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Metereology. - "On the lnjluence of the Ea1,th's Rotatlon on lnt1'e 
Drift-Currents". By Dr. D. F. TOLI']~NAAH. (Oommunicateel hy 
Dr. J. P. VAN DER STOK). 

(Coml11unicated in the meeting of Mal'ch 30, 1912). 

The water of a Jaterally unbouncleel sea, initially at rest, is 
supposed to be sudden]y subjected to fhe inflllellce of a wind of 
constant magnitude anel dll'ectlOn. Assuming a left-handeel axial sysLom 
of which the Z-axis points verticaIIy elownwards, the curl'ent-com
ponents u anel v wiH have la satisfy the 'differential equallol1s: 

In whieh 

a = 21~ sin (p. 

alt a2u 
-=av + b-
elt az 2 

av a2v 
at = - alt + b az2 

n = angulal' velocity of the eal'th 
(P = geogl'aphical latitude. 

7.3 X 10-5, 

b =~. 
Q 

(t = viscosity eoefficient of water 
Q = dem.ity. " 
Stal'ting witl! the assllll1ption of a sea of iÎlfinite depth, we have 

the conditional equations: u = V = 0 1'01' t = 0 and z = 00. The 
assumption of a constant wind, wllOse dlrectlOl1 we take along the 
Y·axis, may be expl'essed by the equatlOlls: 

... (aU) = + ~ 1to àz z=o f1 

(av) ::::: _ ~ (V-v
o
), 

àz Z=O ~t 
if V l'epresents t1le magnitude of the wind and '" lhc cxternal vis
cosity coefficient. 

The dift'erential equations are solved in tbe simplest way by intro
ducing a new variabIe 'IJ + iv = w, by which substitulion they are 
tranSfOl'nled into: 

alO . a2
lO 

~ = - taw + b -a • . . (1) ut z· 

Putting likewise iV = TY the conditional equatiol1s become: w = 0 
.lor t = 0 and fOl' Z = 00 ; 
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C n50 ) 

(àU!) = _ ~ (W-wo) ' 
az :=0 (.t 

Putting 20' =wezat, tho equations change to 
alO' O~~o' ~ 

at = b Ot2 ' 

w' = 0 fol' t = 0 and z = 00, 

( àw') = _ c (TVewt-w'o)' oz Z=O 

_ - being = c. 
(t 

If we now introduce a funetion (r, connected with w' by 
, 1 àw' 

(f = -w +--
iJ àz 

, (2) 

(3) 

cp wIll also have ta satisfy the dIfferential eqnation (2) and secondly 
\ve must have 

(Po = - w'o -- (vVeat-w'o) = - Wezat , 

à p a2,p 
Hence cp satisfies the chfferential equation - = b - and rpo is a àt . àt2 

funetion of t. 
, Tbe solution of this eqnation is lmown ft'om the tbeory of lleat
conductioll and is 

(P= - :nJu;we-I~2+la(i-4~~2) d~, 

2i/bï . 

Here TIV IS constant by assumptlOll; if TY, the magnitude of the 
wmd, were itself a fUl1ctiol1 W(t) of t, we should have unde!' the 

sign of lIltegra.tion instead of TY:' TY-(t ...:.~) This J'emark wiU 
4bf1~ . ~ 

be usefn1 later on. 
(3) gives 

anel finally 

• 00 I 

u/ = - eeef-c) rp(l.)cl). 

tv = 2ce
C':: TV fe-C) ti!.}: - j9

Z - ~~:;2 dfj 
. V3t J v 

~: ) 

21/bt 

1) RIEMANN-:: WEBr.R. PartielIe DtlTeront gleieh. 11 p . . l06. 

• (5) 

.' 
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The fOl'm of solntion (5) give'3 rise to the folIowing remal'ks: One 
would feel incIiIled, since (5) holds fol' a sea of infinite depth, to 
suppose that the solution fol' a sea of fil1lte depth h could be given 
in the same farm, the uppel' lImit of illtegl'ation for J. being h instead 
of 00, si nee the dlfferential equations a,nd other condltional equatlOns, 
l'ernam the same in this case. Thls concluslOn would be wrong, 
howevel'; the modltied integral would be fOl1nd no longer to satisfy 
the diffel'ential equailon. Tbe reason of this is fouud in the Cll'C!um

stance that althougb the fl1nction cp of eq. (3) mnst llatIsfy the same 
diff. eq. as w', this by 110 means illvolves tllat w' will satisfy this 
diff eq. togethel' with r(. On closer im'estigatlOl1 t11l6 appears to be 
the case only when the npper lImit is lllfimte. 

A-
By intl'oducing the new varlabIe; and putting fJ = -- the 

2Vb~ 
sollltion (5) may be trn,nsfol'lned into 

Now putting I. = 2g (2~; + c) - 2cb;, we obtain: 

- ~ Q+~ 

,,= ,wv~i'- ?,~:'" d,-,'wv~1 r-~/:'H'~)d'l6) 
u u 0 

The solution fol' w wn,s redllcéd (0 the form (6) in order to render 
compn,nson easiel' with the solullOn, gl\'en fol' Ihe same pl'oblem by 
FREDHOLM 1) and wlllch_ f'or vallOUS reasons scemed to me to be 
iheoretically inaccnrale. Fo!' the assumption of a constant wmd along 
the Y-axis is eÀpressed by FRJmUOLl\l in the condttional eqnations 

(àu) (OV) l' î"" = 0, :::.~ = - -, T being taken constant. To tlus f'or111 ofthe 
uz :::=0 uw ;:=0 f1. 

conditional equation he was pl'obably led, because EIGlI \N had al ready 
found the solutIon of the statiollal'y problem (m which the first 
membel's of the ddr. eq. are put zero) anel had \.1sed the same con
dltional equations as expl'essing a eonslant wind. Now tl!ese are 
right Îndeed in the stational'y problem. Fo!' it is always possible to 
choose the axial system sneh that tIJe X-axis has n, c1il'ection n,long 
which the constant wind-velocity anel the in this case constant surfaee
~url'ent veloeit)' have eql1al components. The Y-axis then lies in Ihe 

1) EKMAN. On the illlluence of the earth's l'otation on oceau CUl'l'ellt<;;. Arcltiv for 
Matemalik, etc. p. 16. 1905. 
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dil'ectÎon of ihe reJative l1lotion of the wind with respect to .. he 
water of the surface. It wIH pl'eóently be showu that in th is case 
also a similar choke of a'(es is not to be recommended. Still it is 
theoretically the correct expressJOll fol' the exiótence of a wind of 
constant dil'ection anel magnitude. But in the non·statLonal'J' problem 
matters are different. Here also it is pos'3ib1e to choose at a certain 
moment the axes such th at the components of wind anel sUl'face 
CUlTent along the X-axis are equal and hence the conditional equation 

(~:G\=o 0 holels, but this elil'ectlOl1 would have to rotate with the 

tune, since 110W the CUl'rent \ eloctty IS val'iable. Hence the condi~ 
üüJJaI equatlOlls on1y express the cnnditlOn of a constant wind with 
a \'uriab[e syóteIll ofax.es. Since, howevel', the diff. equations ooly 
hold for a set ofaxes fixed in the NU'th, FREDROLM'S solllhón canno! be 
theoretrcally correct. FREDHOL:\i indeed finds a solution fol' which the u 
and v at the snrface are, as we Il1Jght expect, flluct!ons of t. Now 
If we bear 111 IlJlud that hlS conchtional equations have no olhel' 
meaning tban that the wlll.d component in the X-dll'ection is always 
equal to that of the sluface current and that the dIfference of these 
components ~\long the Y-axis l'emams constant, it follows at ollee 
Ihat his conchtlOnal equations l'eally pl'esuppose a wind wbie\r is 
tlJe same f'nnction of tbe time as the snrface Clll'rent. 

Consequentl)', If FRJWHODi finds 

t _ z2 -w" iT /bJe 4~~ " 10=-1 - ----d~ 
(1, :Tl' b1/2 " (7) 

o 

tbis solution can onlJ' be correct for the assnmption of a wind, Ihe 
components of which must be given by 

t 

V=~ + ~V~JC08ab d;. 
Ic (.t :Tl' b1

/ 2 

(I 

Comparing FR1!;DROLl\l'S solution (7) with the solntion (6) fOllIld by 
k 

us, and l'emembel'ing that JiJT = t' V and c = -. it wiH be seen Ihat 
ft , 

the first part of (6) corrésponels with FUEIHIOLM'S solution alld tbc 
seconel part ought to con tain thc theoretically l'equil'cd correction . 

Now the foHowing l'easoning suggests itself: If in fqrmula (6)~ we 
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suppose rv not to be constant, but some function of t (which wonld 
modify Hus formula as explained under-(4)) and if fOl' Ihis special 
funrtion of t we take the above given expl'essions for U and V, 
whieh according to me contain FRI!.DHOI.l\l'S equations of condition 
implicitly, we must obtain the solution of FREDHOLM. Aftel' some 
réductions of the integrals this appears to be indeeu the case. 

In order to judge of the practical vaille of the corl'ection, we 
wl'ite (6) in this way: ,/ 

10 = IJ lV V~Jt e- 4:
2

1:. - za:: (1 -IJJ~ e - 1!t,:::1 - c) d).) d;. 
:JT ;1/2 ~ , 

, 0 0 

).. 
Intl'oducing the variabie ').' = 2Vb; + cVb~ we have fol' the SUl'-

face curren t 

00 

Now 2xex2Je-) /2 d)./ is a function, the value of w11ich is zero at 

x 
x = 0, then rapidly rises and amounts alL'eady to 0.91 at x = 2 
and th€'n slowly approaches thc value 1 for x = 00. At x = 0.06. 
however, its value is only 1/.0' Now if t is such that the cVg 
belonging to this limit does not exceed 0.06, the correction may 
practically be negiected. The data fol' a deterffiination of cVbÇ are 
very scarce, but still It is possible to state something about the 
order of magnitude. This turnt: out, as will be explained presently, 
to be of the order 10 -7, Hence the r01'l'ection may be neglected in 
practiee if cVbt < 0 06 or t < ,*.104 i.e. about eleven hours. Thus 
FREDHOLM'S fOl'ffiula, although theol'etieully inaccnrate, is practically 
serviceable for studying the development of the current. If in fOl'mula 
(6) without a COl'l'écting member we put Hl not constant bilt a 
function of t, the soIution is, as we saw, 

whieh forffiula would enable us to follow the dèvelopment of the 
current if we assumed a time-fllllction for the wind, which would 
then e.g. gl'adually il1crease Ol' deerease. 

Putting t = :t:) in formula (5) we must find the formulae for the 

-, 
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stationary case. lntl'oducmg the quanvty a' - V ;t
b 

we finu: 

oW +" ZIJ == --- e-(l 2)a z , 

C + (1 + z) a' 
from whieh f01l01Y'S fol' the current components 

cV 1:' 
lt = V sin (a'z+!5) e-az , 

ct'2 + (a' + c)~ 
a' 

where tn g = --
tl a'+o 

oV ~, 
v = COS (a'z+s) e-a z 

Va'- -t (a' + c)J 

Hence fol' the sUl'faee CUlTent 
cV a'cV 

1to = sin g = -,-----,-
Väu + (a'+cy a'2 + (a'+c)2 

(a'+c) cV 
- a'2 + (a' +C)2 

cV 
So= . 

Va'2 + (a' +C)2 

1f in the acrompanying figure 0 V repl'esents the magnitude of 
the wind, OSo the surface cUl'l'ent, L/ VOSo:= 6. It is easily found 
that " - . 

a'V2 . c 
So V = -_ ------=: V and sm So VO = 1/2 t(2 

_ Vet'2 + (a'+c)' , Va'2 + (a'-tc)2 

This shows that the termmûl point So hes on a cll'cular arc WWl ' 

chord 0 V and apical angle ,~35°. So v: now represents the relathe 
veloclly of fhe wind wInch, EKl\iA.N took for Y-axis jn his solution 
of the statiol1a~'y case. Referling the result to these tl,xes alld putting 
Sr; TT = V' we have. ' '.., 

c V' ~( 
îl = -- e-a'z cos (45-a'z) 
: a' V2 ' 

cV' 
v' = -- c-«'.:: /Jin (45-a'z) 

a'-V2 

cV' 
Ui =_ 

o 2a' 
cV' 'IJ'_-

0- 2a' 

cV' 
s' -
0- a'V2 

, , kV' T 
These are indeed Lhe form ulae obtained by EKMAN, if IJ V' =-- =::::: -. 

ft ~ 

'1' 
EKl\iAN'S rhoice ofaxes and his formuJae in the shape u,/ = va' = --, 

2tta' 
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the angle betw~en .8Uloface cU1'l'ent' nnq relative wind .velocity = 45°, 
reckoned to the l'lght for nOl'thel'l1, to the 1eft fol' .soutb~'n latitude, 
led him to the wrong conclysion that, since a' becomes zero at the 

j ~} equator, the current t11"é1'e would 
, . become infimte and also that a 

\' / 

sudden change in the dIrection 
tf I.} 

of the cmrent wou1d talie place 
there. It is not dlfftcult' to see' 
110W whel'e the error in lus 
CûnclUE'lOn hes ft IS on1y as 
long as one l'emmns on the 
same spot thai the qllantIty 17

, 

usecl by. him, IS constant, as 
soon as the resnlts fol' different 

r. ka'V2 
latitudes are compal'ed T = ld'! = changes lts vaille 

Va'2 + (a'+c)2 ' 
together with al. And since' T becOlnes zero at the' eq~latOl" together 
wüh a', the l'esult IS by no ,means 'that the cm'rent velocit), becOlnes 
infinite, but simply that lt becomes eqnal to V, as is obvious. At 
the same tIme we see froll1 the value of g, that at the equator g 
approaches zero anel that consequently the C'ul'rent, althollgh rapIdly, 
yet gmdualJ,r approa('hes the absolute wmd velocJty and begins to 
devmte to the left for southern latitude. 

Ir we put in the l'esuIt for 1he stational',Y current velocity 
T' k V'Vb ~ k~b 

So = ---'-V-2 = --V SO G=n ('p=300), it follows that ~n=-=c2b. 
pa p a V 2 ~t 

This now enables us' to make an esttmate of the value c2b, w luch 
we' wanted for the corleetion of FREDHOL",I'S formula. AeC'01'd1l1g to 

/1 b . So 
lY.10HN'S 0 se)'vaüons V' IS of thE' orde)' 4 X 10 -2, 80 that c2b is 

16 X 10-4 X 0.73 X 10--1 i7e. of thc order 10-7 , as we assumed. 

The soluhon for a sea of fimte depth wa'3 given by' EKlIfAN only 
for the statlOnary cabe, neithel.' does FREDHOIJ1\[ deal with the non
stationaI'Y problem for tl1lS eHse. Since, as we saw, the theoretical 
correction of FREDHOLl\l'S formula may be pl'actically neglected tbr _ \ ...-.... • t 

infil11te üepLh, I felt justifi~d m tl'eating th IS <'-ase vVIth. FRI~~HOLl\1'~ 

(alt) (aV) T ' equations ,of condition -=--"a' =0, a- =' - -; the fOl'lllUlae with 
~ z=-o z z::::'O tL ... 

the theoretically correct conclitional eql1ation become in this case 
unnecessarIly complicatecl fol' prachra} a,pplication .. ~ .. ' 
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'.{ihe differential eql1ations fol' the case of tinite depth l'emain the 
same. The conditional equations now become 

~t = V = ° at t = ° an 1 z = h, (ààu) = 0, (àà V
) = _ T. 

ZZ=O Zz=O (.t 

The soltltion is here f-ound, as in dle analogous pl'oblem in heat 
conduction, when the length of the bal' is assumed finite, in the 
form of a FOUlHER series. It 1'l1ns: 

(2/11+1)~-r~ lt 
2 m==oo ~--., -bi-Irt (2m+ l):Jrj. (2m+1) .1r.Î. 

w = f(z) - - ::s e 4h- cos ---- f().)cos di.(S) 
h m=O 2lL 2h. 

o 
whme 

fez) = T(l +i) sinIL.(l+i) a
7 
(IL-z) 

2[w' coslL. (1 + i) a'lL -

a' being = V:b' This I(x) is the solution fol' t = 00, i.e. for the 

stationary problem. It is easy to show that this solution satisfies the 
differential as weIl as the conditional equations. 

Since 
lt r: (2m+ 1) 3tÎ. lL l'(l+i) 8 (1 +~) a'lL 

Jf().) cos 2JL d)'=2" 2(.ta' (2m+l/3t2+4(1+Wa"h2 
o 

t8) may be written 

2iTbfoo 00 (2m+/:~-r2b) (2m+l):Jrz 
10 =}(:::) - -- r W ) dj.:2 e 4,- cos . 

pIL 0 21L 
(9) 

t 

Now the summation in (9) may be reduced to another fOI'ID. 'Ve 
have namely: 

V p 2 e-l,(21l+y)~ = l/~ + .2 e-~:-r2 cos qJly 1) 
:Jrn=-oo q=l 

Pntting likewise 

V P i e-p(2T1+1-y)2 = 1/~ + JE e~~1r2 cos q~ (l-y) 
3t 11=-00 ,. q=l 

and subtracting, we f1l1d 

V P \ i (e-p (211+y)2 - e-1' (211+1-y)2) t = 
:Jr t 11=-00 ~ 

_q2rr2 - (2m+ 1)2,,2 
00 --- <Xl = :2 (1 - cos qJl) e 4p cos q3ty = 2 :2 e 41' C08 (2m+ 1) :Jry. 

q=l - m=O 

1) RIEMANN-WEBER, 1. c. lI, p. 117. 
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" lt~ 
Putting 1/ = .::... p = - we have .. 21~ , bJ.. 

-( 41111+Z)2 iTV b J<r (i) ~e~-w=f(z)-- -:2 I{ 
f1. ~ -<Xl J.. 2 

t 

Sinee at t = 0 'LV = 0,' the fin al result is 
t 

'l'V bJ 10 = ~f1. ;; (]i' - F I
) e-ia) dJ, . 

o 
whel'e --(4111z+z)2 

+<Xl e 4b> 
F= :2 

71=-a;, ;}(2 
+a;, rl411l1+2h-z)~ 

F'= :2 
'I=-<Xl ;.I/2 

. . . • (10) 

As the wa)', followed in deriring (10) is l'athel' long, it may not 
be supertluous to show that liO) satisfies the conditions of' the 
problem. Tbat the exprE'ssion satisties the diff. equat. needs no 

t -(p+Z)2 ., 
----W) 

J
e ~bA 

fl1rt IJ el' pl'Oof, as (his ió the case with any form -,----- dl.. 
).1/2 

o 
Besides at t = 0, w = 0 and similarly w = ° fol' Z = It, becallse 
the solution has the form ({(z) - cp (2h-z). Tt l'emains to be shown 

Ow iT 
that î"""" -- Now 

uzz=o (1, 

ow = i'l' V~ (P_ Q) 
oz (L :r 

where t -(4nh+z)~ 

f <Xl ( 4nlt + z e 4bÀ ) 
P= :2 -----1- dl 

-<Xl 2bA ï. IJ 
o \ 

t ( (4nlt+21t-z) -(41Ih~~h-Z)2) 
Q J~ 2bï. e -I dA. 

o 
NOlv it appears that fol' z=O aU the termsof'Pand Qannuleach 

other excepting the term P fol' n = 0, so that the1'e finally remains : 
t 

(4nti)1 • 
---WI 

aU! iT VÓ J~ 4nlt e 4b) 
~ =- - -2b' ).,1/, dl,l=o.. (U) 
uZ z=O (L :r " 

o 

t • 
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'rhe Vé\!ue of this integeal is fOlll1c1 by intl'oc111Ci!lg the variabie 

• (4nh)2 V:r alO il' 
,'lr-= ~- equal Jto. - -b ' so that -a = --. 

-- - 40l - z~=o ft 
" The solution (10) ~cllllits of a' remal'kable "'interpl'etation. The ana

logon of the pl'oblem here dealt with in the~ theory of heat conelnc
tlOn is to find the tempel:atnre 111 a bar' of small cross-sertion of 
length h, wliile-- at tlle enrl z = 0 a deünite temperaiure interval 
alt ä' - - "'. 
-a = - -, IS maintainecl. Our J'eslllt says that the temperature to be 

z ft 
founcl can be concelved as due ta a distl'1buÜOH of an infimtely large 
nl1mber of heat SQurces a,ncl bll1ks of eql1al streng th 1) The heat-solll'ces lie 

at z=O anelz=±[4nhJ::~~, (he slllks at z=2h(1±2n);;~~. This 
shows that with respect to l11e point z = IL the SOUl'ces lie bymme
irirally with the sinks, so tbat to every SOllrre at distance p cor
responds a sink at distallce -p and tbat consequently the tempera.
tllre (anel by analogy in Ollr pl'oblem the Clll'l'ent velocity) \will 
remain zero here, if H is Leeo at t = O. With respect to the point 
z = 0, howevel', the heat-sources lie symmetrically to each afhel' and 
hkewise the heat-sinks, whIle in addition the1'e is one more heat
sonrce at tlle point z = O. The symmetrical distribntion of the sourees 

alt 
makes ~~ this point az = 0, alld also the sinks do not contribute. 

au~ I 

to th is qua,ntit.)', so tbaL fol' az at the point z = 0 tbe1'e l'eslllts only 

the inf1nence of the sourcc there situated. Now tbis was cèl,lculated 
~T 

above and amounted exactly to --. 
~t 

For the surface CUl'l'ent we find thus: 
t -

'1'Vbj -za) [ 411
2 

'16/,2 36Jt2 ] 
w·=_t __ _e _ 1-2e- 40) + 2e-4[;) -2e-4{;) + etc. di .. 

f.tV!11' i.I!2 
o 

Comparing Ih is expl'ession with that of Fl'edholm for infinJle depth, 
we see that lt is equal 10 the 5Urlape cUlTent fol' infinite depth, 
duninished by twice the cUl'lenL which In that case would exist nt 
depth z = 27t, incl'eàsed by twice the CUl'l'ent at depth z = 4/t, etc. 
As soon \as zinereases beJ onel a cel'tain va]ue, the cmrent there 
~s quite ~egliglble tLgainst the sUl'face cmrellt. W lth incl'easillg lt 
fewer tet'ms vvill suflice anel fol' h ~ Cl) only the iil'st' term remains, 
'being Fl'edholm's fOl:mula fol' in"finite deptll. J 

_.~ -
1) W, THOn!SON. ~alh. ~~d _~.hy~:_Papel's 2',' p. 41. ~~ 


