=0$ the form under the sign of the root in (66) is a perfecl square, so that two separated functions / appear. To distinguish the types $a_{33}=0$ and $A_{33}=0$ properly we shall return to the equations (62) and (63). For $a_{33}=0$ these take the following forms:

$$
\begin{aligned}
& z \Delta I^{2}=9\left(-A_{3} g+2 \Delta z\right), \\
& 2 z \Delta \dot{I}=3 A_{3} g .
\end{aligned}
$$

By elimination of g we find

$$
\begin{equation*}
6 I=18-I^{2} \tag{69a}
\end{equation*}
$$

so

$$
\tau-\tau_{0}=\int \frac{6 d l}{18-I^{2}}=+V^{2} \cdot \tan h^{-1} \frac{I}{3 V^{2}}
$$

or

$$
\begin{equation*}
I=+3 \vee 2 \cdot \tan h \frac{\tau-\tau_{0}}{V^{2}} \tag{70a}
\end{equation*}
$$

If on the other hand we put $A_{33}=0$, then (62) and (63) pass into

$$
\begin{aligned}
& g I^{2}=18 g-9 a_{33} z, \\
& 2 g \dot{I}=-3 a_{39} z .
\end{aligned}
$$

Elimination of g now leads to

$$
\begin{equation*}
6 I=I^{2}-18 \tag{69b}
\end{equation*}
$$

from which ensues

$$
\tau-\tau_{0}=-\int \frac{6 d I}{18-I^{2}}=-V^{2} \cdot 2 \cdot \tan h^{-1} \frac{I}{3 \sqrt{2}},
$$

or

$$
\begin{equation*}
I=-3 \sqrt{ } 2 \cdot \operatorname{tank} \frac{\tau-\tau_{0}}{V^{2}} \tag{70b}
\end{equation*}
$$

2. A second case of degencration appetrs when $2=+1\left(0 r^{2} \lambda=-1\right)$, so for $\delta_{1}=0, \delta_{2}=\infty$ or $\delta_{1}=\infty, \delta_{3}-0$; in this case we have $a_{33} A_{33}=\triangle$ or $a_{13} A_{13}+a_{23} A_{33}=0$; the geometric meaning of this is that O lies on one of the asymptotes (for the ellipse in the centre). The equation (66) now runs:

$$
\tau-\tau_{0}=-\int \frac{d I}{I \sqrt{I^{2}-36}}= \pm \sin ^{-1} \frac{6}{I},
$$

so that

$$
\begin{equation*}
I= \pm \frac{6}{\sin \left(\tau-\tau_{0}\right)} \tag{71}
\end{equation*}
$$

3. When at the same time $a_{33}=0$ and $A_{33}=0$ holds, i.e. when the conic is a parabola passing through O, then the equation (62) furnishes

$$
l= \pm 3 V 2
$$

This resull has formerly been found (see $2^{\text {nd }}$ communication page 590); we can regard it as the combination of (70a) and (70b) for $\tau_{0}=\infty$.

