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4u—06¢
Vig—a
Introducing 2z = pq and putting l/_q_—_,%zt the first and the third
equation give -
94 4 4f* 1 Bt* - dat + ay + 20 — 2 =0
448 4+ 668 + Bt + 20 =0
therefore the discriminant of the first member of the first equation

must be zero.
If we assume

dg4+y—20+2=

24 (wy—2) = A

this may be written
(4 + B*)® —|B(BA—B*) + 216z =
or, after a slight reduction .
A(A—3B%)® — 432:B (3BA—DB*) — 466562 = 0.
This solution, though different in form from the former result,
represents the same surface; that it passes through the line
y=z=2u
may be easily verified.

Physics. — “On some relations holding for the critical poini”. By
J. J. vaN Laar. (Communicated by Prof. H. A. LorenTz).

1. In this paper we will derive some important relations which
exist between some critical quantities. -
If it may be accepted that in the association to multiple molecules
no generation of heat (change of energy) takes place, so that ¢ =0
may be put, we saw already in I, p. 291 that the velation

. T dp a
== }=1 P ¢
= ()=t o )
holds. )

If we now put vp:0 =7, and substitute for p; its value, viz.
(see I, p. 289) x

1 a
) Pk—é:ffzma
we f{ind:

Y .
—"1 'r'z='—- . . a . . . ‘. . 2
(f~1 7 : ' (2)

] A}

If instead of (1) we write:



(773

Pt e g RTy
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and 297) -
- 8 a
Ty = — f, —
R k 97 fl bk

in which eap = , and if we substitute the value (seel, p. 288

for RT%, and further the above values for p, and vz, we get:

_]"('I'—_J.)::80(/;‘;1 b e e e . (3

2
From -
- __ DPkvk
“=R1y
follows after substitution of the values for pg, v, and RT}:

r S
Y _gh
r__J

From (3) and (4) follows also the remarkable relation:

Ju

Finally by combination of (2) and (4) we find:

27
u=(fL—1):=:EZ;;§. N ()

The relations (2), (4), and (6) have also been derived by Vanprr
WaasLs (see among others These Proe. June 1910, p. 118, and
those of April 1911, p. 1216 et seq.) in the following form:

4)

r—1

=0 . . . e . (D)

P

S'L

(r—=1)»"? =27 ; 7s=8 ; f———lzéi; (all this by approximation).

In this the quantity s is ==1:u, while »' is not ==w;: b, but
= vj;: b,. In consequence of this our relation (5) is VAN DER WaALS'S
relation (he has not taken into account the factor & by the side of BT

E,LC: r'(l—-—i).
b, .S

—1 .
According to (5) t—;— would namely be :—; with ap = 1, or »

. -

(1 — _}) = 1. In this »=wg: 0% So if we substitute 7’ = vy, : b, for

L)
r, we get 2 (1——-— =
° f
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It was also already made probable by Van per Waars Jloc. cit.),
that (f—1)r? <C 27 and rs < 8, buts?: (f—1) almost exactly = 64.: 27 *).
The theory developed by us confirms these relations perfectly.
We found namely in T (p. 297) and II (p. 430 and 431) for the
factors f, and f,:
14 & #*(3m’—2n)
A W
__ (8m*—2n)*(4n—3m)

5

= 1,004 (w'_—:l) and 1,010 (#=2)

1, — 1,007 (v=1)and 1,019 (v=2)

See equation (5) in I, p. 288 for the signification of the quantities

m and n.
Really (f~1)r*=27:1,007 is <27, but only little smaller;

m

1,004 . .
rs=8]—00—7 also <8, but also only little smaller. This holds for

2=1 (partial association to double molecules), but the same holds
also for ¥ = 2 (triple molecules).

s 64 (1,004)° 64 _
But we see also that 771 =37 1007 1S very near - also in
? ]
- A (1,010)° . (1,004)
— here =& —= —— = ; .
the case of 2 = 2, where 7 1019 1,001, just as 1.007

So the value of s*:(/~-1) 1s only a thousandth of the value higher
4
than %, viz. 2,3727 instead of 2,3703.

As p=pwr: BTy and f—1 = a: pses’, we have also
PL
w(f—1)=e '(R—flz)—”
and so from (6) follows:
2T 1 (RTwy .
T=FiT001 pr
which equation together with the equation that follows from (1), viz.

a= (f—1) prvi’,
can serve for the determination of a (see also vax vER WaaLs, loc. cit.)

1) I may point out here that the different ciitical quaniities were already expressed
by me in experimentally determinable quantities in 1905 in a quite analogous
way (see Arch. Teyler 1905 p. 46 and 47) The quantity f was there excluded
on account of the possibility that b might be a funchon of the temperature. For
then the fundamental equation (I) no longer holds, as we have proved (1 p. 291).
And instead of the quantity »=v,:0; the quantity z = & : RTyp, was then

1

; . N 27
Introduced by me by the side of u. So « is ev1dent]y=8—f =
1
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Our relations (3) and (5) may effectually be used to calculate ay,
ie. the state of association at the critical point. Specially (5) is.
particularly suitable for this purpose, because f, and f, no longer
occur in it. As e has been added by us as a factor to RT} in the
equation of state, it can be also decided whether the associated
molecules really behave as one molecule as far as their influence
on the pressure is concerned, i.e. whether there is real association,
or — as vAN DER WAALS cautiously expresses it — “quasi-association.”

Now we saw in I, p. 295 that 8 must be = 0,955 for £ =1
and in II, p. 429 that 8, becomes 0,958 for =2 (in order that
f may become ==7 and p=0,265 for 7%). So we find the value

) . . 2,916
}_9235:0,977 for ar if 2=1, and if =2 the value =0,972,

—1
80 that fuz——— would have to be = 0,98 & 0,97 and not =1. Only
r

a very accurate knowledge of the quantities f,u and r=vg: b
could decide this.
It follows from (2) and (3) that

ety f 1

f— 1 + T;é = 8(1];-}:. 7--—1.'

If we put f, and eq f, : f, both =1 (for x=1 f, = 1,007 and

ap fy o f, = 0,977 % 1,004 : 1,007 = 0,974), we get by approximation :
8 27 o

-"-——- = 1 + '—3 . . . - . . . . (7)

By approximation this is really fulfilled by values of # in the
neighbourhood of 3 (for » =3, where f), f, and ¢ =1, (7) would

-

be quite accurately fulfilled). Thus the two members for » = 4 become”

43
resp. % = 2,67 and 6= 2,69; and for »=2 resp 8 and 7,75.

If we take the faclors f,, f, and «; inlo consideration, the first
member becomes = | 4 27 : (1,007 X 4,469) = 7,00 for r=2,114,
and the second member (= 8 X 0,974:L:1,114) equally= 7,00 (= f).

It is owing to this accidental property of the expression \

namely that it differs only very little from zero for values in the
neighbourhood of =3, that the factors f, and f, differ so lLtdle

Jrom 1, and thar also in the case v;:0, =2 the expressions RT} °

with close approximation.

d in a res 1 a
are again — ——, resp. ——
and p; are aga oYy P %
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. With regard to the course of the quantities f,r, and u for different
values of B, we may make the following remarks.
~ a. With regard to f, given by (see I, p. 294)
. dn )
7= dn—3m’

in ‘which (for & =1)

m=14 1/, f(1—B) (1+¢)*
\ n=1+"/B801—=B(A+g) + '/, B(1—B) (138" (1 +¢)*
(see 1, p. 288 and 295), we see immediately that — in view of the
fact that m and » assume the value 1 both for =1 and for =10
— this quantity s =4 for =1 and also for §=0. But for
intermediate values of 8, if ¢ has only any value (i.e.: if Ab differs
from 0), f will be greater than 4 in the neighbourhood of g =1,
and smaller than 4 in the neighbourhood of 8==0. Only if ¢ =0,
i.e. Ab where =0, f would be permanently <4, which is easy to
prove from the above expressions for m and n?). So it follows
from this — as fis found = 7 for normal substances — that Ab
must necessarily be >0, if fis to reach so high a value. Accord-
ingly we found in I, p. 295, that f-must be = 0,955 and ¢ == 1,23
for # =1, i.e. Ab:b, about 0,7, if we are to get at the same time
J="7 and u=0,265. For 2 =2 we must have for this 8 = 0,958,
@ = 0,916, i.e. Ab:b, about = 0,35 (see 1I, p. 429).

1} So the value found by Kameruineg Osncs for Helium, namely f=2,8, need
not bhe impossible, as van per Waars thinks (These Proe. April 1911, p. 1217).
When A =0 (hence b remains constan), / 15, as we saw, always < 4 for values
of B between O and 1, which is owing to the factor o= (1-4-p):2 by the side
of RT (which vaw per Waals omits; see above). And when Lb has a slight
positive value (which may be the case for Helium), and so when b suitably
diminishes with o, f will become >4 only near =1, but all over the further
range between 8= almost 1 and §=0 [ will be again < 4. So it is very well
possible that such an association exists for He at the critical point for not too
great value of Ad (it need only be slighlly greater than the normal association),
that f becomes < 4. ..

It remains only to consider whether f can be so much smaller than 4. For
=0 (Ab=0), { can decrease to about 3,& for 3==0,5; but for ¢ >0 this
value can become considerably lower, if g is only sufficiently lower than 1.

Note added during the correction of the Dutch prosf. Alter the ahove 1emarks
had been writien, K, O has carried out some new measurements, and found 4,5
for Hellum for f at T; (These Proc. Dee. 1911, p. 684), so >4 also here. But
at lower témperatures a cousiderably lower value is still found, namely f=8 at
the boiling point, so somewbat higher than the former value 2,8 (see above).
Now in normal cases / is always about 4 Yo lower for m = 0,5 than for m=1
(6,7 instead of 7); for Helium, however, this would amount to as much as 33 %,
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If for =1 and ¢=1,23 we take the value of 3 only little
less than 0,955, e.g. 0,9, we find for f already the value 17,6 with
m=1,223, n = 0,973. (for = 0,955 these values were resp. 1,107
and 0,969). [For » =2 this value, though > 7, would be considerably
lower|.

But if we take $=0,1, we find f=3,6 with m =1,228,
n=1,271, so again < 4.

Now for the so-called anomalous substances f 1s really found > 7,
for water 7,5 1s found, for acetic acid 8, for ethylaleohol 9. So it
would follow from this that at the eritical point these substances
have a value of B, which is < 0,955, resp. < 0,958. But as the
curve f=jf(8) does not intersect the straight line f=4 until in
Ehe neighbourhood of 3 =1/,, g could even be considerably smaller
than 0,96. But on no account can @ be near 0, because then f would
again become < 4.

So for acetic acid, water, alcohol ete. there does exist a greater
assoclation than for the normal substances at the critical point, but
most probably not a considerably higher association, and certainly
not an almost complete one (8 near 0).

b. The value of ». From (see I, p. 288 and 296)

]

v 3m?
o 7); T 3m*—2n
we can easily derive that » 15 always <73, when g<C1 and > 0.
With the above values of m and n we find eg. that r = 2,114
for §==0,955; assumes the value 1,77 for 8 =10,20; the value 2,31
for =10,1 {all this with 2 =1).
So for abnormal substances a value __<_241 must be found for ».
¢. The quantity w. From (see I, p. 289 and 294)

3 148m?
W= T (4n —3m)
follows that w=0,375 for =1, but takes the value 0,1875 for
@=0. Further it .can be shown that the curve u= f(#) always
hes above the straght line that joins p=7/,, with p =7/, for

¢ = 0 (Ab=0). This 18 moreover clear from the above formula (5),

P

X 8
from which immecately follows that then p is always > 5 G

But 1f ¢ >0 (Ab>0), the curve pw=f(f) lies above the said
straight line at g ==0, but falls pretty far below it at §=1.

So we find already the value 0,265 for 8 =0,955; the value
0,124 for $=0,9; but the value 0,270 for 8=0,1. (again all this
at =1, ¢ =1,23\
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Hence we shall find a value S_O_’ﬁ for w for abnormal sub-
stances. This 15 actually found. For acetic acid e.g. u is 0,20, for
aleohol we find 0,25.

It is noteworthy that f and p again approach closely to the ideal
values 4 and 0,265 for Z,, for f we find namely 4,8, and for u
the value 0,34. So this means that then the state of association at
the eritical point 1s less than the normal, i. e. 3 > 0,96 From formula
(5) the value 2,5 would follow for », which also comes nearer to ihe
ideal value 3.

2. The formula for the wvapour pressure at the critical
point. From the well known formula (see among others my Ther-
modynamik in der Chemie p. 59 (1893))

P

dpey _ 1 f d},), v
ar v'—v ar/,

v

follows, as (see p. 290)

dp\ 1 a
()= +)

for @ independent of T (9=0):

Apeg 1 1 a
ar _v'—vfi’ (P T 1;) .

Hence
d o, 1 p
m @Pea . a
! aT v'——vﬁdl T v'—v‘j"v2 o,
v v
or also
dpes o -

Tgq =Pe + 5

in which p. denotes the pressure of coexistence. If henceforth we
omit the index cx, we gei:

I 4, N
pdl pov
For this we may also write:
L
sdm proE’ &

or as a:prug’ is evidently — f—1, when f denotes the value of
Tdp . .
paT at the critical point:
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dd' :
g _E_ (f——l)-——-) G

dm m

So this is the most general differential equation, which gives e as
a function of m. But only when d and d’ should be perfectly
accurately known as functions of m, the-integral expression ¢ = f(m)
can be found.

Now the solution is possible for two exireme cases: 1 in the
neighbourhood of the critical temperature, and 2 at low ternpelatu:les
when the vapour follows the laws of the ideal gases, and the liquid
density does not change much any more.

Near the critical temperature

Then d =1 4 ar -} b+*, d = 1 — ar -+ br*, hence

dd' = (14+b7%)* — a2 = 1 — (a*—20) 7,
when v=1"1—m. (See II, p. 438). If we now put
a® — 2b = vy,

we get accordingly
dd' =1 —y (1—m).
If we write further : ’
= 1— f(l—m) + Y/, /' (L—in),

=G =

a d
because m =1 at 7%, and E) (T——E- was denoted by f.
k

then we have:

dm & dm/y,
In consequence of this (9) passes into
1—7(1— . 1—
= ) =122 = oy 2,
or in

| —f'(t=m)] = L1 ~ (f=1) A=m)] = (F=1) [ 1 = (¢—1) (1—m) ],

from which immediately follows.

—————— J
1) From Youna’s data in his famous summary in the Proc. R. Dublin 8. of

June 1910 1t appears however, that this relation is not accurately satisfied. We

m deg ad'

find viz. values for 8 = (— —_— 1) : —, which increase from 6 (at T}) to
. & dm &

about 9 (at m==0,5). In the neighbourhood of 7T} even very rapidly. Thus for

CGHSF the value of 4 is already = 6,23 at m = 0,9935; for m = 0,9942 we find

6,71 etc. ete, VAN pER WaaLs already stated that ¢ is pretty accurately 1epre-

sented by 8 =14+V'1"m — Y, (1—m). We shall, however, this variability, which

is also in that form with V' T—m animpossibility, leave out of consideration in

what follows. !

-~
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— /' + (=) =—(f=1) (y—1),

ie.
. - =D
or also
, -
}i—1=y=a2—2b, N ¢ 1)
. .. de d’s
.a very remarkable relation between the quantities E—andd - at the
m m*”

critical point, and the coefficients a and & of the densities of the
coexisting phases d and d’.
We find for Argon according to CromMELIN’s data (Comm.

118, p. 9):

g g AT 8,05
C =500 BTN
and as a =1/, (d—d'):VI—m, we get:
04714,
=2 V49 4 = 0,463 X 7,08 = 3,26.
@ 1,018 ) 3 X7, y

For b, the coefficient of the direction of the straight diameter,
has been found
b = 0,9027,
so that y =a*— 26 =10,63 — 1,81 = §,8.
The value 5,7 has further been found for f, and by approxima-
tion we may calculate :
de 554 150,7

—_ —123°96 — —— . —— =—1,82 = b,
i at 123°.96 505" 48.0 1,82 X 3,14 = 5,70
ds 6,61 150,7
— —127°,66 = — . —— = 1,52 3,14 = 4,78
am & 131 18,0 X
from
T ?

— 122044 C. 48,00 (crit.)
— 125 49 42,46
— 129 ,83 35,85

£

0,92 d*s
So we ﬁxld 3_,_7—6 150,7 = 38 for s

-10 -
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This value 38 can of course not lay claim to a high degree of
accuracy, Decause the data are too incomplete for this. If we take
a round number 40, we get f':(f—1)=40:4,7=28,5, while we
found above about 8,8 for y. So the agreement is satisfactory.

So for substances where ¢ is about 3,2 (see II p. 437), b =10,9,
J =17, we should have to find about /" = 8,4 X 6 = 50.

From the data of Fluorbenzene (see Kuenky, die Zustandsgleichung,

de 0,322 0,206 d*s
. follows — resp. —— =6,44, and ——— =4,12 — ap-
p. 99) fol OWs ~— resp 005 44, and 0.05 4,12, so o ap
2,32
proximated :6-03—_—46, which really gets very near 501?).

Formula (10), which is quite accurate and of general application,
i.e. in the critical point, can therefore render good services — when
the quantities f and f are known from vapour-tension observations
near 13, — to calculate the quantity y=a’— 20, which renders it
possible to calculate accurately the quantity ¢ — which in other cir-
cumstances is so difficult to determine experimentally, and which
indicates the divergence of the two phases just below 7% — when
b is known, i.e. the direction of the straight diameter. Then,
however, the direction of this locus shounld be taken very mear T,
which will probably differ somewhat from the further direction —
at least if it is confirmed that very near 7% the straight diameter
undergoes an abrupt inflection to the vapour side [Carposo; see II,
p. 437 (read p. 430 last line concave instead of convex side)].

I draw here attention to the fact, that the well-known formula of
Vax pER Waats, viz.

1—m

—loge =
Og& f 7 ?
which in this form holds for a large part of the temperature region,

is no longer quite accurate in the neighbourhood of 7%. For though
d
this formula then gives the suitable value for (d—;) , it deviates in
k

the second differential quotient. We have namely :

de . f

’

dm~  m?
hence :
1) From Youne’s tables loc cit. we derive {rom four successive values of m belween

0,9847 and 0,9883 resp. /=30 and 42. For m=1 f' will draw near to 59. But
for ¢ we find at least 8,4, so that y becomes = 10, and hence /' = 60.

-11 -
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d’s — 1 ds 2e
am* | mPdm mi |’

which becomes for 7%:
d's
7= () =102
m

instead of f'=(/—1)(a’—2b),.as we found above. So according
to Van per WaaLs’s formula f' would be = 7 X 5 = 35, whereas
really /' is aboult =6 X 8,5 410 = 50 & 60.

So according to Van per WaaLs we should have at 7%:

¢ = 1—f(1—m) + '/, /(/=2)(1 —m)*;
and according to our formula :
e = l—f(1—m) 4 1/,(f~1)a—"20)1—m)"
Clarens, Dec. 15, 1911.

Anatomy. — “On the relation between the symphysis and the aceta-
bulum in the mammalian pelvis and the signification of the
cotyloid bone.” By A. J. P. v. . Broek. (Communicated by
Prof. L. Bowx).

In the course of investigations on the structure of the pelvis of
Primates I met with some phenomena in the acetabulum, namely
the development of the cotyloid bone os acetabuli, that induced us
to a comparison with the pelvis of other mammals.

In the Primates the.cotyloid bone appears as is pointed out by
me!), in the form of two little triangular bones, an anterior and a
posterior one. The anterior cotyloid bone lies between pubis and
ilinm, the posterior between ilium and ischium. The former excludes
the pubis from the acetabulum.

An investigation in the cotyloid bone in other mammals brought
to light a distinet correlation between the development of the sym-
physis and the composition of the acetabulum, which I shall explain
in this note. This correlation is, as I think, of some value for our
knowledge in the morphologic signification of the cotyloid bone.

In the following explanations I shall divide the pelvis of mammalia
afier the compusition of their symphysis.

L. Symphysis composed by the os pubis and os ischii. In the
Monotremes, as is known, os pubis and os ischii take the same part
in the forming of the symphysis, which is very higk. The acetabulum
is formed by the three components of the os coxae, namely the os

52

Proceedings Royal Acad. Amsterdam. Vol. XIV.
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