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Metereology. — “On the Influence of the Eurtl’s Rotation on pure
Drift-Currents”. By Dr. D. F. Torrunasr. (Communicated by
Dr. J. P. vaN DER STOK).

(Communicated in the meeting of March 30, 1912).

The water of a laterally unbounded sea, initially at rest, is
supposed to be suddenly subjected to the influence of a wind of
constant magnitude and direction. Assuming a left-handed axial sysicm
of which the Zaxis points vertically downwards, the current-com-
ponents u and v will have {o satisfy the "differential equations :
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in which
a = 2n sin .
n = angular velocity of the earth — 7.3 > 105,
¢ = geographical latilude.

~

34
b ="-.
0
@ = viscosity coefficient of water
o = densify. N

Starting with the assumption of a sea of infinite depth, we have
the conditional equations: u=v=0 for ¢=0 and z=o. The
assumption of a constant wind, whose direction we take along the
Y-axis, may be expressed by the equations:

du Lk
. dz z:O—N'-ﬂ—l-uu

o k
(@)=

if 7 represents the magnitude of the wind and £ the external vis-
cosity coefficient.

The differential equations arve solved in the simplest way by iniro-
ducing a new variable w4 % =1w, by which substitulion they ave
transformed into:

{ O ,
) 52—::-—2«20—}—1)5;. e e . (D)
Putting likewise 7V == W the conditional equations become: w =0
for =0 and for 7= o; .
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dw k
(——) = ——(W—uw,).
0z 2==0 42

Putiing w' =wet, the equations change to

aw'_ ' - o
e atz,........()

w=20 for t=0 and z = oo,

o'
(—— = — ¢ (Waat—2),
0z +=0

L
— being = ¢.
"
If we now introduce a function ¢, connected with w' by
, 1o
f=—w+-x— . .-. . . . . 3
¢ 0z

¢ will also have to satisfy the differential equation (2) and secondly

we must have
P, = — W'y — (Wett—' ) = — Went,
2

g . .0 0%
Hence ¢ satisfies the differential equation L_p2?

5 Fr and ¢, is a

function of ¢
The solution of this equation is known from the theory of heat-

f ‘/; f IVG ﬁi’ “ (t ibﬁ?) (llg [ . . . . (1) l)

25
Here W 1s constant by assumption; if 7, the magnitude of the
wind, were itself a function W({) of ¢, we should have under the

sign of nfegration instead of T/V:’W-(t-——'ﬁl;n). This remark will

be useful later on.
(3) gives

@0 N

W= — cefzj;—c' p(2)dA

-
~ &

and finally
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1) Rienann—Wegrr, Partielle Different gleich. II p..108, b e
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The form of solution (5) gives rise to the following remarks: One
would feel inclined, since (5) holds for a sea of infinite depth, to
suppose that the solution for a sea of finite depth % could be given
in the same form, the upper Iimit of integration for 2 being % instead

of o, since the differential equations and other conditional equations,

remain the same in this case. This conclusion would be wrong,
however; the modified integral would be found no longer to salisfy
the differential equation. The reason of this is found in the circum-
stance that although the function ¢ of eq. (3) must satisfy the same
diff. eq. as «', this by no means involves that ' will satisfy this
diff eq. together with . On closer investigation this appears to be
the case only when the upper himit is infinite.

y
By introducing the new vamable § and puiting ﬂzil_/—: the
bg

solution (5) may be transformed into

-

cec?

21/ b

o= d)

W=

y
Now putting 2 = 26§ ( 50t -+ c) — 2¢b%, we obtain:

f b b‘ =)= 0P
4 >
w=c¢W l/“ f &,

—a%

l/ f f o d2d56)

The solution fox w was reduced (o the foun (6) in order to render
companson easier wilh the solution, given for the same problem by
Freprorm *) and which for vaiious reasons scemed to me to be
theoretically inaccurate. Tor the assumption of a constant wind along
the Y-axis is eapressed by Frepnorm in the conditional equatiouns

Ou 0v T ) X

— |=0,{+ | =— —, 7 being taken constant. To tlus form of the
(az):::o (ag)::zo ¢
conditional equation he was probably led, because Exmin had already
found the solution of the stationary problem (n which the first
members of the diff. eq. are put zero) and had used the same con-
ditional equations as expressing a constant wind. Now these are
right indeed in the slationary problem. For it is always possible to
choose the axial system such that the X-axis has a direction along
which the constant wind-velocity and the in this case constant surface-
current velocity have equal components. The Y-axis then lies in (he

1) Exman. On the influence of the earth’s rolalion on ocean currents. Arvchiv for
Matematik, ete. p. 16. 1906,
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direction of the relative motion of the wind with respect to the
water of the surface. It will presently be shown that in this case
also a similar choice of axes is not to be recommended. Still it is
theoretically the correct expression for the existence of a wind of
constant direction and magnitude. But in the non-stationary problem
matters are different. Here also it is possible to choose at a certain
moment the axes such that the components of wind and surface
current along the X-axis are equal and hence the conditional equation

d
(a_”):o holds, but this directton would have to rotate with the
S Jz=0

time, since now the current velocity 1s variable. Hence the condi-
tional equations only express the enndihion of a constant wind with
a variable system of axes. Since, however, the diff. equations only
hold for a set of axes fixed in the earth, FrEDROLM S Solution cannof be
theoretically correct. FrepaOLM indeed finds a solution for which the u
and v at the surface are, as we might expect, functions of z Now
if we bear in mund that his conditional equations have no other
meaning than that the wind component in the X-direction is always
equal to that of the suiface current and that the difference of these
components along the FY-axis remains constant, it follows at once
that his conditional equations really presuppose a wind which is
the same function of the time as the surface current.
Consequently, 1f FreprorM finds

t——i—m’:
—_zT/b e A P 7
s o
0

this solution can only be correct for the assumption of a wind, the
components of which must be given by

i sin a§
V f G

c0s a§

w7 f !

Comparing Freprony’s solution (7) Wlth the solution (6) found by

k
us, and remembering that W =1V and ¢=—. it will be seen that
“
the first part of (6) corresponds with FrevroLm’s solulion and the
second part ought to contain the theoretically rvequired correction.

Now the following reasoning suggests itself: If in formula (6) we

1\
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suppose TV not {o be constant, but some function of ¢ (which would
modify this formula as explained under—(4)) and if for this special
function of ¢ we take the above given expressions for U and V,
which according to me contain FripgolM’s equations of condition
implicitly, we must obtain the solution of FreproLM. After some
réductions of the integrals this appears to be indeed the case.

In order to judge of the practical valne of the correction, we
write (6) in this way: g

® 2z

1——zi—1n’:
b e 4 i w
w_—_clVl/—f————gfl——— l—cfe e “ @ <.
m s N
- 0

0

Introducing the variable 4'= 4 /b8 we have for the sur-

9‘/b§

face current

b tg—!(l: 3 3
w,=c¢W —f— 1 — 21708 e®0% | e~ d2' ) d8.
7, gl/z \
0

Vb
Now 2ze* ﬁ—>'“(ll' is a function, the value of which is zero at
xz

2=0, then rapidly rises and amounts already to 0.91 at + =2
and then slowly approaches the value 1 for 2 = w. At = 0.06,
however, its value is only '/,. Now if ¢ is such that the cV/b§
belonging to this limit does not exceed 0.06, the correction may
practically be neglected. The data for a determination of cV'df are
very scarce, but still 1t is possible to state something about the
order of magnitude. This turns out, as will be explained presently,
to be of the order 10 -7. Hence the correction may be neglected in
practice if ¢)b6¢<C 006 or t<4.10* ie. about eleven hours. Thus
FreproLm’s formula, although theoretically inaccurate, is practically
serviceable for studying the development of the current. Ifin formula
(6) without a correcting member we put W mnot constant but a
function of ¢ {he solution is, as we saw,

- —Z i

u—c[/ fW(t Q)e 42:/——(1&'

which formula would enable us to follow the development of the
current if we assumed a time-function for the wind, which would
then e.g. gradually increase or decrease.

Putting ¢= » in formula (5) we must find the formulae for the
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stationary case. Introducing the quantity o’ = 57 e find:
) w == W ~— g~ (It 0az
et (LFad
from which follows for the current components
ad (Wotfez,
U = WSZH az e~
Va® 3 (@ o) ,
hove 4y &= =
vher =
where g EE
O
b= — T cos\az o~
Via-+ (c + {@'+ ¢
Hence for the surface currvent
eV . deV
Uy == ———=————————— St == T N3
Va4 (a'-Fo)? a” 4 (a'4-0) .
] — = {
(@'4c)eV v, 9
v, = - —_—
0 a/z + (a,’+c)"‘ P

. eV
If in the accompanying figure OV represents the magnitude of
the wind, OS, the surface currenf, , VOS, =§. It is easily found
that

SV =—=

(”/2-V and sanV()—~———~—-—~— A4
Varf @+, CENCETY
This shows that the termmnal point S, hies on a circular arc with
chord OV and apical angle 135° S,V now represents the relative
velocily of the wind which Exman took for Y-axis in his solution
of the stationary case. Referiing the result to these axes and putting

S, V= T1" we have. - R ]
V! ~t A .
i u:::a,c 5 e~ cos (45—a'z) uy = %‘T 2 V5,8 = 45°
., eV , V!
v == e ¢—' sin (45—a'z) vy = 57 )
> , V' -
. )
. o . . ooy RV T
, These are indeed the formulae oblained by Exmax, if ¢ V' ==——=—,
ft “
-Fl'

Exman’s choice of axes and his formulae in the shape u,’::vo’:g———,,
’ wa
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the angle between surface current'and relative wind yvelocity =45°,
reckoned to the right for northern, to the left for southern latitude,
led him to the wrong conclklsmn that, since a' becomes zero at the
) ! equator, the current there would

’ .o become infimte and also that a
sudden change in the dlrectlon

§ ‘ of the current would take plac'e)
v there. It is not difficult to see
now where the error in his

5o conclusion lies It 15 only as

long as one remams on the
P same spot thai the quantity 77,

used by him, 1s constant, as
0 ) soon as the results for different
. ka'y/ 2
latitudes are compared 7 = LV'= —————— changes 1ifs value

Vd® (@4 i

together with of. And since T’ becomes zero at the’ eq{mtog' together
with a', the result 1s by no .means that the current velocity becomes
infinite, but simply that it becomes equal to V, as is obvious. At
the same time we see from the value of § that at the equator §
approaches zero and that consequently the current, although rapidly,
yet gradually approaches the absolute wind velocity and begins to
deviate to the left for southern latitude.

If we put in the result for the stationary cuuent velocity
8y = mi’/z /ch Vl/b 8, a=mn (;p==30°), it follows that fé;?z:]c!—lb:cgb.
Thl’S now enables us-to make an estimale of the value ¢*), which
we wanted for the coriection of FrepHorw's formula. Aecording to

1

YA

. s .
Morn’s observations T/,“-, 15 of the order 43X 10-2, so that ¢* is

16 X 10— X 0.73 XX 10— i’e. of the order 10~7, as we assumed.

The solution for a sea of fimte depth was given by’ Exman only
for the stationary case, neither does Frupmorm deal with the non-
stationary problem for this case. Since, as we saw, the theoretical
correction of FrupmolM’s formula may be practically neglected for
infimte depth, I felt justifie ed m treating this ¢ase Wlth FRI«DHOLM&

du dv . T
equations ~of condition (()7) =0, (6 ) ="— —; the formulae with
#=0 & Ja=0 u
1he theoretically correct conditional equation become in this case
unnecessarilly complicated for practical application. B

$
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The differential equations for the case of finite depth remain the
same. The conditional equations now become
v=v=0 at t—=0 anl z=A4, a_lf)—-o(av> -—__Z‘
0z ). 9z ).—0 u
The solution is here found, as in the analogous problem in heat
conduction, when the length of the bar is assumed finite, in the
form of a FouriEr series. It runs:

— (2m4-1,%<2
g mzw et (@m1 2m4-1) 72
w=fO—g S e F T (m+ J f Neos G T2 ";71)” ax(s)
4

where
T (1 4-9) sink. (14-2) o' (h—2)
2ud cosh, (144 a'h - -

J&) =

d being = l/—zf% This f(z) is the solution for = o, i.e. for the

stationary problem. It is easy to show that this solution satisfies the
differential as well as the conditional equations.

Since
h
2m+4-1) =2 h T(1+42 8 h
ﬁ(l) €08 M d). o __i. ( —Ijz) (1 +7:)a ’ -
2% 2 2ud (2m41,°x% 4 4 (1492 a"A?
(8) may be writlen )
(2m4-1)22)
2¢Th —_—— }
w -—J("' ¢ fg—m) dr 2 e 442 €os M . . (9)
wh 24

Now the summation in (9) may be reduced to another form. We
have namely :

— — g
—Sn 2L :‘I' @nty) =1/, —l— E e cosqmy ) .
Putting likewise
— —q2nt
w2 o=y 4 2 wsgr iy
fmd subtracting, we find
l/-_ 3 (e—p CntyP — g—p @utl—y))
e
© —q2nt - —(2mf1)2%2 ™
=21 —cosqgr)e ¥ cosquy=223e¢ 4%  cos(m+ 1)y
g=1 -~ m=0 {

1) Riemasn—Wesen, L e, II, p. 117,
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2 At
Putting y = 25 P=y; We have
. ~ (dnk42)2 —(4nh-2h—2)3
3 ‘;@%ﬂ’f‘_‘f’l @miDaz 1 b gfs W ¢ 4h
= TR T Vin o\ 1k 7%

This transforms (9) to
—(dnhz2 —(dnkf-2h—z)3

e abl e 4b)
w=f(z) — “‘I/"‘f - 3 FUA '— 2ih

) Since at t=0 w=0, the ﬁnal result is

ﬂ"/_'f(ﬁ' Fye=io @), . . . . (10)

e—ia’ di

where S 5
do 4D
F= Z -
fic=— w0 2' /2
+o  g—(4nh{2h—2)?
= & —
r=-w e

As the way, followed in deriving (10) is rather long, it may not
be superfluous to show that (10) satisfies the conditions of the

problem. That the expression satisties the diff. equat. needs no

i
———— 7
454

ar.

further proof, as this is the case with any form f —

Besides at =0, w=0 and similarly w=20 f01 z = h, because
the solution has the form ¢(z) — ¢ (2h—=2). Tt remains to be shown

Ow T
that — =— — ol . Now
Bz~_ "
dw T
==l -0 -
where —(inhtep i
® dnh -z e o
\ = (_ 2024 A ) a2

0
[4} \

—(4nh+2h—z)

’ t
. 2] (4:?2]&—{-—2:7&——2) ——Tb—l—-—;-
= i( 507 a2

Nosw it appears that for =0 all the termsof Pand ( annul each

other excepting the term P for n=0, so that there finally remains:
(anh)t
— il

47 T -
Ju l/j g . . (L1)
~z—0 I

-10 -
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The value of this integral is found by introducing the variable

., ({nh)? l/:z ow e
at = al to. — —, sothat — =—=——.
T = equa ‘to‘ b $0 tha D7s "

! The solution (10) admils of a remarkable interpretation. The ana-
logon of the problem here dealt with in the theory of heat conduc-

tion is to find the temperature 1n a bar of small cross-section of

length %, while-at the end z==0 a definite temperature interval
0u 1 I
Pyt maintained. Our result says that the tempemtme to be
€ ¢
found can be conceived as due to a distribution of an infinttely large

number of heat sources and sinks of equal strength ') The heat-sources lie

NI

=0 and 2= = [4nk]azr, the simks at z=2A(1=2n)=5 . This
shows that with respect to the point z =1/, the sources lie symme-
trically with the sinks, so that to every source at distance p cor-
responds a sink at distance —p and that consequently the tempera-
tore (and by analogy in our problem the current velocity) will
remain zero here, if it is zero at ¢==0. With respect to the point
z =0, however, the heat-sources lie symrﬁetrically to each other and
likewise the heat-sinks, while in addition there is one more heat-
sonrce at the point 2 = 0. The symmetrical disiribution of the sources

- . alb . .
makes at this poinl — =0, and also the sinks do not contribute

- 0z
. . . a“‘ i .
to this quantity, so that for 3z at the point 2 =0 there results only
the influence of the source there situated. Now this was ecalenlated
2T
above and amounted exactly to — —. '
12
For the surf’ace current we find thus:
It < lek? 3642
. zl';/b e—w L o __ste”
y == —9¢ b 2 ) D¢ 40 ete. | d2
o= m/n 2k [ * * ]

Comparing this expression with that of Fredholm for infiniie depth,
we see that 1t is egual to the surface curreni for infinile depil,
duminished by twice the curient which n that case would exist at
depth z = 2%, increased by twice the current at depth z = 44, etc.
As soon ias z increases heyond a certain value, the cuirent there
is quite negligible against the surface cuvrent. With increasing 4
fewer terms will suffice and for 4= oo only the first term remains,
‘being Fredholm’s formula for infinite depth. oL v

e -

)W THOMSON Math, and Phys _Papers 2 2, p. 41
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