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marrow fibres that are found there and border the central grey sub-
stance. This strongly lateral siluation is less prohounced in man
though extant in principle, as appears from the figures subjoined fo
my previous communication (l.c.).

As to the nucleus trochlearis principalis, ils sitnation corresponds
to a high degree in all examined animals. In its entire length however
it is imbedded in a more lateral part of the fasciculus longitudinalis
than with rabbits. Slight local differences — apparently depending
upon a sironger dorsal curvature of the posterior longitudinal bundle —
occur however. Only in the cat the gradual transition into the nucleus
oculomotorii is missing. The most distal cells of this nucleus are not
situated strictly dovsal from the place where the nucleus trochlearis
was found, but almost in the prolongation of the latter. Only a few
preparations further frontal these cells pass into elements situated
dorsomedially 1hat have been developed in the mean time. In the
dog the medial nucleus part however is found already in the same
level where the nucleus trochlearis is still present. The transition of
the latter into the lateral cells of the oculomotorian nucleus is gradual,
as in all other examined animals (with the exception of the cat).

At Jast I still fix the attention to the great asymmetry of the split
nuclei (rochleares of the two rabbits which is distinctly expressed in
the above lists. In rabbit 1 to the left a nucleus posterior “lagging
far behind”, to the right another lying only 180 u farther caudal.
In rabbit 8 to the left no splitting at all, to the right a very distinct
one, which caused {he formation of a nucleus posterior comparalively
very rvich in cells.

No certain information can be given aboui the significance of the
phenomenon which I could only ascertain in man and rabbit. It seems
only clear that by the distolateral direction of the trochlearie-root
the situation of the nucleus trochlearis is at least partially determined.

Mathematics. — “Calculus rationuny”. By Dr. G. pg Vrius. (Com-
municated by Prof. Jan pr Vrizs).

(Communicated in the meeting of February 24, 1912).

So far mathematicians have adhered to the opinion that an operation
of the fourth vank would teach nothing new; this opinion was in
part founded on the conviction that base number and exponent of
a power cannol be submitted to the commutative, associative, and
distribulive properties. I have done away with this oljection by
introducing the notion “mutual power of two numbers”.

Doing so I have at the same time indicated the means of intro-
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ducing operations of an arbitrary rank for which the above mentioncd
properties hold.

I lope T have opened a new field of investigation. The fulure
must show whether it is of importance. At all events the considerations
have led me to investigate groups of transcendent curves, to a logical
classification and to a new analysis of them.

[ lewe the outcome of my investigations in manuscript, the contents
of which 1 wish to skeich in some lines. Siarting from the algebraical
part I arrive in connection with the above mentioned analysis (o the
geometrical applications. Only the operation of the fourth rank will
be under discussion and for the rest only considerations relating to
two variables will be allowed.

§ 1. If a power is submitted to a new involution the exponents
may be mutuvally interchanged. In this truth lies practically the validity
of the commutative property. Only a symbol is wanting for the
continual involution together with the setiling of a base number to
determine univalently the mutual power of numbers. If we choose
for this ¢ then the forms in their simplest shape appear. This suppo-
sition is made in the following, whilst the Nap. logarithm shall be
indicated by L. | '

“The mutual power of two numbers is the power of ¢ huving the
product of the logarithms of those numbers as exponents.”

It we put

" a=e vy =el,
we shall write:
oy == e = aly = ylo = y,a,

That for the mutual power of more numbers also the associative
and the distributive property holds, will need no reasoning.

In a form as

U == &,0),2

we shall call @, y, and z ¢fficients.

§ 2. A continued involution or evolution with equal exponent is
called “gradation” and the upper exponent appearing here gradation
wndex. The symbol used for it follows out of:

1 P ~— =N
P =1eP) ; (VL Ye==el = (eF). )
These can be summarized in the form

n(w) fonnne eL"x_

68*
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“A continued mutual power with equal efficients is called yradation”.
The inverse operatlion is called “descension”

“The n descension of o number is the number which put to the
n'* gradation furnishes the original number”.

The descension will be indicated by an inverse rootsign; a
distinction of power aud root descension is superfluous. The forms

" n
nl Vo
n o r
MP— P ; ¢ P = e—= _1(1"¢)
n n

can lherefore be wrilten as

n
ANa=¢ .

n
When iniroducing negative and broken indices of gradations
everything can be summarized in #(2).
. The gradation has the precedency of the involution, the evolution
of the descension.

§ 3. For a first consideration it is desirable to allow only positive
base nnmbels By means of the operation, however, comple\ powers
may appear. Thus {he number

1

A= -
2 €
will prove to act here the partof ¥'—1 in common mathematics.

The elementary operalion is multiplication; when comparing two
(uaniities we must therefore pay attention to their ratio. For the
cons(ruction of figures the axes of coordinates are divided in such
a manner, that the successive abscissae (and ordinates) form a geome-
trical series. The lines drawn through the dividing points parallel
io the axes form a nei of coordinates which shall be called “field
of rativ” (in contrast to {he wellknown “field of difference”).

For constructions it is advisable to lake as base a number differing
but little from unity.

Just as the difference of iwo mnumbers is “bivalent this proves
likewise the case with their ratio. Referring to what HoteL?) says
about operation-modulae we shall assign the same absolute value
(in a rational sense) io

a 7
—and -J—,
y &

(Numbers smaller than unity bave for the field of raiio the same

1y Cours de caleul infinitésimal 1; § 1V etc.
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meaning as negative numbers for the field of difference). The ful-
lowing can serve as a confirmation of the assumed:

1><~-—-1 iand (7'):_(2)
y @ ]

§ 4. Ouat of the definition of mutual power follows that only one
" indirect operation can be deduced from this, viz.:
Ly Lax
e=1"z ; y=1"z.
If we use the word “mutnal root” there is slill ambiguity. The
absolute value of the two mutual roots (represented as follows):
]‘/ Lax
sly—=V"z; yle=1"y
must, however, be regarded as an equal one for the field succeeding
the field of ratio. We might call the former the root of z to y.
It is useful o give forms as

Lz
ele =1"e=—Na)
the name of ‘“reciprocal power”.

For gradations and descensions we might mention a series of
properties corresponding entirely to those for powers and roots. The
further development of rational algebra is analogous to ordinary
algebra. So we can speak here of a gradation binomium, of remark-
able roots, continuous roots, ete. In the oeomemcal part of course
the Jogarithmic proportion

- alb=cld
comes to the foreground. And for different base numbers the form
afie: 0Ly ="4Lwu:0lw
is of importance. Likewise is of importance for geometry: “the
middle descent of two nwmbers”. This is the number whose 2nd gra-
dation is equal to the mutual power of the two numbers.

As was to be expected this is independent of ihe chosen base
number. So if insiead of ¢ we lake the base number « ihen, if we
introdace this as index,

g[(u,v)azgl(u, Ve

This property corresponds thus to the properly that the geomeirical
mean is independent of the chosen unity. Further on holds

Vu_v>/)l (e, v).

§ 5. The question arises whether in ihe equalion
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y=")=2", :
when y and p have an assumed value, there is always a value to -
be found for m. To show the possibilily of this we have but to
follow the reasoning of the algebra handbooks for the existence of
logarithms. The immensurability of this number is, however, in
general of a different order from that of the logarithms.

If n is called the second logarithm of ¢ then this number is not -
definife until a definite value is indicated for p. The simplest agsump-
tion is p=-¢. There the e power of ¢ shall be taken as “dase
power.” .

If now immensurable numbers are allowed as index of gradation
the result is regarded as limit fo which a deseension (changing in a
definite manner) of a gradation lends, and as definition of the 2nd
logarithm follows:

“The 2@ logarithm of a number is the number indicating to which
gradation the hase power must be brought to furnish the given number.”
The four principal properties are:

LL(u,v)=LLu -+ LLv; LL"(4)=n.LLu;

1
LL(ulvy=LLy— LLr; LLAu=—.LLu.
n n
By the infroduction of the notion “mutual gradation” of two
numbers (he difference between the two indirect operations which

are deduced out of a gradation disappears. If we put

il R
r=et ; yome ,

then @ and y can Dbe interchanged in the following equation (their
mutual gradation)
2=[2;y] = Lla(y) = LLy() =y ; &].

This form is equivalent to
LLz=LLx.LLy

The mmuiual gradation as starting point leads to the investigation
of the “rootfield”. For this the evolution is the elemenlary operation.
The operation of the fifth rank following out of ihis shares the fun-
damental properties of the operations of lower rank.

Just as operations of an arbitrary higher rank may be introduced
and may give rise to the investigation of definite groups of curves,
operations of a rank lower than the first may also be iniroduced
geometrical considerations .may also be connected with these.

§ 6. The equation of the curves of the first gradation is found
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by elimination of » out of the following two
=g and y=—y,b".
For the construction of the points we must make use of different
base numbers for abscissa and ovdinate, unless the logarithms of {he
hase numbers (¢ and §) used have a mensnrable ratio.

Y Y,

s T € D
y

N
* G

B,f. P8, 8, v p

©
b

g, 1.

The lines of fig. 1 are drawn on this supposition ; the above mentioned
ratio is 3 for AB; § for MD; & for ME; 2:3 for /G and — 3
for H1. In the field of ratio the lines whose equation is:

FA P

Yo ¥y
are the simplest; they shall be called “rationals”’. They have the
form of parabolae or hyperbolae according io their “director exponent”
A= Lb: La, being positive or negative. So

a
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Lb
m=1Y,&, —‘.Z—a -
represents the part cut off the line # =1, counted to M (1,1). The
lines a=1 and y=1 must be regarded as axes. They divide the
positive field of ralio into four quadrants which are unequal, but
which must be considered as equal in a ralional sense (as will be
evident later on); 2 =10 and y = O correspond to — oo in the field
of difference. Lines with cqual director exponent ave “rational equidi-
stant”. A pencil of straight lines through O (vationals for which 2 = 1)
miersects two ecuidistant rationals in corresponding points. If the
points of inlersection of a sclfsame rational ave joined, then the cor-
responding fignres are similar. So we might say that cquidisiant
rationals are pacallel in the smallest parts.

For #,=1, y, =1 the lines shall be called ceniral rationals; they
correspond 1o the right lines in the field of ratio drawn through the
origin of coordinates. Rationals with mensurable director exponent
find a continuation in one of the three other fields of ratio.

§ 7. The director exponeni of the rationals has a simple geome-
trical meaning. Out of the equation

y=ma or Ly=2XLa- Lm
we find for it
dLy 1 dy
A== = — .=,
. dLv y dw
that is “the ratio of abscissa to subtangent.” For points of equidistant
rationals with equal abscissa the iangents pass through one and the
same point of OX (fig. 2); for given value of ordinates they inter-
sect each other in one point of OF. Furthermore all rationals divide
the rectangles of coordinales proportionally, so that the director exponent
can be regarded as ratio of two integrals. Calling the parts J, and
J, in which the line divides a rvectangle (/) we find

Y e
}.—-_:f mdy:j yde= Jy: J,.
0 0

As mnow the differences of the i{erms of a geometric series form
again a geomeinc series thal ratio also holds for area differcnces
and -differentials:

y

__AJ,  dJy
A Ay
For 2>0 the sirips lie oulside each other; for 7 <0 overlapping

takes place (fig. 2). Here

’=1tg AOB

— g -



( 1033 )

represents the director exponent of the 3 equidistant rationals OPF,,
OP,, and OP,.

v
Ay.(
&y uJ_IJlLﬂH% Ag/ P
% P@’
T
3
X
S :‘ 0 \ B dx Ax
. \
\‘ \
X \
\
* \ §
\ .
\
Al " yB -
\
\
Irig, 2.
As we can also write
Ya| %
22 2=,
Yoi&

a rational is a line for which the mutual root of the ratio of
coordinates of two points is constant.

§ 8. In the field of proportion coordinates and areas arve gqnantities
of the same exponential order. The area of the rectangle of coordinates
determined by the point:

‘ Pan b7y s J, = (ab)".

The rational laid ihrough ihis point and through 22, contains
likewise F,t,. The area of the rectangle of coordinates determined
by this point is:

Jm—i—n = (ab)’"“}‘" = Jm X Jn,
so it is deduced out of a multiplication. Furthermore the coordinates
can be regarded as areas namely of rectangles having the coordinates
as base, the distance between OX, and OX (resp. OY, and OY)
as height. "A point is not. yet determined by the area of a rectangle of
coordinates only (equilateral hyperbola), an element for the direction
must also be known. To a sum in the field of difference always
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corresponds a product here; likewise with the geometrical sum:

7 -+ iy the geometrical product: ay* =.J.
This determines the situation of the point entively.
To the geometric sum: _
7:: + n=a L""'a) + 2(?/1. +}/2)
corresponds here the geometric product:

j; >< J—z — (‘7’,1"""2) N (.7/1.1/2)7 ‘
In fig. 3 this product has been constructed in two ways. The

Y Y,

1

N 4 i

o

L Xy IX, X, «X

fig. 8.
points MP, P, P, form a rational parallelogram whose rational through
M and P, determines the diagonal. The rational distance between
M and P, must therefore be regarded as product of the distances
between A and P, and M and P,. So

myi and wy'i .

are conjugate valuss whose product and mutual power ave teal; viz.
a* and *(=). *(y).

When treating the analysis we shall define the “rational angle”;

for a preliminary trapsition to polar coordinates we can put:

. wyi == qeospising

out of which follows for ralional distance (radius) and rat. tangent:

7-:/21’ @) . Hy) 5 yle==ele,

-10 -
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The first relation is {he equalion of the rafional (or logarithmic)
circle; the second equation represents tlte rational of the centre with
. director exponent #g . If we introduce for the rat. tangent &y rate?
and for the exponential quantity the letter u (meaning follows) we
can then write (exchanging iy rat by #r):

yloe =tru.

According to definition the logarithmic circle is now the locus of
the points possessing equal rational distance to a definite poini (here
M) ; this point is called centre. This has given an extension to the
notion of ratio; this more general notion we shall call “skew ratio”.
It is measured along ihe rational through P and J; the measure is
the already mentioned radius » which is called the “modulus”, whilst
to u the name of “argument” may be given.

§ 9. The properties of the rational goniomeiric functions are
founded on the consideration of the logarithmic circle with radius e
(represented in fig. 4). In the geometry of differences we arrive,
gradually moving along a circle, from the value 41 to —1 and
back; the absolute value of the difference does not change then.
Here the logarithmic circle leads gradually from the value ¢ to e,
where the absolute value of the ‘“ratio” remains constant. Let us yet
mention as particularity that in A/ the differential coefficient of the
rationals is equal to the director exponent.

If we now allow the rational radius to revolve around M, then
this coincides in 4 positions (P,, P;, P,, and P,) with the axes;

Y] Y,

-11 -
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here the rational direction is identical to the direction of the line.
Following” Grassmany’s notation for the field of ratio we might write :
PyoM=M:P, and P,:M=M:P,.
To arvive now from the value

e:e'—])":o —1- )
e
1
e"l—_—e(—l)‘: (—}),

we must allow the mdex of gradation to vary continuously from
0 lo L. If by this change the index has reached the value 4 (vesp. — 41,
then the direction as well as the rational direction seen oui of M
is halved. Considered in this way the points P, and P, are therefore

determined by

at the value:

e and e ".

In all intermediate positions the exponent is complex. For all
points of a logarithmic circle the modulus is constant with variable
argnment. Here we have the widest definition of the notion “ratio”.

For two diametral points is
9

L i+1
/1 & 1
(—) 11=1: (——) )
e e
Also to the areas of the rectangle of coordinates (or the partial
one separated by the rational) is applicable:
ay:l=1:a"1y—L
It the radius of the log. circle is one, then by
H2) "(=1
is represented the point A/, so that for all values of ¢ holds:

1 ]-e

pr—=1-D" =1,
The dirccted area represenied by P,q,01 is therefore
J,=eX 1 )
the one belonging lo P, is ‘
T =e X1

- § 10. Although the curves of the field of ratio ought to be compared
{o the raiionals, a good idea can be formed of their course by the
comparison to straight lines. When tiracing the inflectional points we
must frequently strike into a particular path. As example the log.

-12 -
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circle will be investigaied in ils simplest position. Out of the equation :
(@) () ="()

follows by differentiation

z
, Lve , Yy -
y=—— ’ :W{LLLy Lawy— (L)%,
Lvy ‘

As y cannot become zero, @ and Ly not w, the inflectional point
condition is :
Lo Ly Loy =L,
1 we now troduce the area of the rectangle of coordinates, then
ay =,
furnishes, connccted with the identity, where for convenience, sake
we write L for (La)?, the condition :
’ L — L LJ — 20% = 0.
There are six inflectional points when
> V3,
is satisfied.
The value of #, for which {wo more inflectional points exist, is
deduced from the necessary condition for real values
L (wy) 2> 4La . Ly.
In connection with {he inflectional point condition this becomes:
4
fz_af_l.lLTyzéle'Ly’

from which ensues
8 /17 .
Lo . Iy 5~I/IL"” and Lay > v EL%.

For decreasing value of » the two inflectional poinis therefore
coincide into a stationary point, if

S i
Lir = L'wy — 2La Ly =V 3L ; '
so that the radius of the log. eircle is then:
r = V3,

§ L1. For the study of the general equation of the 2 gradation
comprising all logarithmic conics we should first have to treat the
rational displacement and rational revolution round the axis. As this
would lead us too far, I restrict myself to the logarithmic parabola
and log. equilateral hyperbola. -

The rational translation offers no great difficulties in this way ;
the logarithmic circle given by '

-13 -
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€)=

will pass by means of the translation of the axesfroma=a,y=10
into the above mentioned form The figure changes then according
1o the assumed notions, but as figure of the field of ratio it remains
congruent lo itself. The congruence in the field of ratio is equal to
the similarity in the fleld of difference, when the translation takes
place along straight lines through O; in general it takes place along”
arbitrary rationals, so that the notion of similarity must be extended,
where the skew ratios come into consideration.

Whilst now in general the points of the logarithmic curves are
constructed by means of a logarithmic line, they can be found in
simple position by means of rectilinear constructions.

§ 12. 1If we draw in the field of ratio a series of lines whose
equation is:
&y == ®,0",
and then, with the aid of a pencil of rays through () the points
Py,Pi, Py, Po,P_3,P3,P—3... and likewise P,Q1,Q-1,Q50—2....
on the above mentioned lines, we then find ordinates given by means of:
Yn=Yy,0"
By elimination of n out of these equations (regarding =z, and y, as
variable coordinates) we find the equation:

b .
N A
2‘5
?-ﬂ.
?’/
/
yd T
&
S -
/ AV @,
// e e
o] m-~'5
/ = s Q,
v x
A_“A_3 A_mhq A, Al A, A3
Fig. 5.

-14 -
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1___(_)
yo '?"o

The points /[ form part of the logarithmic parabola: the points
@ of the anti-parabola, having as parameter the reciprocal value of «.
For @,==y, =1 we find the abscissa of the point of inflection out of

Io—1 1:1:[/1 i
J;’b—.z a.( —E).

From this we can see ihat the anti-parabola has always iwo in-
fleclional points; for the rest the condition for the existence of the
inflectional points is for the former r>>e¢®. As locus of the in-
flectional points we find y* =wa:¢. At the interpolation the centre
O displaces itself along the X-axis.

§ 138. Likewise the points of the logarithmic equilateral hyperbola
T %

A -

A

i

Fig. 6

-15-
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and of the conjugate hyperbola can be immediately constructed, when
0X, and OY, are the asymptotes; the equation is then
@y =*a)f! or Le. Ly ==* L*ar

In this form it belongs to the curves of gradation; those are the
simplest lines in the rootfield. In case the exponent be 2, the net of
coordinates of the rootfield can be found by means of compasses and
ruler. (The construction is not mentioned here). By OX, and OY-
the positive field of ratio is divided into four rootfields; in these lie =
the branches of the logavithmic hyperbola and the conjugate one. In
fig. 8 the above mentioned line is drawn, likewise the one with the
base number a2 (resp. a—%). For the points A and B holds:

04,—=a? ; OB,—a2"

The log. hyperbola is satisfied by: z=at?", y:ai I

. . . + o Foh
The conjugate one is satisfied by : s —=a~~ ; y=—a™ * .

Inflectional points appear in all root quadrants except the first. In
the points X the line passes continually info the conjugate one. The
locus of the inflectional points is zy =e¢—2. Out of the fact that inflec-
tional points are present follows already, that the curves tounch the
2~ and y-axis in Z; this is also to be seen algebraically in around-
about way. So

y'= — (Ly¥: La®)
seems 1o be indefinile in Z. By the substitution :

x=p* , y=vp,
in which p is a constant, the differential quotient becomes :

1 -~
y=—ps 2 1
For z = — 0 that form is not any more decisive bul {aking
1
Y—=——2z
z -

we find for u= —w ) -
limy' =lim{p*: (v’ + 1 —Lul"(u*+4))]=0.

§ 14. The invesligation of the log. ellipse is again simplified by
connecting p with two log. circles, whose radii are equal to the half
axes. The simplest position is indicated by

“@la).*ylb)=¢ or (La) +(Ly)=1.

The points of the line are points of inlerseclion of the above
‘mentioned circles with central rationals; the consiruction is based on
the substitution :

-16 -
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Excrtmany: “das Haar kriimmt sich wiihrend der Vorwirtshewe-
gung stark concav, etwa wie ein Finger by starker Beugung”.
Sometimes, however, I succeeded, after long seeking, in finding
in a preparation a cilium standing alone, which was mostly much
longer than the other cilia. Such a cilium made then sometimes
very regular whip-like movements. The entire period of such a

S

Fig. L.

movement is represented in Fig. 1. The length of the whole period
is 7/,s sec., the characteristic difference between forward and back-
ward movement is already visible. This was still more manifest in
another film, made of another preparation. It shows the nature of
the movement very distinctly. The number of pictures taken, amounted
to 28 per sec.; the magnified pictures had been obtained with
apochromatic objective 8 m.m. and projection-eye-piece No. 2, the film
being about */, metres away from the eye-piece. The movements
of the cilinm had been made much siower by the refrigeration, and
the periods took somewhat less than one second. By projecting a
series of photos of this filim at one place on paper, the drawings
in Fig. II, 111, IV, and V were obtained.

Let us now view Fig. Il and 1V. Although not alike they are
of exactly the same type. The outstretched cilium, a small part of
the basal part of which is visible, begins to bend, traversing whilst
it is stretched out a circle segment, the basal part being approxi-

-17 -
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Naming the new coordinates (§, %) we find : .
§—__—‘Q;cos'?.ycin? ion==yese e asiny -
whilst for the rational distance to M holds:
@ ="(8).° () ="(x) - *(z)
We must continually keep in view -that rational distances are
ratios; in the lack of a denominator we must assume 1 for it. If
" CP is an arbitrary rational through P, then —- just as for rectilinear
axes — {he ratio of the parts inlo which OB,PA,. is divided by-
this, is constant.

1
Let us call A the director exponent of MZE, thus -5 of MH
then PB, and P4, are given by :

1

y=pa’ , y:thT
Tet furthermore that exponent be g for PC, then
Te=ay @—20:(LHw) (L) 5 Jr=ay (LA (1) (1),
holds, when we put: OB, PCO=.J, and OCPA,. O =J;
If A and p are moveover replaced by ity and tgw, then follows
from this:

1
o Je=1tg(Pp—p) .4 (—4—”——(/))

which relation passes inio the known one for ¢ = 0.

Finally we mention still that the connection between old coordi-
nafes and new ones can be given by one formula:
’ 2 24l

; = 2
xyt =§ DT 7 b .
Wiih respect to the new axes the rational equation takes the form :
n=n§1-% (out of y—=ma”)
in which we put for n:

H

mrosd | gros(b—y),

Chemistry. — <“Some¢ compounds of nitrates and sulphaies”. By
Prof ¥. A. H. Scorunzmakers and A. Massink.

(Communicaled in the meeling of February 24, 1912).

As has been known for a long time, several hydraled double salis
can be obtained from solutions containing NaNO, and Na,SO,. It,
therefore, was deemed important to investigate how the nitrates and
sulphates of other metals, in the firsi place those of thealkali group
would behave in this vespect. The behaviour of NH,NO, and (NH,),SO,

-18 -



