Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

Kapteyn, W., On partial differential equations of the first order, in:
KNAW, Proceedings, 14 Il, 1911-1912, Amsterdam, 1912, pp. 763-771

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'



(763 )
issuing from his lips when loudly sounding “a” amounted to 2.35
megaergs per second. According lo this standard the effusion of sound
from the other parts of the head may be deftermined. This is set
forth in Table V.

TABLE V.
Acoustic energy emitted by the head per second whilst “a” was pronounced
with chest-voice,

Energy per %’fgegf]f‘f Total energy
Regiones cM? in face in in megaergs Remarks.
megaergs M2 per sec.
Nose 0.131 1.1 0.144 both nosirils together
Mouth 0,524 4.4 2.306
Ears 0.000297 0.475 0.00014 both ears together
Bony patts 0.0000297 | 2233 0.066
Soft parts 0.000297 559 0.166
2.68

The total effusion of sound amounted therefore in the above
experiment to 2.68 Megaergs per second. Of this the greater part
viz. 245 Megaers left the head by the mouth and the ears, an
extremely small part by the auditory passages and about */,, by
the hard and soft par{s together. These data we offer uncorrected
i.e. without an estimate of the efficiency of a well-regulated organ-
pipe. Not all the energy imparted to the pipe is transformed into
sound. Some of it is lost in the vortices of air. Hehce our values
ave greater than the real acoustic values. Though the latter accord-
ing to a recent publication by ZrrNov') may be esteemed of about
the same order, yet it seems to me that the importance of Dr. P.
Nrkirorowsky’s figures lies in the mutual relation of effusions which
differ topographically.

Mathematics. ~— “On partial differential equations of the first order”.
By Prof. W. Kaprryn,

1. When a partial differential equation ‘of the first order
Fleyep,g=0. . . . . . . . (D
is transformed by a fangential transformation, the new equation will
generally show the same form. Somnctimes however the iransformed
equation will be linear. In this case the complele primitive of the

1) Zrryov, Ucher absolule Messungen der Schallintensitiit. Die Rayleighsche
Scheibe, Ann, d. Physik. (4). Bd. 26 p. 79. 1908, /
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non-linear equation and the integralsurface passing through a given
curve (the problem of Caucry) may be obtained from the transformed-
linear equation.

The object of this paper is firstly to determine the necessary and
sufficient conditions which must be fulfilled by the equation (1) when
it may be reduced to the linear form by one of the two knowu
tangential transformations of Leecenpre and AMPERE; secondly in
show how in these cases thc problem of Cavcny may be solved.

2. If the tangential transtormation of LiGENDRE
w=P, y=Q :=PX+QV—2, p=2X q=Y . (2
reduces (1) to the linear equation
A(X,Y,Z)P 4 B(X,Y,2) Q= C (X,Y.,Z)

where A4, B and C are ‘arbitrary functions, the former evidenily
must be equivalent with
A, gypr+qy—2) +yB(pgpotgy — )= C(pppe+9y — )

Therefore, writing

AT, Z)P+ B(X,),Z) Q— C(X,V,2) = ¢ (X,V,Z,P,Q) = 0
we have )

' o o .
ﬁzA@nm,sz@ma
and
0 0% 0%
0P ORQ 0@
Inversely, these conditions being fulfilled,  represenis a linear
form with regard to the variables £ and Q.
These conditions may be transformed in the following way
Fwy,epiq) = ¢ (X, 7,Z,P,Q)
therefore
by _Or 0P oy _oF  0r
0P 0z '~ 9z ' 0Q 0y 0z
oty O*F _0%F , 01
Y = e + 2X Py + X S
o  O°F 0*f
@_aﬂ]f’ + 0:F e 0*F
0Q*  0y* 0yoz 02* .
so the necessary and sufficient conditions, in this case, may be
writlen

0*F

02?

R
+A®&+XY
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0*F 0*F 0:F \
=0
R T
0*F 0K 0*F 0
—=0. . . . (3
0.0y + 500z +‘payaz TP 0z* @)
0*F 0 F 621’

e v

In the same way, considering the tangential transformation of
AwmPire

a=X,y=—Q 2=2Z2—-YQ, p=P, ¢q=7
we obtain the necessary and sufficient conditions

az

OF

-dp?

0LF 0°F

——4g——=0 - 4
0yop T 0zdp : )
0*F 0*F 'K

=0

a=+ Top0: T o

3. Assuming mow that the equation (1) has been {ransformed by
the transformation of LEGENDRE in the linear form

A(X,Y,2)P + B(X,7,Z}Q = C(X,Y.Z)
we will proceed to examine how the integralsurface of (1) which
passes through the curve
y=9@@ , =)
- may be obtained.
Let the integrals of the system of ordinary differential equations
ax . ay az
AX.Y,2) T BX,V,Z) CX,1,2)

be

UX.Y,2)y=a, V(&Y Z)=1b
where o and b are arbitrary constants, the difficulty of the problem
consists solely in the determination of the relation or the relations
which must exist between the constants « and b.

Designing a point «,y, 2z and a plane passing throngh this point
with angular coefficients p and ¢ by the name of element, the oo®
elements which are related by the three conditions

y=¢(@), z2=1@), dz=pdz+ qdy
are transformed in the o elements (XYZPQ) which satisfy the
three conditions .
51
Proceedings Royal Acad. Amsterdam. Vol. XIV.
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Q=¢(P) PX+ Qr—Z=yq(P), P (P)=X1 Yy(P)
or
Q=¢(F), XP+ T¢(P)—Z=y(P), X+ T¢'(P)=1y/(P).
These elements are precisely the elements of the developable snr-
face generated by the plane -
Xt + Yo(t)—Z—-) = 0.
For this developable is obtained by eliminating ¢ from
Xt Vo)) —wi) =2 =
X+ rg@—voy=o - - O
and determining

0z
F=t+ K+ Ty t)}aX

0Z 0
== p) + X + Yo —p0) 5—;—, = 40)

it 15 evident that the angular coefficients of the tangent plane through
the point X, ¥, Z of the developable surface are velated by

Q = ¢(P).
Hence the constants ¢ and 0 must be such that the curve
UX,Y,Z)=a, V(XT,Z)=0

touches the surface (5).
This condition leads to two or one relatmn between a and b.

In the first case we have ~
UX,Y,Z)=m, V(X Y,Z)=n

where m and 7 represent the values found.

If now we transform again-X, ¥, Zin @, y, 2. p, q these relations give

U(prgpap+yg—2=m V(pgap +y7—2)=n
and by eliminating p and ¢ from these and
F(zy2pq) =0

we obtain the required integral surface.

In the second case, which is the general one, let

b= 6(a) ,

be the only relation between the constants @ and b. From these

we deduce .y
VX, ¥,2) =6 U, T, Z)]
Differentiating with regard to X and Y, we have .
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oV 3V . /A0 _dU
xtlz=%\xT* az)
oV oV U o
g7t 9z=7" ﬁr*%ﬁ)'

Transforming now @, y, 2z, p, ¢ and eliminating p and ¢ from
these, we get the integralsurface passing through the given curve.

4. The first case presents itself in the following problem.

Let

2=pq
be the given differential equation which satisfies the conditions (3)
and let it be the question to determine the integralsurface passing
through the curve
y=1, z=2".

Transforming the differential equation, we get

XP4YQ=2Z4 XY

and
Y Z—-XY
UE Y, f)=F=a V&Y, 2)="F—=b
The developable surface (5) being
XZ
A=Y 4 —
Z + 1
the curve
y_ z-Xr_.,
xXT% Tx T

will touch this surface if
46 —1=0 and b—a=0.
The solution of the linear equation is therefore
4Y — X =0, 4Z—4XY—X=0.
which transformed to 2,y,2,p,q gives
4g—p=0 4(—2z4patgy) —4pg—p=0.
Joining to these
- e=pg
and eliminating p and ¢ we obtain the required solution
) 162 = (dw-Fy—1)*
which satisfies the differential equation and passes through the curve
y=1,z=a"
The second case will be met with by taking the same differential

equation with the condition that the integral passes through the line
51%
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i y =2z z=2a.

Here U and 7V are the same as before, but now the w® elements”
(XYZPQ) musl satisfy the conditions

Q=2P, (X4+2¥—2)P—Z=0, X +27 —2=0.

or
Q=2P, 2z=0, X}+27—2=0

Here the developable surface reduces to a line and the o* ele-

ments consist of all points of this line with all planes passing through
this line. For representing these planes by

Z=k(X+2Y—2)
it is evident that whatever £ be, we have the relation

Q=2P.
Expressing now that the curve
X Z—-XY
T X

meets the line
Z=0, X4+2Y—-2=0

we find but one relation between a and b, viz.
20 40 (1 + 20) =0.
This gives {he solution of the linear equation

. 2XY
Z— XV =——,
X X+2Y
and by differentiating with respect to X and ¥
4Y?
Py =
(X+27)*
- 2X2

— =

¢ (Xr27y

Transforming again and taking p = 2 from the differential equa-
q
tion, the first of these equations and the quotient of the second and
third give
2yg* — 42 + 222+ y + 2)¢g* —2¢'g 4 22* =0
2yq* — 22¢° - 2*q — we? = 0.
Adding and subiracting these equations and writing

B=2zs 4y 42
.we obtain
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4yg® — 629" -} Beg — 27 =10
2¢® -— Bg* + 829 — 202 =0
-so finally

3z—yB 6y—PB z—4ay
2 (6y—B) B*—16z—8xy 2(122—B)|=20.
z—day 120—B 3:—2zB

5. Secondly we suppose that the given equation (1) satisfies the
conditions (4). Then the transformation of AmpErRE reduces it to the
linear form

AX Y, Z)P+B(X,Y,2)Q=C(X, Y, 2)
whose integrals may be written again
UX, Y, Z)y=nq, V(X,¥,Z2)=0.
The o® elements subjected to the conditions
y=o). =) ds—=pds + qdy
will now be transformed in the oo? elements (X ¥ Z P Q) satisfying
the conditions
~Q=9p(X) Z—YQ=w(X), V(X =P+ IyX).
These elements consist evidently of every point of the surface
ZLYpX)=v9&) ¢« .+ : + » . (6
with the corresponding tangent plane. The curve
UX,Y,2)=a VXY, 2)=b
touching this surface, it is evident that if we eliminate ¥ and Z, the
resulting equation must have equal roots X.

This gives sometimes two, but generally one relation between «
and . Both cases may be treated in the same way as before, the
only difference being the transformation, which is now

X=za, Y=4q, Z=2—9qy, F=p, Q= —uy.

6. As the differential equation
] z=pyg ,
satisfies also the conditions (4), the transformation of AMpPERE may also
be applied if we wish to determine the integralsurface passing through
the curve ) .
y==a 7z=(x+1)(@+2).
This transformation gives -
YP+YQ=2Z

whose integrals S ‘ :
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ey 7
Y - X=a —=—b
, "7

are easily oblained.
Joining 1o these the equation (6)
 Z4 XY = (X41)(X+2)
and elimir;ating Y and Z, we get
(a4+b6—8)X 4+ adb —2=0.
This equation does not admit equal roots unless
a+b—3=0 and ad—2=0.
Hence
a=1 b=2
and
Y—X=1, Z=2Y.
The transformation applied to these equations gives
g—o=1 z—qy=2¢
and after elimination of ¢
c=(2+1)(y+2)
which is the required solution.
If, in the second place, the integralsurface through
. y=2&, &¢=2
is required, the .constants ¢ and b of the integrals
Y—X—aq, g:b
Y
musi be such thal this curve touches the surface (6)
Z 4+ 2XY =2X,
This condition gives
(0—2a -2)* = 16a
so the solution of the linear equation may be wrilten
- Z— 2V (Y—X+41)=4YVFTX .
from which by differentiation we obtain

2Y
6Y—4X
Q—4Y + 2X-— 2=
VT—X
Hence, after transformation ~ . '
¢ — gy —2 (g—a+1)=4dgVq—a
- - 2g
Pto=——=
g—“ﬂ;
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4u—06¢
Vig—a
Introducing 2z = pq and putting l/_q_—_,%zt the first and the third
equation give -
94 4 4f* 1 Bt* - dat + ay + 20 — 2 =0
448 4+ 668 + Bt + 20 =0
therefore the discriminant of the first member of the first equation

must be zero.
If we assume

dg4+y—20+2=

24 (wy—2) = A

this may be written
(4 + B*)® —|B(BA—B*) + 216z =
or, after a slight reduction .
A(A—3B%)® — 432:B (3BA—DB*) — 466562 = 0.
This solution, though different in form from the former result,
represents the same surface; that it passes through the line
y=z=2u
may be easily verified.

Physics. — “On some relations holding for the critical poini”. By
J. J. vaN Laar. (Communicated by Prof. H. A. LorenTz).

1. In this paper we will derive some important relations which
exist between some critical quantities. -
If it may be accepted that in the association to multiple molecules
no generation of heat (change of energy) takes place, so that ¢ =0
may be put, we saw already in I, p. 291 that the velation

. T dp a
== }=1 P ¢
= ()=t o )
holds. )

If we now put vp:0 =7, and substitute for p; its value, viz.
(see I, p. 289) x

1 a
) Pk—é:ffzma
we f{ind:

Y .
—"1 'r'z='—- . . a . . . ‘. . 2
(f~1 7 : ' (2)

] A}

If instead of (1) we write:

-10 -



