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Physics. — “On the walue of some differential quotients in the
critical pownt, in comnection with the coexisting phases in the

. neighbourhood of that point and with the form of the e\gua,t/'on
of state.”’ By J. J. van Laar. (Communicated by Prof. H. A.
LoreNTz).

1. In some previous papers we showed that the densities «/, and
d, resp. of the liquid and vapour phase in the immediate neighbour-
hood of the critical point are represented by the expressions?):

d=1+aVi-m+B(L—m)+y@~—mfe+t+d@—m?-4.. .
d,=1—aVI—m+80 —m)—y(—myh + (1 —m)* —.. )
so that for values of m = 7": T} near 1 the quantities d, — 1 and
1 —d, are of the order of magnitude ¥ 1—m, and not of the order
P1—m (vay pEr WaaLs, These Proc. XIII, p. 116 and 1259) or of
BT m (Gorpaammir, Z. f. phys. Chem. 71, 577 (1910)).

In his “Thermodynamische Theorie der Capillariteit” (1893) vaN DER
Waars also gives the correcl expressions (see p. 44), and finds the
value 2 for a with the ideal equation of state, and the value 3,5
for real (normal) substances — quite in accordance with what we
* found for them (loc.cit., cf. These.Proe. X1V, p- 437) where the value
3,6 is given). For Fluorbenzene « may even be pui 3,9 (see further).
Also Marmras (Ann. de Toulouse V) gave as empirical formulae the
theoretically correct ones.

For substances for which the ideal equation of state would hold,
we find loc. cit.

2 13 128 1859

—3 vY=——; —=—; £ == ——,

5 25 875 17500

The coefficient « indicates the divergence of the phases in the critical
point ; the coefficient 3 is nothing butl the coefficient of divection of
the so-called straight diameter '/, (d, - d,) = f(in) in thal same point.

When we pass from the 1deal equalion of stale lo the real one,
B increases from 04 to aboul 0,9, whereas « increases from 2 {o
about 3,9, '

a=2; f=

2. We shall now demonstrate thal the expressions (1) will hold for
any form of the possible equation of state, and that ; —1 and 1~-d,

would only be of the ovder »“1—m, when in the critical point not

1) See among others These Proe. X1V, p. 438 ¢l seq., 568 el seq. and 574,
' 7%
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d d A d -
only L and ——2 are equal fo 0, bul also “L and 2L, And as the
© do dv® dv® dv*

Infler is evidently an impossibility (for then there would be relations
between the coefficienis of the equalion of state), d, — 1 can never
be of the order of magnitude ¥ T—m either. Other exponents, like
VT —m, are of course quite excluded.
For if we putl quite generally

p=fv, 1)
we have, when ¢ n, and m represent resp. “reduced” pressure,
volume and temperature, in the neighbourhood of the critical point :

1
=1+ {}'v (n-1) + ¢, (m—l)] + [5 o (n-1) 4 &'y 1 (n-1) (m-1) 4

4+ —;—s”,z (m—l)ﬁ:l + [% & (n—1)7 -+ etc.} + ete.

O¢ 08
In this ¢, represents (a—); &, represents (T)’ g, represents
?

kr m/
0% )
— |; etc.
on? /e

The determination of the coefficient « will require no other diffe-
rential quotients than the above mentioned ones. In this ¢, and &' are

-

both = 0 at the critical point, so thal by e(iuation of the values

of ¢ in the two coexisting phases

1
=) | = 1) — 1~ D+ 5% (- Yty 4 =0

remains, because also the terms with only m—1 and (m—1)* vanish
in consequence of ihe equality of the temperature.
If we now put:
ny=14ear+p* 4+ ..; n,=1l—ar+ f* ...,
in which = represents a power of 1—m as yet unknown, we get
n, —l=ar+87...=6,; n,—1=—(av—pF2* .)=—46,,

and hence:

1
. f”v,l (')n—_]‘) (€9+01) + g' 5”,1,3(633_*‘931) + e 0,

or
&y(l—m) = —&"s &t
’ *T6 V0,40,
Now evidenily (the higher powers we shall want presently):
6,4 6, =2ar..; 6, — 6 =4afv*..; 6, + 0P, =27 ..
&, —0', =6a*ft'..; ', — 0, =8a’B""..; O°, 4 0°, =2a%7°..
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so that
o+ ?l = a*t®

6,49,
Hence we get:

1
&t (1——9n)::-6— R [ S O ()

so that il now appears with the utmost clearness that =* must be
of the order 1—m, and so v of the order V" I—m.

BEven if n, were =1 4+ ar.., n,= l—d'r.., in which «' is not =e
(which, however, is impossible: see also These Proe: XIV, p .439and
£40), even then v would appear to be of the order ¥ I—m according to
the above. FOL then 4, + 6, would be = (@ ) .., &, 0°, =

6" + 0‘] [ ['7 o

= (e*+ «®)7".., and hence ———— = (¢’ —ad + ¢*)7*, s0 that
8, + 8, .

the conclusion would remain the same.
0%

Only when also &, i. e. (57) were = 0 — but then "', would

)k

also have to be = 0 on account of the form of the critical isotherm

(which of course runs from p=ow to p=10) — only then we

should have:

o
s 1) 0,40 + 5| 36" 1) 0%, —0%) + . |+

1
+5 [45""m(m_1) 6, 1-6%) 4. ] + 15 € (0%, 46%) 4 ehe. =0

Bat from this would follow:
1
(m—1) ':s"v,t . 2at. ] +..+ meV,;a @a’r? . ) F .. =

and so 1—m would be of the order z*, i.e. v of the order P'1—m.
So for this the (impossible) supposition &, and &", =0 would be
required ).

3. Let us proceed after these considerations to the expressions for
the coefficiénts ¢ and g
As now henceforth v* can be replaced by 1-—m, (¢) passes inlo

"o mo o q
& v,t—‘G—G B,

after equation of the coefficients of the different powers of 1—m,

1
4 If only « 3~O we should have got ‘)4 »4 " (e L —¢4) Instead of‘120 o (225 76..),

hence as ¢!y~ ¢, = 84'8'/5, 1—m is again of the order =%
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from whiech follows:

. S
W= . . . ... (1)

being the quife general formula for the coefficieni ¢, whatever may
be the form of the equation of stale & = f(m,n) ).
What follows may serve as a control. The ideal equalion of state

RT a 8m 3
¥ :v—b T o e= 8n—1 n*
gives for the different differentialquotients:
0s 24m 6 ] 0% 144m 181 0%  OX1ld4m 72
e el e o N M | T
d'e 9 X 12X 144m 360 0% 24 % - 144
o (8n—1)* T R mom (372—1)"3n"6m = (Br—1)*"
So this becomes for 7% :
y=—04+6=0]¢"p2=18 —18=0|¢"s4=—8l4F72= -9
¢y =486 — 860 =126 | &'yt = — 6 | "y =18.
Thus we find for «* according to (1):
., 6X—6
@ = —— 5 =4,

lience ¢ =2, as 1t should be.

If in («) we also take the terms with =* into account, we gel an
eqnation between the coefficients «, #’, and y’. So we cannot deter-
mine # from this. For this we shall have to find the relation of
coexistence between the {wo phases. This is found from (s, denotes
the pressure of coexistence)

ng—1
g = — g.d(n—1).

n,—n
3 1
n—1

With
e=1- &y(m—1) + [e”u,t (n—1)(m—1) + % g'p (m-—l){l +

1 1
+ [E &y (n—1)* + —2—5'",,% (n —1)* (m—1) 4 %—s”',,,ta (n—1) (n—1)* 4 }(a)

1 " 3 1 " 4
+6‘8 [B(m_l)j,—f—-zzf v4(’n-—'1) + ..
this becomes:

) CGf v. o. Waats, Capillariteit, p. 44.
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! 1 02 2
sc_1+st(m-1)+[2 5 +0 (m—-1)+ &' (m-—l)]
1 A _04 1 m 639+031 1 " 62 —6
+[u wore 5 g g Yt e g g )

1 1" 3 ! it 652-}_915
—\—Eﬁ 12 (m—l) ]—‘-m& u-!m—f— o

as (n,—1) —m,—1)=46,+6,, n,—1)—n,—1)=6°,—86*, ete.
(see above).

If in («) we subslitute successively n, and n, for 7, and then take
half the sum, we get:

6,—8, 1
e=1+4¢(m—1) +‘[£”v,t : 5 —(m—1) 4 ;s”ts (m —1)2] + \
1 0‘ 1 0 6. (
i [g " e 2 ) 4 + @)
524 6.
vrva(m 1)3 P‘I + uu .:_1_ _}_ ..
Equation of (5) and (a) now yields with 1 — m == — (m—1) ==

g, [LE=6" 6,~67) 1, 16,8 6:~6;
TFel 5. 18, ) 6" |16, 16, 2 |

1 14, 19’ 0, 16,1—4.:2 -
Evtl'[ + 6 + :l'{‘ Sl'vtﬂ ’[“62 61 “53 61]“‘

T3 38,18, 3 2 6.46, 2
1 1 16 +0 ? '-‘4"}_614 _—
'+ﬂ8”[59+a T ]*”'“&

With the values of 8, 4,. 6°, — 6%, elc. given above in §2 _

this becomes (the coefficienis of &'y and &"yp are evidently = 0):

]ul o S .4 L~ 11“ 212 2
GEw vt —38afirt. . —g et g v—a’vi. | 4

1 1
- + 5718”"”‘ [g @t Ti—at 74] =0,

because evidently (8%, + 44)):2=ea't". In this way we only get
the terms with =%, and find: )
1

1

o3l m 2 o4

— —&"p0?f A = &y — — &Mt =0,
3 B 3 ’ 30

hence finally :
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[—"i—OaE”"vt .
g = O Y )]

in which e is given by (1). -

So the expxesswn derived by vax per Waars (Caplllml eit, p. 44),
viz, p'=¢&"s;: ", is inaccurate on account of the neglect of the
ferm with ¢"".. Besides, the confrol by means of the ideal equation
of slate confirms this. As we put ng__i-{—ar—[-ﬁr L ody =
=1—ar | g*.., evidently

p=c —g,

because d, =1 :n,. il

Now by means of the above given values of the differential-
quotients (o’ =4) we find from (2):

2
18 — —. 126
T g T T =35
. 3 2
giving =4 —3 =5 in accordance with what we found before
)

(see §1).
Van prr WaaLs’s expression would have given an eutively erro-
neous value for .

4. The vulue of the characteristic function.
If we put
m ds, .
T
we shall understand by the “characteristic funclion” ¢ the value of:
—1 &

Q= =

fi1'd,d,’

of which we know that it is equal to 1, when the quantities ¢ and b
of the equation of state do not depend on the temperature 7 (or
a only linearly on 7'). Bul in any other ease ¢ will no longer be
=1, but it will be represented in the neighbourhood of the critical
point by
. p =1+ A(1—m),
in which we shall determine the coelticient 2.

In omr previous paper (These Proc. XIV, p. 777) we have viz.
already shown, that when the said suppositions are fulfilled, fonnula
(8) given there lolds, viz. :

e T e
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T zlpL —1 a
p dT Py, T
i e
fe m de, _q a clld,’
& dm prYE €

when &, denoles the plessme of coexistence, through which we

“dg. ]
distinguish T from (—Ln) . So we have also:
n

dm de
a ;
‘lc =1 y
/ PaYE
hence )
/=1 dd,
Ji—1 g

in other words ¢ =1.

If, however, @ and b are also functions of the temperature, we
Liave generally according to (6) of § 3, taking the values of ¢,4-6,
ele. into account, and disregarding all the powers of m—1 highex
than the second: . : .-

1
o1+ ¢hm—1) + [ op. 28 0m—1) + (m——l)ﬂ] +

1 1
+ [94 a4 + —-& e - i (m—1). :[ 4. F(—}s""v4 .ottt

or as v° = 1—m = —(m—1):

1
gg=14¢;(m--1) + [——- g1 8 (m—1) & 3 &g (m— )’] 4

’

1 1 1
4 B—s”’bm? g (m- 1) ———és”’bu,l a®(m-1y :‘ + ms’”’“ a' (m—l)ﬂ.

From this follows:

I,
;j—"‘sz + [25"u,t pr(l—m) — &'p (l—-m)jl 4
m
S ~l—s se? 3 (1— m)-{-le"’s «*(l—m) | — i&”"1«‘(1—1n)
L 3 [ 21 60 L '
1. e.
de 1 1 1
a;;::s,l _._(1—77’L) [E 12—28-1,“. -t -3"8 aanﬁ—-gb .,sta -{—%8 4].

. 1 . .
In this — 28", 8 + 3 ¢’ =0 according to the formula (1) tor

¢ derived above, so thal we keep: .
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Further according to formula (2) we have:

1
_ at gy == s B == PL

20 2 2
50 that we gei:

de 1
C—Z;r—: =& — (I—m) [Sut‘-‘ % a’ (5,”03 g'+ ¢ /uﬂ,t):la

or as o' &, = 6 &",; according to (1), also

d 1
o __ gi—(l~m)| e'p—pe'ys — - a® &y | =&i—o(l—m), . (3)
dm 6 :

0
in which ¢, = (5;') . [With the ideal equation of state, where

kro 1

(see above) &'p = 0, &"»t = — 0, &"», = 18, o becomes =
‘ 18 1 108 3
=0 - —(—6) — —-.4 18— —12=9_1.
b (=9) 6 5 5
m de, dee ,
So for fi = (—f—%)k: (%);;T £ we find properly:
fr=¢&=¢,
o 8 . . .
The value of this is = = 4 for the ideal equation of
b —

state, and becomes — 7 for all ordinary norwal substances.
As m = 1— (1-—m) and e=1—¢' (1-—m), we now get for ¢:

Lel=m) [ o0 .

1—¢; (1—m) Fem @ ™| N 1 —¢; (l—m)
= { 1
p g —1 1—(@—2p) (I—m)

seeingthatd, d, =1+ et L—m 4+ g —m)1[1 ~aV T —m+
+ fl—m)] =1 — (®—2) (1 — m).

After some reduction this becownes:

g —w(dl—m)~1 1
) — ——
4 gy — 1 T —( —28) (1—m)’
or
w
1 — —(1—
S,i _1 (1 m)

=14+ 21(1-m). . 4)

(/):
L— (¢ — 28 (1—m)
As now 2 =0 with the ideal equation of state, i.e. with that in
which a4 and & are no functions of 7 (or a only depends linearly
on 7)), in this limiting case must hold :
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=’ — 28. .
Elt-—l “ ﬁ
. . d’s, ] s .
But as o is evidently = (d .| = f'» we may also write for this:
m” Jkr
f i = — 26 3
Je—1 -

which relation was derived in my preceding communication (These
Proe. XIV, p. 779). But in all other cases 2 is not equal to O,
and we have :

fllc
= —28)— <. . . . . . . (6
2= (a" — 28) i (®)
From (4) we see also thal ¢ cannot be =1 -+ V1 —m — Y,

(1 —m), i.e. of the order V"1 — m near 7}, bul must be of the order
1-—m. I pointed this already out in my preceding communication
(loc. cit. p. 778, footnole). So though the empirical formula for ¢
drawn up by v. v. Waars very well renders the values following
from. Youne’s fables — theoretically it cannot be upheld.

5. After the above derivations we may proceed to determine the
values of some differential quotients for a normal substance as e.g.
Fluorbenzene. From Youne’s tables (Dublin Soc. June 1910), the
following values of m, &, d;, d,, Y/, (d, + d.), /. (d, —d,) and ¢
have been calculaled. (See p. 1100).

For 7} has been found 286°55; for p, Youxe gives 33912 mm.
of mevcury; for di the value 0,3541 has been assumed. The values
of [ are those which can be calculated from the vapour pressure
formula

1—m

—loge, =1

& de
The values of f :—d—c have been calculated as follows. From
m am

the above formula follows:

ldee- F  1—mdF
sdm  m m dm'
so that we gei:
mde. I dF
=0 = —m)
sdm m I

A minimom (F = 6,567) is observed in the values of F at m=0,77.
If we had continued the table up to m =0,45, I would already
have increased again o 7,11. The value of ¢ ai first rapidly in-

-10 -
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e ————

m ¢ 9 b |e@+d) @ —d) F |f=Z7 | ¢

0.6309 | 0.01902] 2.682 | 0.008144 1.345 1.337 (6.773 | 10.80 1.41
0.6488 | 0.02604] 2.645 | 0.01086 1.328 1.317 16.740 | 10.44 1.41
0.6667 | 0.03471( 2.607 | 0 01422 1.311 1.296 |6.723 | 10.11 1.41
0.6845 | 0.04547] 2.569 | 0.01844 1.294 1.275 16.706 9.822 | 1.40
0.7024 | 0.05865/ 2.529 | 0.02357 1.276 1.253 |6.694 9.547 | 1.39
0.7203 | 0.07460] 2.488 | 0.02974 1.259 1,229 16.685 9.293 | 1.38
0.7381 | 0.09354; 2.447 | 0.03716 1.242 1.205 16.678 9.053 | 1.37
0.7560 | 0.1159 | 2.406 | 0.04600 1.226 1.180 |6.678 8.837 [ 1.35
0.77139 | 0.1424 | 2.362 | 0.05625 1.209 1.153 (6.672*] 8.617 | 1.35
0.7917 | 0.1722 | 2.317 | 0.06814 1.193 1.124 [6.685 8.425 | 1.34
0.8096 | 0.2066 | 2.270 | 0.08221 1.176 1.094 6,705 8.270 | 1.33
0.8275 | 0.2470 | 2.21Y | 0.09873 1.159 1.060 6.708 8.095 | 1.32
0.8453 | 0.2919 | 2 166 | 0.1182 1.142 1.024 (6.728 7.937 | 1.30
0.8632 | 0.3426 | 2.112 | 0.1403 1.126 0.986 [6.759 7.804 | 1.30
0.8811 | 0.3996 | 2.052 | 0.1668 1.109 0.943 |6.797 7.690 | 1.29
0.8089 | 0.4637 | 1.987 | 0.1987 1.093 0.894 16.833 1.579 | 1.28
0.9168 | 0.5355 | 1.917 | 0.2373 1.077 0.840 6.882 7.487 | 1.26

0.9347 | 0.6165 | 1.837 | 0.2847 1.061 0.776  16.921 7.388 |1.24 .

0.9525 | 0.7065 | 1.740 | 0.3463 1.043 0.697 16.972 7.3056 | 1.22
0.9704 | 0.8069 | 1.621 | 0.4335 1.027 0.594 (7.036 7.250 | 1.18
0.9883 | 0.9205 | 1.450 | 0.5744 1.012 0.438 [6.984 7.071 | 1.11
1.0000 | 1.0000 { 1.000 | 1.0000 1.000 0.000 il 1.00

creases from m =1, bui then more slowly, and it seems io approach
asymptotically to about 1,5. Its course is very well represented by
vaN DER WaALS's formula, bui as we already stated, near 1), ¢ —1
is nol of the order ¥I—m, but of the order 1 — m. ;

How closely the empirical formula p=1-4V1—m—/, (l—m)
renders the course, may appear from the following iable, p. 1101.

Whereas the agreemeni belween the calculated and the found
values of ¢—1 at m=0,70 and 0,86 is perfect, the discreparncies ai
m=0,97 and 0,99 amount to about 10°,.

From the values of m and ¢ occurring in the lable, we can now

-11 -




m l / Found »
) 0 1 141 —0.50 =1.50 —
0.7024 1 4-0.543 —0.149 = 1.304 1.39
0.8632 140.370 —0.068 = 1.302 1.30
0.9704 1+0.172—0.015 = 1,157 1.18
0.9883 14-0.108—0.006 = 1.102 1.11

easily caleulate, making use of the six values of m from 0,8632 to
0,9525 (the.Jast included):
ge==1— 7,065 (1 — m) + 19.8 (1 — m)® — 24,0 (1 — m)®,
so thal we have:
= =&,="7,065 ]| flr=+¢" (: (C}’_&) :w) = 39,6.
. dm? J 1y

!

Ll. LWith the ideal equation of state this

S
: 95 _ 4y
valie is — i 3, :I
et us now determine {he values of the coefficients ¢ and 8 in
the expansions into series for d, and d,.
With Y/, (d,+d,) =B (U—m) -+ d(l—m)* we calculate from the
table for m = 0,8632 etc. the following values
8=0913 | ¢ =0.055.

And from '/, (d, —~d)) V=a4+1—my{l —m) -+ e(l-—m)? we
can calenlale:

So 6,6 is found for

a=39 | y=-153 | e=48.
Now the value of ' =« — 8 (3’ is the coefficient of 1 — m in
ny=1-4aV1m 4 (1 —m)-..., sec above) becomes:
A =15,2—0,9 = 14,3,
which for the ideal equation of stale =4 — 0,4 = 3,6, so exaclly
the fourth part.
And for « — 23 we find 15,2—1,8="13,4. {With the ideal eqna-
tion of stale 4 —2 X 0,4==3,2 is foand for the value of &* — 28).
Fovr 4 we find now according to (5):
2=13,4 —6,6 =6,8,
so that according o (4) close o 7%:
p=1468(1--m).

-12 -
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So for m =0,9883 ¢ would be =1 - 6,8 X 0,0117 = 1,08, and~
for m=0,9704 ¢ would be =1+ 6,8<0,0296 =1,20 (found 1,11
1,18). So A= 6,8 is possibly still somewhal too low, but it is also
possible — and this 1 think more likelp — that the values of d,
and d,, found experimenfally near the critical point, are not gnite
accurate, in consequence of which ¢ is found too high. So most
likely the value of the product d,d, is too low, on account of the .
density of the liquid phase being measured too small in consequence
of imperfect homogeneily (presence of vaponr bubbles), or becanse
the thickness of the capillary layer, which is of measurable dimensions
al the critical point, has not been taken into account, in which layer
the density is of course smaller than in the homogeneous liquid phase.

In consequence of this the locus '/, (d, + d,) = f(m) deviates
seemingly too much to the liquid side quite near the critical point,
and accordingly the abrupt deflection of this locus close to Tt found
by Youxe, Carposo and others, would disappear, when the density
of the liquid phase conld be measured more accurately.

a.’
6. The value of the differentialquotients &',;, = E) and
. ’ 0n0m /

0% .
g, ={ —=— ) may Dbe calculaled from data of isotherms quite
o0nidm /g

near the critical temperature. Those for C,H,F not being at my
disposal, I could only make use of Dorsman’s data (Thesis for the
Doctorate) for CO,. For 33°1 he finds e.g. p=75,30, 76,10,
77,75 resp. for v = 551, 449 and 343. From this we can calculate

& ‘ . _ :
that dl? for v == 438 (the volume on the isotherm of 33°,1 that agrees
v

with the critical volume) has the value — 0,01245. From this the
438 0

value — X — 0,0124h = —- 0,0747 follows for (—E) (the critical
73 0n/ 33,1

pressure is viz. = 73).

So we have (31°,1 is the critical temperature):

as ag
—] =0 () =—00747 (both for v=1y).
(672)31,1 (671)33,1 (both for v=1wvy)

Hence (the absolute temperature at t= 32°1 is 305,2)
0% 0,0747

= e | = — 305,2 = — 11,4,

& ot (anam)/ﬂ. 2 X ’ ) 11,4

We saw above that the ideal equation of slale gives for this —6.
From the same data the value 0,00007432 can be derived for

-13 -
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—}: at v =438 and 33°1 [The data can viz. be rendeved by the

formula p = 76,10 — 0,01163 (v -- 449) 4+ 4 0,00003716 (v — 449),
. d a2
from which easily 2 and 2L for p =138 can be derived].
dp do*

0* 433)
So for _a__e_ we find ( ,_3) > 0,00007432=0,1953. Hence we have:
n- {

az ae
) =0 (=) =0,1933 (hoth for ©=wp),
on® /31,1 on® /331

and from this follows :

% 0,1953
i — [ 305,2 = 2978-
Rt (anzam)“ 2 X

For the ideal equation of state we find 18 for this.

Now in virlue of considerations which will presently be explained,
we shall raise the valnes — 11,4 and 29,8 {0 — 12 and 36, as
these values cannot differ much from double the values in case the
ideal equation of state is used. It follows also from the nature
of the above indicated calculation, that the found values — 11,4 and
29,8 cannot lay claim (o very greal accuracy.

Now we can also find the values of &, and &y, TFrom (1)
follows viz.:

6e'yr 6 X (—12)
Mon — L= — — 4.7.
& o’ 15.2 x

ST

The ideal equation of stale gives about double the valne, viz.— 9.
We find further from (2):
1
5 @ = e = 86— 14,3 X (— £,7) =103,
hence

&'l =108,2: 1,52 = 67,9,
“for which with the ideal equation of state also about double ihe
value is found, viz. 1286.
J.
o

which © is represented according to (3) by

Finally we can calculate e"le:_—( ) from &' = w=239,6, Iin
lr

W — 8”12—1'3,5”0,1"‘“ 1/6(‘-)811102’1. ,
So we find :
&'n=289,6 + 14,3 X (—12) + Y/, X 15,2 X 86,

or
&a—=39,6 — 171,6 + 91,2 = — 40,8.
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The value of this differentialquotient is = 0 with ihe ideal equation
of state. The great negalive value of &' for real substances points

. d?*a
— as we shall presently see — to a great positive value of e
We have now the following survey (all this al 7%).
o o, /" Liprany 13 " YT —y 1 1 e st 2_ f’k I
v | B = 5lé SE=f] M [E'=) k(:cu) & e | o &g | € L,,V'/-—--ﬁfk_] 1
39(09] 143 7 —41 39.6 —12] 36 -—4.7] 68 |134 | 6.6 |6.8
[2 (0.4 3.6 4 0 9.6 — 6 18 {—9 ‘126 32| 32 0]

The lower series of values refers to the ideal equation of state.

We may add the following remarks to what precedes. According
to- (5) we may write for A: .
o —2p) (fr—1) —

Ji—1

The numerator of this is = (¢*—2B) (fi—1) — ("e—PB'e"ss—"/ 0" 2 4),
as f(=¢)=o. But as fr=¢+, and f'=c'—f, we may also
write for this:

— &'t @ [(Eem1) + &g + Yo" | — B2 (6—1) + 8] -

Now with the ideal equation of state 2 = 0 (see above); and this
is what we expecied, for then the above form becomes:

0 + & (3-~6+3) — 8 (6—6).

Both &"# and the coefficients of «* and f# are then, namely, = 0.

But with the veal equation of staie the value of this form is:

\ 41 + o (6—12--6) — B (12—12),

so that the coefficients of «* and g would be again = 0. It is not
difficult to find a cause for this.

j="

\

b b
7. If viz. 57 = 'y is very small( just as— = 0' is slight), we

1 Ov
RT
may write for 5%" following from p=-— —S;, L e.
op R R
=il L]
0p B ad 1 a—Ta"] 1 !
e St bl E i A ,

so that
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9% 2.4 0% 64
0007 1w T 0T Tt
N » Ydas [ ¢ ([(L rry
in which A =a—7%, and a' represents I Hence we have at 77
{

d 70 A
8'1:(“8—) :(—% =142,
5 om /i \p 0T )i PR

and so the well known relation (only now we have 4, instead of «;)

b Ap
8’1 — 1= —
PLY L
But at 77 we have also, according fo what we found just now
" 0% 24y T 24y, ;
foi=|sx— ) =——— - == =2 (g —1);
0n0m ) iy Tev’t P PO
- d’ 64, Tv% 6.1y ,
gl = - = =-— =6 (g)—1).
On*om ), T'tn pr pive

So the coefficient of «¢* in the numerator of the above expression
for 2 passes {with small value of 0';) really into
(e, —1)—2(E —1) + (€:—1) =0,
{he coefficient of # then also passing into
2 (¢, ~1) — 2 (g, —1) =0
That the quantities &¢,—1, ¢".; and &"w; bave double the value of
those for the ideal equation of state, is owing lo this that where the
critical pressure is always aboul /., ap: )%, €1— 1 with v =1,
passes inio
8'1 — 1= :‘{é‘ . %—7- .
a, "
In this Ay =1— (L} a'r:ar). If now also 77 d) is small
compared with ¢, unity may be writlen for A, :a; Ly-approxi-
malion; so that then &, — 1 would become = 27 :7* for the real
equation of state with r=2,11d =27:4,5 =0, and = 27:9=3
for the ideal equation of stale. And as really the value 6 is found
for &, — 1 = fi. — 1, a's (and also 0") must really be exceedingly small.

In any case (for small 0'y) &'y = — 2(¢'t—1) by high approxima-
fion, and hence = ~— 12, which is the reason that above we raised

the value — 11,4 found for &'y, from experimental daia to — 12.
Reversely the slight difference beiween the two values justifies (he
supposition that 0% is really very small. But as then oo &"y; =
=6 (¢ — 1) =36, we have lound a sufficient ground in this to raise
the value 29,8, i.e. 30, which was calculated {from only few expe-
rimental data, to 36.
73
Proceedings Royal Acad, Awsterdam. Vol XIV.
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.

The numerator of the expression A now passing info — 'z, we

get simply : }
8”1‘2 '
A= — N

Si—=1’

from which then .=40,8:6=26,8 follows, as above.

. , .. R a . Op
8. As for small 0 we may wrile — — — for == (see above),
v—0 v 07
0% o y o
Ve becomes =—= — -~ (if namely 0" is also small), Lence
- v
, (6% & T -
& = by = — .
. \0m* VL pr *
So we get for A with fi—1 =& —1 = A4 : pv*; (see above):

_r/*kzanc
A= IT’
‘Uc*“jk ap
wlhen we substitute its value for Ag. If we put
Tl viap=a"y, T1a'y: ap = ',
we gel:
a”]c

7.:1__0", =da';,

because «'; must Le exceedingly small (see above). Asnow the value
6,8 was found for A, this comes to this that ", is almost 7, so
great positive (i.e. T X (a1 a)). i

Sumnmarizing everything that we investigated in the above and in
previous papers, we come to #hs conclusion that the deviations from
ihe ideal cquation of state chiefly find their explanailion, besides in

the association of the molecules, in the following circumstances:
2

0% 0
I. That with small value of 5 the valne of 3 is greut. In con-
[/ v

sequence of this v, becomes = 2,10, instead of v = 30, for ihe critical
voluine.

2

9. That with sn;all value of gl—’, ?—?
ot o

is great. This accounts for the great increase of the characteristic
function ¢ (which has the value 1 at 77%)in the neighbourhood of 7.
In conclusion we point oul that for the determination of the values
of &5 and & the knowledge of the values of 6", and 0", is
required, and so without the complete knowledge of the quantity 0
as function of » we cannot possibly predict anything regarding the
values of &¢". and &"y. That these valnes are about half .the ideal

1"

values — from this would follow among others that v,°0"y, would be
not far from 1. Clarens, March 1912,

2

da o
, and — the value of
dt
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