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Physics. "Ent1'opy and Prohability." By Dr. L. S. ÛRNS'I'EIN. 

(Communicated by Prof. LORI~NTZ). 

(Communicated m the meeting of September 30 1911). 

EINSTEIN 1) has defined the pl'obabIlity of state in a way by wluch he 
emanclpates himself from E>pecial hypotheses concerning the structUl'e of 
the systems to which lw applles bis reasonings. He puts the logarithm 
of the pl'obability thus defined pl'opol'tional to the entl'opy. If tllel'e­
fore de IS the diffel'ence of enel'gy bet ween two states of the system, 
and ]f dA relJresellts the work done by the system if it passes 
in a l'eversible way from one state info the othet' we have 

R de+dA 
dl) = N cl log TV = r-- , 

R iE> the gas constant and N the nnmbel' of molecules of the g,rámme­
molecule. The rea,soning, nsed to dec\uce the propOl'tiollality of ~l 

R 
and N lo,q TV, is pel'haps not qmLe condnciJlg, for on the one side it 

is pl'esnmed that a system l'nns thl'ough all states possible with 
the given energy, a,nd on the other th at log TfT like the entropy 
lends to a maximum value. Tt is possible by means of statistICal 
mechanics (as weIl with the help of the canonical as with that of 
the micro-canonical ensembles) to find the relation of entropy and 
probability, however using many less general hypotheses as those 
employed by EINSTgTN. 1 will ti'y to show this in the following 
comllJ unication. 

1. We considel' a system of a gl'cat n umber (8) of degrees of 
liberty. We suppose that the changes of the state in this system 
are govel'ned by tbe equations of HAl\fILTON. Obsel'vation does not 
teach us anything on the s general coordinates (q) anc! the s moments 
of momelltum (p) but we obtain knowlec\ge of cel'tain (e. g. geome­
trieal) qnantities A. Suppose that thel'e are Ic quautities Ak which 
ai'e discernable fol' obsel'vation. TlJe numbel' "Ic is small in eomparison 
to 28. Vve sha11 indicate these quantities by Al .. A/ .. Atc 2)-

To the 2 8 values of t11e cool'dinates and the momcnts in a given 

1) Ann. der Phys Vol 33, 1910, p. 1276. 
2) Tl1<' quantIties A may be geometricaI quanlJlies but aIso densilies in givcl1 

spaces. The quantities determining deformation must be used in several cases, also 
lhe opticaI qualihes of the system, in olher cases we lJave to do with thermical 
qUcllltilies relating 10 parts of the system accesslble to observatioll, :ancl which may 
be said la characterlse thc system for it. 
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state of the system corresponds a perfectly determined set of values 
A, on the contrary it must be kept in mind that a great number 
of systems with greatly differing val nes for the p's and the q's 
cOl'l'esponds to a given set of values of the A/s. 

Moreover we must presurne that the quantities Ar are observable 
with moderate accuracy, so that systems for which A" has a value 
between A.e and A" + clA~ are undiscernible for observation. The 
quantities bA are once for all fixed (in relation to the given accuracy 
of obsel'vation); t:.Ay will be small compal'ed with A.e. 

A system having its A/s between the limits mentioned will be 
called the system (Al" Ay .. Ak). For the sake of simplicity we shall 
suppose th at the quantities A/ depend only on the general coor­
dinates I). 

The 2s-dimensional space in wbich the system can be represented 
in the ordinal'y way can be dissolved into the extension in configuration, 
(the coordinates being the variables) and into the extension in moments 
or veloeity. The part of the extension in configuration where the 
systems lie for which the value of the Ay is beiween A/ and A/+dA~ 
will be represented by 

X(Al .. A~ .. Ale) dAl!' . dAr . . dAk 

or shol'tly by 

XdAI .. dAr .. dAk . 

We shall further Ruppose that the potential energy Eq of the ,system 
of given A/s is totally determined by the values of the quantities 
.,1". This is only approximately true, for fq depends on the eoordinates, 
whieh can still be greatly different fol' systems of which the A/s 
are the same. We shall represent the potential energy by 

Eq(Al .• A/ .. A'e, al' . all), 

the quantities a denoting parameters on whieh the potential energy 
mayalso depend i the same parameters shall appeal' generally also 
in the fnnction X. , 

Finally we could suppose that there exist relations bet ween the 
quantities A/, sllppose for example b (b < k) of the form 

f~=O. 
For sneh a case we ean always intl'oduce k-b new quantities 

A whieh are lUutually independent, we thel'efore shall suppose thM 
this is yet the case fol' the A/s meniioned ttbove 2). . 

1) It is however not difficult to extend the considerations to those cases where 
th is is 110t so and where the A" can be thermical quantities. 

2) This. need not be the case if we take as variables such quantities which are 
suggested by the nature of the problem, e. g. there exists a relation between the 

.,6'" 
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2 . We shal! now consider a micl'ocanonical ensemble bet,ween 
tlle energies ê anel ê + dê, cOllsisting of (he sy5tems descl'ibed above. 
I sllall repl'esent the part of the extension in eonfignration for whieh 
the qnantities AI are situated between tbe lumts AI anel A,,-dAI by 
,2(..1.1 ' AI" At.). The va.lue of S~ may oe expressed by the equation. 

':'-1 
.Q(Al • • AI ••• Ale) = (' I(ê-êg (Al' . ..1.y •• Ak)l2 

X . dAl .. dAl' . dAk dê j 

C being a deieJ'mined Ilumerical constant whiC'h is of no impol'tance 
to ns. The quantities AI must have sueb values that êq ;; ê. 

We shal! first considel' the question for which val ues of AI, .Q is 
a maximuml.. i.e. whieh valnes of the AI occur in a maximall'egion. 

We find for the maximum conditIOn, proceeding in the usual way, 

_ (~ _ 1) 1 aê" + ~ aX = O. 
2 ê-êq (Al' . AI' . Ak) aAI x aAI 

The quantity ê-êq (Lt) being the kinetic ene1'gy of the Rystem 
occurring maximally, this quan tit.)" is, as is proveJ by GIBBS, propor· 
tional to the absolute telllpeJ'atlll'e 'T and it ean be exp1'essed by 
the formula 

8R 
--T. 
2N 

8 
Negleeting 1 with respect to 2"' s being ver.)' large, we find as a 

condition fol' the maximum of .Q 

N Oêq 1 OX 
- RI' iL1.lc + X aAk = O. 

Thc further conditions th at ó2 1o.1.Q < 0 lead to a number of 
1'e1ations of the form: 

8-2 1 (ÓEq )' 8-2 ä-sq 

- -2- ê/ aAy - 2êp aAI2 

1 ( ÓX)1 1 ó'X -- - +--<0 
X2 àAI X dL1/ ' 

ó2 

and to a l1umbel' of 1'elatio118 in vi'hieh tbe quantities ---­
ddlàAtt 

dcnsities in fixed elements of volume ll1 a gns. In practicc one wiJl not use the 
relatiolls to eliminate the M but wiII usc thc Laplacian method of undetcrmined 
coefficIel1ts. It is also possiblc thal ll1cqualities appeal' as relatiol1s in every cac:c; 
iL follows from OUl' first hypothesis that we may aSSUl11C that thc rclations are 
fulfillcd without any appl'oximation. 
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play a part. The complication offel'ed by the appeal'anee of tbese 
quantities may always be avoided by a linear substitution which 
re moves those differential eoefficients. I sball suppose that sueh-like 
A/s are introdllced (furthel' representing them by the same symbol 
Ay); AIo represents the value of A'e in the maximum system. 

3. The region ~ whel'e those &ystems are repl'esentecl fol' WhlCh 
AJ< is situated between AIo + s/ and AIo + SI + dS I can be easily 
calculated; we find fol' it: 

where 

and 

le 
t ;S 2J/Sy2 

~"lt:. = ~~oe 1 dSl •• dSI •• d6"dé 

s 
--1 

020 = Cx (Alo' . A/ o •. Ako) (e-eq) 2 

N (deq )2 N à~éq 1 (dX)~ 1 d'X 
PI = - RTEpo aAy - RTdAI 2 - X2 a/ly + y:aA/ 

The expression fonnd above can be used to calcul.<üe the tota1 
volume of the extension in phase of the space where the energy 
is contained between the given limits. For th is purpose we have to 
take the sum of S~t:. fol' all the vaJues of ./I/s which are compatible 
with the given energy. However, we can integrate wUh respect to 
the St from - 00 to + 00, the values of gl whirh devlate considerably 
from 0, attrlbutmg only ver)' slDall amounts. Proceecling in this 
way we find fol' [he extension in question, which we shalll'epl'esent 

av 
by the notation of GmBs erde Ol' a; dB 

av. CS!.o 
- de = eTde = de, as (Pl' . P~ .. Ph·y/~ 

C being again a deLel'mined constant, the value of wluch is without 
importance fol' our conclr~sions. 

With the help of the found expl'essiou we ean expl'ess the value 
of the function V(I» whieh detel'mines the magnitude of the part 
of tile extension in phase fol' which the energy of the l'epresented 
systems is smaller than 8. 

We obtain for V(E) the expression 
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value of the Ar, for which .2 is a maximum, is independent of e. 
Then we may assume 13 (V 0) = eq (AIO' Aro·.Ako). Substituting this 
value we find 

S 

I X (AlG' Axo .Ako) 2 ,""" 2" 
V = C V - (I!-eq CAw·A/o··Ako) 

(PI '" Pl' . Pk) 8 I 

But the same relatioll holds for other cases. The quantity Aro 
depending on 13, we have 

Every term of the integrals is zero. The kinetic energy being 
essentially positive we have at the limit 13 ( V = 0) e = eq, so that 
we obtain 

Alo having the value relating to the energy e. 
In this demonsh'ation V'PI has been neglected, the influence 

however of these factors is smalI, they deviate only very slightly 
from 1, if compared with the quantities taken into consideration. 

4. GmBs has pl'oved that log V is equivalent with the thel'mo­
dynamic entropy. If two microcanonical ensembles whose energy 
differs /::"13 anel whose parameters differ by /:;,.a there exists an equa­
tion of the form 
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e-P V D.log V = !:.E +'A/ !:.a 1) (I) 

in this equation A I is the average force in the ensemble exercised with 

I) For the ease under eonsidel'ation we can prove without applying the general 

diseussions of GIBBS that E2P shows a perfect analogy with the temperature, and 
_ S 

{he relation (1) ean be proved somewhat lliore simply than it has been done by GIBBS. 

Let us imagine two systems of the kind described above, whieh can interehange 
energy but which considered as a wholé are lsolated. Let us suppose that the 
first has 81. the second 82 degrees of fl eedom, the energy of the fil'st being Eh that 
of the second "2' The totaI energy being constant 'we have 

El + E2 = E. 

The quantity <Pu of the eombined system ean be expressed (GIBBS l.c. p. 98 
farm. 316) by 

/12 Je't'l +1'2 dE2, 
If we represcnt the \Talue of U\,h) when thc AI have thclr maximum value by 

~(A/u')' and if wc distinguish for the fir5t system IC parameters AI, and for the 
secund n parameters À" we obtain 

SI S2 

/12 = fE1-Eq1)2-1XldIE1)(E1-Eq2)2-~ 
X2(J., ( 2 ) dE 2 , 

The maximum system wlil contl'lbute a maximal amount to the integral. \Ve 
can find this system asking for what values of El and E2 the funetion undel' the 
integeal is a maximum EI + E2 being a constant. 'vVe then find 

- - 1 -- dEl + ..:. - 1 -- dE2 + (SI ) 1 (S,) 1 
2 E1-Eql 2 E2-Eq2 

4, ( (8 1 1) OEq1 1 OX1) ÖAlco 
~ - -- -+-- -dE + 
1 2 OAko Xl OA,"o dEl 1 

2(- (~ _ 1) dEqO + ~ dX2
) 0J.,0 dE

2 
' 

1 2 0 )"0 X2 dJ.,o 01'2 
From thc abave considerations it follows that the summations in this equation 

are zero, the Ar being the values for the most frcquent forms of the separate 
systems. We therefore find for the systems oecul'ring maximally 

bl -2 8 l -2 
----- -(.t 
2(E

1
-Eq1 ) - 2(E

2
-Eq2 ) -

or 

81 82 

i .. e. that system is most frequent for ,,,hich the kinetic cl1ergies of the composil1g 
systems are pl'Opol'tjol1ate to the l1umbel' of degrees of fl'eedom, 

If we separate the systems, their contents of kinetic ellergy will fulfill wilh 
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respect to thc parameter ct. GIBBS has shown th at è-r V cOl'l'esponds 
with tempel'ature. With the help of the given relations we can cal-

great probability the theorem of equipartition. Also two systems the energies of 
wlJich are proportionate to their number of degrees of freedom wil! be, aftel' thal 
communication of energy has been made possible, in a probable state and it is 
therefore almost certain that one systcm will not give or obtain energy from the 
olher. If two systems are bt'Ought iuto contact whose energies are in another 
proportion, their state is impl'obable and the total system wil! probably change in 

such a way that the system for which I!E. is too great, loses energy. What has 
8 

been said is sufficient to show that ~ can he used as a measure for the temperature. 
8 

We have next to consider the mean force in a micro·canonical ensemble. I 
wil! give a somewhat simpIer deduction than that of GIBBS .. (Hr:RTZ has also given 
another treatment). 

Consider an ensemble for which the density p in phase is a function of E, the 
fUl1ction P (E) being zero everywhel'e e'Kcept between narrow limits in the proximity 
of EO; between the limits p Ce) shall be supposed everywhel'e positive. Suppose 
that El and i2 are values of E lying outside this region but so, that El < EJ < E2; we 
have identically 

~2 e:2 

J q dpl .... dqs = J q er de. 

~ ~ 

DJfferentiating with respect to the parameters Ct we obtain 

The transformation 011 the secOlld line follow" directly from the significalion of AI , 
e 

The last expressioll is obtained hy integration in parts. The density p bein!?; 
zero for the limits, we may neglect lhe fact that El and E2 can depend on a. We 
therefore obtain 

Now p being po.sitive and cr dilTering fr om 0, we have 

aA€ - acp alp as + Ae ä; - aa = o. 
The vulues el auel <2 eaU be taken as near to each other as we like, thel'efore 

• 

I 
I 
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eulate e-1' V anel find fol' it 

It is wOl,th noticing that (comp. GlBJ3S form. (377) p. 119) 
2_ 

r't V= -Epi, 
8 " 

,,,here 8,,1 \'epl'esents tlle avel'age kinetic energy in the ensemble. 
ö 

We therefore bave 

The same relation ean be obtained with the help of the given 
formulae. Using the definition of an average valûe, we bave 

8P21 =.Is;P..t:. = e-l'fEp..2o = e-P fx (Al' • A", •• Ak). 
" J..2ó. J J 

(E-Eq (Al' • A" .. Ax) f2' dAl" dAk .. dAl.,. 

The last integl'al ean be tl'ansformed into 

}~j; \(Pk _ ~(:j)2_ 
C (E-Eq ("'/10 . . Jko ••. .!'h .. o)..2o e I t Ep 0_ i' 

we can always take ca te that the si gn of e? does not change in the interval. 

Now 'e? being ~~ we can tl'ansfol'm the last equation to 

óV Al e'f = :l + ej 
e ua 

Odepending only on a. Taking for E the least value consistent with the energy, 
av 

we have to l,lke e't and -:s- equal to zero and we find the same value for O. ua . 
'1'0 prove (I) we have only to keep in mind that 

1 (àV àV) 
b .log V = V àa L.a + Te b ê ; 

. 't dV fi l'emembermg that e =""äË we lr.d 

r't V b. lOfl V = Al ba + bE. 
E 

~ ~ 

l~ul'thel' e-\'V= -=-ë,:j is equivalent to the temperaturej tbis flote shows there-
8 e 

fore that (I) is indced all expression which is comparable with that of thermo­
dynamies. 
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_ ~ 028Q ) S 2_ ~(08q) I ~ 
EpO oA/ ' EpO oA, \ dSl .. dS, .. dSk = G Epo 0 , 

(Pl' . p, .. Pk)I/2 

whieh eau easily be seen if one remember~..that the terms which enter 
besides p, in the exponent are very small in eomparison to the 1), 
terms. Using the given value for er we obtain 

131,1 = (ê-eq (.1110 • AIO" Areo)) = Epo 

The mean enel'gy in the ensemble anel that of the most fl'equentIy 
occurring systems are equal. The same is tl'ue for the force in tlle 
maximum system Ao and the mean force AI. 

The force exereised with respect to a parameter in a system of 
OE 

the energy 13, amounts to - oa' We thel'efore have 

- ",rOE Al = - e-J oa ~tldAI .• dA, . dAk· 

OE 
The value of oa can be expressed for a system for which 

Al' = A,o + 6, and for which ËI is not toD great by 

oe = (oe) + ~ (~s, + * ~ sx2) + 2 oae g,s,. oa oa 0 I oA,oa - oAy
20a '=I="oA,oA/~' 

In the integration those systems for which 6, are gl'eat have very 
small intluence, we can thel'efore adopt tbe given expansion fol' all 
values of s,.. Intt'odueing the value of ~~A we easily see that the 
terms with S/SP. disappeal' in the integration. We a1so find: 

_ (àE) 7e 2 iJ2E 7e 2 à2E AI=- - -2---=Ao-2---. 
, oa 0 1 Py oAlO20a 1 Py oAlO20a 

02e 
In genera} PlO is large eompared with -0 0' we thel'efore have 

A/ a 

Oom paring the values of 10,g V and log ,go, we See that we have 
if 8 is vet'y great 

k 

Ic 
log V = log ,go - t 2 lO.9 PlO + Gonst. 

1 

The sum ::s log p, may be neglected with respect, 10 IO,q.Qo if k 
1 

is smal! in compul'ison wUh 8, this being the ense we have 
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log V = lo,Q ..20 + Gonst. 

Oomparing therefore log..2o for two ensembles for which the 
energy differs by t:.c we find: 

· . (II) 

R 
The quantity N log.Qo fulfills therefol'e the same l'elation as the 

thermodynamic entropy in the corresponding case. The corl'espond­
ence ho wever ought no longer to be considered as to be formal, all 
quantities l'elating now to real systems, i. e. to the most frequently 
occurrillg system of an ensemble, that may be identified with the 
system in stationary state. The function log V showing the properties 
of entl'opy, the same wil! be the case for log .Qo' 

5. I shall define the pl'obability W (Al" Ay) of a system (Al" A; .. Ale) 
as the illtegral of .Q taken for a region whose magnitude is given 
by observation and which is characterised by the quantities 6Ax 
(comp. (1)). We therefore have 

Aát.Al A7c+t.Ak 
2 2 

W (Al . Al'. . Ak) J . . . J.Q (Al" Al'. .. Ak)' 

Al-t.Al Aic-t.AI. 
2 2 

Substttuting in this formula the obtained vallle of .Q we find 
t.A1 !lAk 
-2- -2- Ic 

r J!:2 Py S2y 
W(AI" AI" Ale) =.2':J . . . e 1 dgl" d~y. 

-llA1 - !lAk 
-2- -2-

The 6AI belng l'elatively small quantities compared with the SI' we 
can put this into the form 

Ic 
l:2PY§,zy 

W (dl" ,Ay .. ..!/t..) = ..20 e 1 6AI .. 6/11 • 6AI .. 
R ~ 

We shall now prove that N log JiV = 1/4 shows the proper ties 

of the entropy, i.e. that 

R R R k 
114 = N log W = ;\7 log .20 + - :2 pxs2 

y + Gonst. . . (lIl ) 
J.v 2N 1 

answel'S ro the l'elation. 
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dt:+ dA 
11tl -110 = --:r- . 

. R 
of N log.2o + Con8t.~ we 

R k 

. . . (1 V) , 

ean teansform (lIl) to 

1111 = 'I}o + 2N ~ pxS2,. . . . • . (l11a) 

The enel'gy being the same for the systems lmder discussion tlle 
relation (IV) reduees to 

or 

R dA 
N d log W=T 

dA 
"ltl = 110 + T . 

R 
In order to prove the cOl'respondence of the enlropy '1') and N log lV, 

we have to show that 
RT 
2N :2 p/S2/ 

repl'esents the work done if the system is brought in a reversible 
way from the stational'Y state to that indicated by 6. 

We can make this transformation l'eversible in two ways: 
In the first place we can imagine an extern al field of force, 

applied in sneh a manner thai the devÏt"tting state in the oId 
ensemble is the most frequently occl1rring in the new and change 
tbis field of force in sueh a way that the most freqnently occurring 
state passes eontinnally from the states A through the state A + g. 
In the second plaee we can imaginp fictitious forces influencing the 
parameters A/ in sTIeh a way that they allow the non-stationary state 
to exist. These forces can be ehanged in such a way, that the 
said states fol1ow each othel' as- a series of states of equilibrium 1). 

I will follow the seeond way. In order io find the forces wanted, 
we can take the quantities ~/ as parameters and detel'mine the forces 
~, working on the stationat'y system by the relation 

o log V _ 
e-'( V~=,::./. 

The region V to be used here is found snbstituting A/o + S" fol' 
AK in the val ue found fol' V( El' .. ./} '0 .), A,o + S, oeing now tbe 
equilibrium value fol' A,. 

1) If we have for example a gas the density of which deviates from the nor­
mal we can as weU by introducing a field of force as by fictitious walls change 
the non-stationary state into a state of equilibriun:i.. 
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In this wn,y we find fol' tbe force wOl'king on gl, 

ÄI = 1~' 1(6~~1 V) + C~~~zV) SI!. 
Introducing these forces in the expl'ession fol' the work we obtain 

61 

dA=~ t ~ J l(a~~/V)o+ C~;2VJgYI dS/t 
o 

_ ET 12 ~ ~ (aZ lO,g ~) 
- 2N I ~I aA/ 0' 

the first term being zerü as foJlows from the condition of equilibrium. 
R . 

1t has been shown also that N log Tif corresponds wIth entropy 

fol' a non-stationary state. For tvvo deviating states from different 
ensembles the same is tl'lle, because it is always possible to Vass 
from one to the other, passing tbrougb the stationary states of the 
ensembles, for which states the formula (II) is true. 

6. I vvill shortly indicate what is obtained if we apply the above 
fOl'mulas to ,l, gas (or liquid), the molecules of which answer to the 
hypothesis of VAN DER WAAJJS. Suppose that we have n perfectly 
l'igid and elastic spherical (diameter 6) molecules in a volume V. 

TJet us di vide the volume in k equal elements VI' which contain 
nl molecules. The volume of the extension in configuration can be 
represented, as) have shown, by 

, n! , (w (nx) Vy)"X , 
nl' ny! .nk. Vy 

w (n) == w (;J being a function of density. For the potential energy 

we shall use the expression 
a 2 n/ 

--2-. 
2 1 v" 

The quantities ny are joined by tbe relation 
k 
2 n~ =n. 

1 

The fllllction X of (1) !las the form 

-'11 -11 -11 « v: " n 1 n, I nl "w Ih) ,,) I 

the members ny being chosen for AI' 
The condition fol' thc most f1'equently occul'l'ing system is 
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n" aN 1l~ d log w(u,) 
-log- + -r ~ + log w(u,) + ll, = - tI' 

Vy RT V, dn, 

The quantities ny are nOl'mal coordinates, the value of p" is 

1 2 d log W(Dy) Dl< d~ log w(n,.) aN 1 N 1 2 

p =--+- +-----+-----an,. 
~ nyo V, dn y Vy dU,2 RI' V, Rl' sp 

The last term is again small in respect to the ot hers, we thel'efol'e 
nnd 

Py = _ ~ ~(ll,-ll/ d log (() (n,,) _ 2D/N). 
n, an" dn" 2Rl' 

. 3n 
Ep bemg "2 RT. 

If we take into consideration that the preSSlll'e :Tr of a gas (comp. 
my dissel·tation p. 125) is ex pl'essed by 

~ = RT (ll-ll~ d log w (n) ___ an~)' , 
N du Rl' 

we can put p, in the form 

1 N d3t' (ni) 
Py= ------. 

n" RT du, 

The expl'esqion log V can easily be used to calclllate the pressure. 

7. The mean valtle of (A, -Ltyo )2 i.e. of 62
, ('an easily be calculated. 

One finds fol' it 
_ 1 
§2, =_, 

p, 

or ZJy ;2, = 1. We can apply ihis formula to calcnlate the mean 
work necessary to bl'ing the system fl'om the nOl'mal into the deviating 
slate, we obtain fol' it 

- RT 
dA=k

2N
· 

Rl' 
For each quantity ./I, tbis meao wOl'k amolmts to - 1. e. the 

2N 
mean work is equal to the energy pro degl'ee of fl'eedom. 

The result lIas also been obtained by EINS'mIN. lndeed it can be 
shown that fol' om' rase the definition which EINSTEIN has given and " 
the definition \lsed are illentica), If only it may be supposed that 
the path of the l'epresentillg point of the system fiUs the space E = 
const. everywhere dense. EINSTEIN defines the probabilily of a state 
~11 •• dl< ./Ik as the f'raction of a very long time T for which the 
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system is in the said state. I have shown 1) that the probability in 
a time ensem bIe can be expressed by 

ds 
G V' 

els ueing an element of the path of the sJ'stem and V being the velo­
cIty of the l'epl'esenting point on its path. The quantity Cis given by 

J(~: inte,grated along the whole path. 

The pl'obability defined by EINSTEIN now ean be expressed by 

GJ~:, 
where tbe integration covers all those elements fol' whieh the values 
of A,> ha.ve tbe given magnitude. If the hypothesis of ErNsTEIN may 
be used tbe value of ibis iutegral eau be expressed by the part of 
the space f = C which is the limit of df.Q ( /1) .. /(, .. A,.,) l::..A, if 
df approaches zel'O, and the space has been filled in sneh a way 
with systems, that ((dE: bas a finite value if (la approaches zero. 

Fol' by EINSTEIN'S hypothesis all the points for whieh Ax is between 
A, a,nd Ay + l::..Ax are on the path of the representing point, and 
the given expression represents the part of the space for whieh 

the A/s have the given values. Tbe integral J~ taken over the ele­

ments indicated above and .Q (A,) Me identieaJ. 
Using these condrtions lÏmiting, howevel', the genel'ality, we have 

proved that the pl'obabihty as defined by EINSTEIN is pl'oportional 
to the entropy. _ 

G1'oningen, Sept. 1911. 

Physics. -- c, Remarlcs on tlte relation of tlte metltod of GIBns flJ1' 
the dete7'mination oj the equation of state with that of t/ie 
vil'ird anc! tlw rnean {tee path. By Dl'. L. S. ORNS'l'ETN. (Oom­
municated by Prof. B. A: I.ioREN'l'z). 

(Communicatcd in the meeting of December 30, 1911). 

In detel'mining the eqlla,tion of state by meMS of statistical 
mechanics it is useflll to intl'oduce a fllnction (J), which for a system 
of 12 molecules of diameier û is given by fin integml 

. . . (1) 

J) Comp Lhe~c PI'oe. of Jan 28 HIlO, p. 804. 


