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-

Physics. — “Bniropy and Probability.” By Dr. L. S. ORNSTEIN.
(Communicated by Prof. Loruxtz).

(Communicated mn the meeting of September 30 1911).

Einstrin *) has defined the probability of state in & way by which he
emancipates himself from special hypotheses concerning the structure of
the systems to which he applies his reasonings. He puts the logarithm
of the probability thus defined proportional to the entropy. If there-
fore de 1s the difference of energy between two states of the system,
and 1if d4 represents the work done by the system if it passes
in a reversible way from one state into the other we have
det+-dA

T )

i
dy = N{l log W=

R is the gas constant and N the number of molecules of the gramme-
molecule. The reasoning, used fo deduce the proportionality of y

2 - o
and -NZO_(] TV, is perhaps not quite convincing, for on the one side it

is presumed that a system runs through all states possible with
the given energy, and on the other that Jog W like the entropy
fends to a maximum value. It is possible by means of statistical
mechanics (as well with the help of the canonical as with that of
the micro-canonical ensembles) to find the relation of entropy and
probability, however using many less general hypotheses as those
employed by Ewsrwiy. I will try lo show this in the following
comnunication.

1. We consider a system of a great number (s) of degrees of
liberty. We suppose that the changes of the state in this system
are governed by the equations of Hamirron. Observation does not
teach us anything on the s general coordinales (g) and ihe s moments
of momentum (p) but we obtain knowledge of certain (e.g. geome-
trical) quantities 4. Suppose that there are % quantities 4 which
are discernable for observation. The number % is small in comparison
to 2. We shall indicate these quantities by A, ...4, .. 4%

To the 25 values of the coordinates and the moments in a given

1) Ann. der Phys Vol 38, 1910, p. 1276.

%) The quantities A may he geometrical quantilies bul also densilies in given
spaces. The quantities determining deformation must be used in several cases, also
the optical qualities of the system, in other cases we have to do with thermical
quantities relaling to parts of lhe system accessible to observation, "and which may
be said to characterse the system for it.
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state of the system corresponds a perfectly determined set of values
A, on the contrary it must be kept in mind that a great number
of systems with greatly differing values for the p’s and the ¢’s
corresponds to a given set of values of the 4,’s.

Moreover we must presume that the quantities 4, are observable
with moderate accuracy, so that sysitems for which 4, has a value
between 4. and 4, 4+ dd4, are undiscernible for observation. The
quantities A4 are once for all fixed (in relation to the given accuracy
of observation); Ad, will be small compared with A..

A system having its 4,’s between the limits mentioned will be
called the system (4, .., .. dr). For the sake of simplicity we shall
suppose that the quantities 4, depend only on the general coor-
dinates ).

The 2s-dimensional space in which the system can be represented
in the ordinary way can be dissolved into the extension in configuration,
(the coordinates being the variables) and into the extension in moments
or velocity. The part of the extension in configuration where the
systems lie for which the value of the 4, is between 4, and 4,-d4,
will be represented by

wWd, .. 4, . Ap)dd). . dd, .. dd;
or shortly by -
XdAl ..ddy.. dAk .

We shall further suppose that the potential energy & of the system
of given 4,s is totally determined by the values of the quantities
. This is only approximately true, for ¢ depends on the coordinates,
which can still be greatly different for systems of which the 4.’s
are the same. We shall represent the potential energy by

sd, .. A, . Apya, . . an),
the quantities @ denoting parameters on which the potential energy
may also depend; the same parameters shall appear generally also
in the function . .
Finally we could suppose that there exist relations between the
quantities 4,, suppose for example b (b < %) of the form
- fp =0.

For such a case we can always introduce £—& new quantities
4 which are mutually independent, we therefore shall suppose that
this is yet the case for the 4,’s mentioned above?). )

}) It is however not difficult to extend the considerations to those cases where
this is not so and where the Ax can be thermical quantities.

?) This.need not be the case if we take as variables such quantities which are
suggested by the nature of the problem, e.g. there exists a relation between the

56"
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2. We shall now consider a microcanonical ensemble between
the energies ¢ and & - de, consisting of the systems described above.
I shall represent the part of the extension in confignration for which
the guantities 4, are situated between the limits 4, and 4,—dd, by
2(d,. 4,..4;). The value of £ may be expressed by the equation.

s

—]

d, Ao di) = Cl(e—eq (A, . . Ay .. AR)}?
y.dd,..dd, .. dA; ds;

C being a defermined numerical constant which is of no importance
to ns. The quantities A, must have such values that & Se.
We shall first consider the question for which values of 4, £ is
a maximum, i.e. which values of the /4, occur in a maximal region.
We find for the maximum condition, proceeding in the usual way,

_(i_l) 1 9o 1O _g
2 e—g, (4, .. A,.. 41)34, " y 04,

The quantity s—s,(4,) being the kinetic energy of the system
occwring maximally, this quantity is, as is proved by GisBs, propor-
tional to the absolute temperature 7' and it can be expressed by
the formula

s R

2N
8
Neglecting 1 with respect to g8 being very large, we find asa
condition for the maximum of £
RT04; v 041,
The further conditions that d*/og 2 <0 lead to a number of
relations of the form:

S'—z 1 d‘fq 2 S"‘z d‘zeq

T2 5 \04, 2t, 04,
1 /1) 1 d%

—— - 0,
7 (bA,) LY ERS

and to a number of relations in which the quantities

0.

34,04 1

densities in fixed elemenls of volume m a gas. In praclice one will not use the
relations to eliminate the -, but will use the Laplacian method of undetermined
coeffictents. It is also possible thal mequalities appear as relations in every case;
it follows from our first hypolbesis that we may assume that the relations are
fulfilled without any approximation.
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play a part. The complication offered by the appearance of these
quantities may always be avoided by a linear substitution which
removes those differential coefficients. I shall suppose that such-like
A’s are introduced (further representing them by the same symbol
A,); A, represents the value of 4} in the maximum sysiem.

3. The region £ where those sysiems are represented for which
A, is situated between A,, +§, and 4, + & 4 d§, can be easily
calculated ; we tind for it:

k
) P/§r2

Q= e 1 dg, .. d&, .. d&ide

where
1
90 = CX (/Iza c /]/o v /lko) (8'—8(1)2
and
_ N 0gg \* NV 0%, 1oy 1 9%
B = T RTe, \34,) T RTOA g \04) T g o4
Do p s b4

The expression found above can be used to calculate the total
volume of the extension in phase of the space where the energy
is confained between the given limits. For this purpose we have to
take the sum of £, for all the values of .#’°s which are compatible
with the given energy. However, we can integrate with respect to
the & from — o to - ao, the values of § which deviate considerably
from O, attributing only very swall amounts. Proceeding in this
way we find for the extension in question, which we shall represent

by the notation of GiBBs eide or a—de
&

?-Z de = e?ds = ——*-—CL-“-———— ds,

0s (pr . pa- . pr)l

C being again a delermined constant, the value of which is without
imnportance for our conclnsions.

With the help of the found expression we can express the value
of the function ¥(g) which determines the magnitude of the part
of the extension in phase for which the energy of the represented
systems is smaller than e.

We obtain for V7 (e) the expression

$

-

o (o ddyond :
At

V= T e
e
: (V=0)

The value of the integral can easily be oblained in case that the
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value of the 4,, for which £ is a maximum, is independent of e.
Then we may assume &(V=0)= g (4,  dy;-.4r,). Substituting this
value we find

§

) ¥ (4, Ay, Ay 2 N 2
= ‘/m . (e—g (Am.-./l,:?.-l.l/;n) .

But the same relation holds for other cases. The quantity ./,
depending on &, we have

¢ —1

— =ﬂs~—eq(//m../b,,. Ary) (A g A5y Areg) T8
s V=0) .

ol v

s £ € S

2 2 2
. == ey () 2] + f(s_eg(..//,,,) TR
¢ (V==0) :(V=0)

k
\ =
t

Bsq 0A,, p
a/jyo af t
€ S

2 2 "k Oy 0y,
~= f(e-eq () 3ot
e (V=0)

Combining the integrals we find

s e 1 0y \ oz
— s — 2 . SRR, JU Bl
jjg &(42)) '((/I"’) 3 (2 (8 —2q,) 04, X azfyo) ds ) .
(V=0}

Every term of the integrals is zero. The kinetic energy being
essentially positive we have at the limit (V' =0)&=¢, so that
we obtain

s

=;2_ C (o=t (drg))® % (vhuy)

4,, having the value relating to the energy e.

In this demonstration V'p, bas been neglected, the influence
however of these factors is small, they deviate only very slightly
from 41, if compared with the quantities taken into consideration.

4. Guwss has proved that log V is equivalent with the thermo-
dynamic entropy. If two microcanonical ensembles whose energy
differs Ae and whose pmametels differ by Aa there exists an equa-
tion of the form .




(845)
‘=9 V Alog V=Ae+ 4| La?) . . . . . (1)

in this equation A[ is the average force in the ensemble exercised with

e

1) For the case under consideration we can prove without applying the general

. . & .
discussions of Giees that §’i shows a perfect analogy with the {emperature, and
]

the relation (I) can be proved somewhat fiore simply than it has been done by Giess.
Let us imagine two systems of the kind described above, which can interchange
energy bul which considered as a whole are 1solated. Let us suppose that the
first has s;, the second s, degrees of fieedom, the energy of the first being ¢, that
of the second &. The total energy heing constant we have
& + & =8¢
The quantity @, of the combined syslem can be expressed (Gises Lc. p. 93

form. 316) by
¢ — f Mt de,.

If we represcent the value of (As:) when the A, lLave therr maximum value by
2(A.y), and if we distinguish for the first system » parameters A,, and [or the
second 7 parameters A, we obtain

Sy
——1
2

2
Pie 2
e —ﬁel'_s!h) Xx(A/sl)(sx_sﬂ)
Xﬂ(iisz) dsa'
The maximum system will contmbute a maximal amount to the integral. We

can f{ind this syslem asking for what values of e, and & the function under the
integral is a maximum ¢ + ¢ bheing a constant, We then find

s, 1) 1 g, 1 S 1 de. 1
—_— — ————e 8 — —— —
2 &—eg 2 &,—8¢, &
k s oz 1 0y, "\ d4;
S—[(2—1 LN i S Bt
1 ( (2 )BAL.O T 0/1;,0) g, T

n ] de 1 dy,\02,
Sl—(2—1)2 0 — 22 ) Dy,
1( (2 )a)'/o B Xa Ol’o)asz 82

From the ahove considerations it follows that the summalions in this equation
are zero, the A» being the values for the mosl frequent forms of the separate
systems. We therefore find for the systems oceurring maximally

-

5, —2 §,—2

— =u
2(81_’81]1) 2(52_891)
or
&ny €pg
8 S

i~ e. that system is most frequent for which the kinetic energies of the composing
systems are proportionate to the number of degrees of freedom.
If we separale the systems, lheir contents of kinetic energy will fulfill wilh
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respeel to the parameter a. GiBss has shown that ¢~ V7 corresponds
with temperature. With the help of the given relations we can cal-

great probability the theorem of equipartition. Also two systems the energies of
wlich are proportionate to their number of degrees of freedom will be, after that
communication of energy has been made possible, in a probable state and it is
therefore almost certain that one system will not give or obtain energy from the
other. If two systems are hrought into contact whose energies are in another
proportion, their state is improbable and the total system will probably change in

such a way that the system for whlch P is too great, loses energy. What has

Ly . £
been said is sufficient to show that = can be used as a measure for the temperature.
S

We have next to consider the mean force in a micro-canonical ensemble, I
will give a somewhat simpler deduction than that of Giess.. (Hrrrz has also given
another treatment).

Consider an ensemble for which the density p in phase is a function of ¢, the
furtction ¢ (¢) being zero everywhere except between narrow limits in the proximity
of ¢; between the limits p(¢) shall be supposed everywhere positive. Suppose
that & and ¢, are values of ¢ lying outside this region but so, that s1 < gy < ¢g5 we
have identically

o

2

L]
f@dpl....dgs:fge?de.
q

81

Differentiating with respect to the parameters ¢ we obtain ’
g O " . “30
e dgs = — ¢ de==— | = Adp,....dgs=
68 a pl s +f@ da ¢ a 'P1 s
g & 8

f‘Al?ds-—fg(-a—ée +A )d&

The transformation on the second line follows du‘ectly from the significalion of .4},
E

The last expression is obtained by integralion in parts. The density p being
zero for the limits, we may neglect the fact that £ and s can depend on a. We
therefore obtain

& aZ|
A =LY de=0.
fQ(ae + Os aa)e *
&
Now p being pogitive and ¢¢ differing from 0, we have
— + A %%
0 0z Oa

The values ¢ and e can he taken as near to each other as we like, therefore

= 0.
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culate ¢—* V and find for il
2

— Eyge
s

It is worth noticing that (comp. Gusss form. (377) p. 119)

ey V:—-‘;—_E—p],

&

where _e—l,l vepresents the average kinetic energy in the ensemble.
We therefore have

Bl = o

The same relation can be obtained with the help of the given
formulae. Using the definition of an average value, we have

—  Je,82a
E,)Q_:-—/-%z—;—: - s,,ﬁoze"?fx(d‘,./jp.Ak)_

(e—8g (Ay . oAy 4))2 2, .. dAy. . Ay,

The last integral can be transformed into

k 1 3
e
G (5—tg (yo ~ Aro -+ Ar) 2, ﬁ 1 0\,

we can always take care that the sign of ¢ does not change in the interval.
14 .
Now ¢ heing e we can transform the last equation to

av
Ee?:—a—‘;—}—C;

4
C depending only on @ Taking for ¢ the least value consistent with the energy,
V
we have lo take ¢” and 37 equal to zera and we find the same value for C.
To prove (I) we have only to keep in mind that

1 oV oV
A‘log V_,F(E—Z-Aa—{--ézAs);

v
remembering that ¢f == %—E~ we fird
e=? VAlg V=24 4a+ As
€

2 o ~
Purther ¢V = —e¢,| is equivalent to the temperature; this note shows there-
s ©
fore that () is indced an expression which is comparable wilh that of thermo-
dynamies,




( 848 )

L azfv)g,z_}_(a_fd_)t °
&py 04,2 &po \04, d§, .. d§, ..d=2C —————fgo——"————!—,
(Pye-pr .. pi)le
which can easily be seen if one remembers that the terms which enter

besides p, in the exponent are very small in comparison to the p,
terms. Using the given value for #7 we obtain

?,,|_: (e—2g (dyy - Aoy .. dry)) = &,

The mean energy in the ensemble and that of the most frequently
occurring systems are equal. The same is true for the force in the
maximum system 4, and the mean force A|.

The force exercised with respect to a parameter in a system of

O¢
the energy & amounts to -3 We therefore have
(]

3
A= — e—sj © 2udd, .. dd, .dd.
z a

The value ofg‘f can be expressed for a system for which
o

4,=A4,,+§ and for which § is not too great by

Oe Oe 0%s 0%
— =\ — E ’ 03 E L.
e (6a)0+ (6./1, S )“L-,-,,ad,a/fﬂgg’

In the integration those systems for which § are great have very
small influence, we can therefore adopt the given expansion for all
values of §,. Introducing the value of £, we easily see that the
terms with §§, disappear in the integration. We also find:

— Os L2 0% E 2 9%
= (-2 — _—4 32 "
As aa)o 1 ps 0450 " p,0430a

& L
R we therefore have

In general p. is large compared with
A =

Comparing the values of log V" and log 2,, we see that we have
if s is very great

k
logV = log &, — ¥ = log px + Const.
1

k
The sum = log p, wmay be neglected with respeet lo log £, if £
1

is small in comparison with s, this being the case we have

-10 -
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logV =log £, + Const.

Comparing therefore log 2, for two ensembles for which the

energy differs by As we find:
RT

—JTT—Alog.PwAE—{-AAa N 7 4

R
The quantity Z—\_/,Zog £, fulfills therefore the same relation as the

thermodynamic entropy in the corresponding case. The correspond-
ence however ought no longer to be considered as to be formal, all
quantities relating now to real systems, i.e. to the most frequently
occurring system of an ensemble, that may be identified with the
system in stationary state. The function log V showing the properties
of entropy, the same will be the case for log 2,.

5. I shall define the probability W (4, .. 4,) of a system (4, .. 4x .. Az)
as the integral of & taken for a region whose magnitude is given
by observation and which is characterised by the quantities A4,
(comp. (1)). We therefore have

Aq+AA) AFAAER
2 2

W(d,. 4 .Ak)zf - f.SZ(Al..A,..Ak).

A—AAN Ak—AAL
2 2

Substituting in this formula the obtained value of 2 we find

AA'L AAIG
1 2 P gz
W(dy .. d,. 4) —QJ f dS . dg.
— AA1 — OAL

7
The A, being 1elat1vely small guantities compared with the §,, we
can put this into the form

k
- szp}’gzr
W(d,.. A . .4,9:.9 e 1 Ad DA DA

-

We shall now prove tha,t log W = na shows the properties

of the entropy, i.e. that

' R R R ?
= —log W= — log & — 3 8% - ..
e = = log v log e, + e 8% -+ Const (L11)

answers to the relation.

-11 -
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ds 4 dA -
M= e (IV)

. . R
Putting 7, in stead of » log 2, 4 Const. we can transform (I1I) to

—

R %
m—_‘-—?]a—}—ﬁElp@?,. N ¢ 7 L)

The energy being the same for the systems under discussion the
relation (IV) reduces to

R d4
—dlog W=—
N T
Or k)
d4
M =1, -|-—T .

R
In order to prove the correspondence of the eniropy 7 and % log W,

we have to show that
RT
2
s él—v' = P/§ ’
represents the work done if the system is brought in a reversible
way from the stationary state to that indicated by A.

We can make this transformation reversible in two ways:

In the fixst place we can imagine an exiernal field of force,
applied in such a manner that the deviating state in the old
ensemble is the most frequently occurring in the new and change
this field of force in such a way that the most frequently occurring
state passes continually from the states . through the state 4 &.
In the second place we can imagine fictitious forces influencing the
parameters 4, in such a way that they allow the non-stationary state
to exist. These forces can be changed in such a way, that the
said states follow each other as a series of states of equilibrium ?).

[ will follow the second way. In order i{o find the forces wanted,
we can take the quantities & as parameters and determine the forces
&, working on the stationary system by the relation
dlog V. _

9, 7

The vegion V to be used here is found substituting A,, 4 &, for
A, in the value found for Vi{e,...4,,.), 4y, + & Dbeing now the
equilibrium value for ..

:

e—? V

[ald

) If we have for example a gas the density of which deviates from the nor-
mal we can as well by introducing a feld of force as by fictitious walls change
the non-stationary slate into a state of equilibriun.

-12 -
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In this way we find for the force working on &,

. RT{/dlogV 0% log V'
E=F 3(‘&7) U (7/7“) S

Introducing these forces in the expression for the work we obtain

Tkzjwcqu (&@V)q z

_ BT Ll
2N 3L ),

the first term being zevo as follows from the condition of equilibrium.

R
It has been shown also that Z—Vlog W corresponds with entropy

for a non-stationary state. For two deviating states from different
ensembles the same is trae, because it is always possible to pass
from one to the other, passing through the stationary states of the
ensembles, for which states the formula (II) is true.

6. I will shortly indicate what is obtained if we apply the above
formulas to a gas (or liquid), the molecules of which answer to the
hypothesis of vaN DEr WaaLs. Suppose that we have n perfectly
rigid and elastic spherical (diameter 6) molecules in a volume V.

Let us divide the volume in £ equal elements V7, , which contain
n, molecules. The volume of the extension in configuration can be
represented, as 1 have shown, by

e (7))

o nN=o (7;) being a function of density. For the potential energy
4

we shall use the expression

e

Ny

2

The quantities n, are joined by the relation
3

= n, = n.
1

The function y of (1) has the form

2
___“_2
2

—H) —N

n twen T (o (ns) V)
the members n, being chosen for ..
The condition for the most frequently occurring system is

-13 -
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e  alN n d log w(v,)
—_ — —_— l ) -n) —e el — .
byt g7 7, T g @) e —o "

The quantities », are normal coordinates, the value of p, is
i n _2_ d log w(n,) n by log a:(n,) ﬂi_iv—'j “
Tiyg v, dn, V. dn, RTV, RI &,

The last term is again small in respect to the others, we therefore
find

n,2

pe=—

1 d( L, dlog w (n,) 2n,’]\’)
pr:—————' n,—n,” _— .

n, an, ’ dn, 9RT
3
& being EnRT.

If we take into consideration that the pressure = of a gas (comp.
my dissertation p. 123) is expressed by
RT L dlogw (@ en®’
”"‘7\7(”_” an JTI)
we can put p, in the form
1 N da(n,)

Pr=

The expression log V" can easily be used to calculate the pressure.

7. The mean value of (4, —4,,)* i.e. of &, can easily be caleulated.
One finds for it

’ 'g—z: =
P
or p,§% =1. We can apply this formula to calculate the mean
work necessary to bring the syslem from the normal into the deviating
slate, we obtain for it
—_— RT
dd =k N

For each quantity .7, this mean work amounts to oY i. e, the

mean work is equal to the energy pro degree of freedom.

The result has also been obtained by Emsruiv. Indeed it can be
shown that for our case the definition which EiNstEIN has given and
the definition used are identical, if only it may be supposed that
" the path of the representing point of the system fills the space ¢ =
const. everywhere dense. EinstmiN defines the probability of a state
4,..d A as the fraction of a very long time 7 for which the

-14 -
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system is in the said state. I have shown') that the probability in
a time ensemble can be expressed by

ds
C-—I;,

ds being an element of the path of the sysiem and V being the velo-
city of the representing point on its path. The quantity Cisgiven by

ds
f 7 integrated along the whole path.

The probability defined by EINSTEIN now can be expressed by

ds
_P;’
where the integration covers all those elements for which the values
of 4,7 have the given magnitude. If the hypothesis of EiNsTEIN may
be used the value of this integral can be expressed by the part of
the space &= C which is the limit of de & (4, .. /.. 4) Ad, if
de approaches zero, and the space has been filled in such a way
with systems, that yds has a finite value if de approaches zero.
For by Einstmiv’s hypothesis all the points for which 4, is between
4, and A, + A4, are on the path of the representing point, and
the given expression represents the part of the space for which

c

, ds
the 4,’s bave the given values. The integral f 7 taken over the ele-

ments indicated above and £ (4,) are identical.
Using these conditions liwniting, however, the generality, we have
proved that the probability as defined by Einstuivy is proportional

to the entropy. .
Groningen, Sept. 1911,

Physics. — “Remarks on the relation of the meihod of Gisps for
the determination of the equation of state with that of ihe
virial and the mean free path. By Dr. L. 8. Orvsrrin. (Com-
municated by Prof. H. A: Lorintz). '

(Communicated In the meeting of December 30, 1911).

In determining the equation of state by means of statistical
mechanics it is useful to introduce a function w, which for a system
of n molecules of diameter ¢ is given by an integral

fdﬂ;l..dz,,::w"m'. B (3]

1) Comp these Proc. of Jan 28 1910, p. 804.
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