Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

F.A.H. Schreinemakers \& Deuss, J.J.B., On the system: Water - Alcohol - Manganous sulphate, in: KNAW, Proceedings, 14 II, 1911-1912, Amsterdam, 1912, pp. 924-927

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'
are older, they are also thicker and the marking on the cell-wall is more distinct. Moreover the growth in thickness of some parts of the cell-wall sometimes shows abnormalities, so that it may happen that younger parts have thicker walls than older ones and give a stronger cellulose-reaction (sometimes in Closterium Elrenbergii). When all this is taken into account, it is clear that the cell-wall in Closterium even in one and the same species shows an enormons diversity, especially with respect to the number and position of the transverse lines or the length of the parts of the cell-wall and the thickness of the cell-wall in different parts. For this reason I cannot agree with Hauptrfeiscin that the arrangement'of the transverse lines in differenr species is so constant that they can serve for the systematic classification of the genus Closterium.

Chemistry. - "On the system: Water - Alcohol - Manganous sulphate." By Prof. F. A. H. Schreinemakles and Dr. J. J. B. Deuss.
(Communicated in the meeting of January 27, 1912).
The equilibria occurring in this systom are represented in fig. 1; the points W and A indicate the componenis water and alcohol, the third apex of the components-triangle which is not drawn here therefore represents the $M_{m} \mathrm{SO}_{4}$. The temperature axis is taken perpendicular to the plane of the romponents-triangle.

The curve $h l$ situated in the side planc $M n \mathrm{SO}_{4}-A-T$ of the prism is the solubility line of the anhydrous $M \mathrm{MnSO}_{4}$ in absolute alcohol; as this salt is practically insoluble in absolute alcohol the curve $h l$ must lie in very close proximity to the axis $A T$ of the prism.

The equilibria occurring in the binary system: water- MnSO_{4}

Fig. 1.
have been investigated by F. G. Cottrell ${ }^{1}$) ; these equilibria, so far as they are required in the ternary system are represented in fig. 1 by the curves $a b, b c$, and $c d$ situated in the side plane $\mathrm{MnSO}_{4}-W-T$.
The curve $a b$ indicates the solutions saturated with $\mathrm{MnSO}_{4}, 7 \mathrm{H}_{2} \mathrm{O}$, the curve bc those saturated with $\mathrm{MnSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ and the curve $c d$ the solutions saturated with $\mathrm{MnSO}_{4} . \mathrm{H}_{2} \mathrm{O}$.
The equilibria occurring in the ternary system are represented by the surfaces situated within the prism, their intersecting lines and intersecting points:

In order to facilitate the survey, the figures $7,5,1$ and 0 are drawn on the saturation surfaces, and the letter B on the binodal surface. For the salke of brevity we will call the salts in future $M n_{r}$, $M n_{5}, M n_{1}$ and $M n_{0}$.
The saturation surface of the $A n_{\mathrm{s}}$ consists of two parts separated from each other; the one to the left indicates the saturated solntions of $M n_{5}$ rich in water, the one to the right those rich in alcohol.

The binodal surface B should be imagined to be divided into two parts by the critical line $K K_{i}$; with each solution L_{1} of the one part, a definite solution L_{2} of the other part can be in equilibrium. The binodal surface therefore represents the two-layer systems $L_{1}+L_{2}$.

The intersecting lines of the saturation surfaces of a solid substance form the saturation lines representing the solutions saturated with two salts.

$$
\begin{aligned}
& e u^{\prime} \text { and } u b \text { is the saturation line of } M n_{n_{7}}+M n_{5} \\
& f v^{\prime} \text { and } v c \quad " \quad " \\
& g m
\end{aligned}
$$

The intersecting lines of the binodal surface with the saturation surfaces of the solid substance represent the conjugated liquid-pairs which are saturated with a solid salt. Because as seen in fig. 1 the binodal surface intersects each of the saturation surfaces of $M n_{z}$, $M n_{5}$ and $M n_{1}$ in two curves, it follows that one series of liquidpairs is saturated with $M n_{i}$, another series with $M n_{5}$ and a third series with $M n_{1}$. In fig. 1 are represented:

[^0]the liquid-pairs saturated with $M n_{7}$ by $K u$ and $K u^{\prime}$
\[

$$
\begin{array}{llllllll}
" & " & " & " & " & M n_{3} ", & u v & , \\
u^{\prime} v^{\prime} \\
" & " & " & " & " & M n_{1} & , v K_{1} & , \\
v^{\prime} K_{1}
\end{array}
$$
\]

Each of the points u and u^{\prime} is the intersecting point of the binodal surface with the saturation surfaces of $M n_{\eta}$ and $M n_{s}$. These points. therefore represent a liquid pair $L_{u}+L_{u^{\prime}}$ saturated at the temperature $T_{u}=T_{u^{\prime}}$ with $M n_{7}+M n_{5}$ or, in other words, the system :-

$$
M n_{y}+M n_{o}+L_{u}+L_{u^{\prime}}
$$

The same is true for the puints v and v^{\prime} which at $T_{v}=T_{v^{\prime}}$ represent the two liquids of the equilibrium :

$$
M n_{5}+M n_{1}+L_{v}+L_{v^{\prime}}
$$

The saturation line of $M n_{7}+M n_{5}$ consists (experimentally) of the two parts $e u^{\prime}$ and $u b$; as, however $T_{u}=T_{u^{\prime}}$, the complex $M n_{5}+$ $M / n_{1}+L$, traverses an uninterrupted temperature series; the solution however, changes its composition abrupily, at $T_{u}=T_{u^{\prime}}$, from L_{u} into $L_{u^{\prime}}$, or reversedly so. The same is true for the complex $M n_{5}+$ $M n_{1}+L$ in the points v and v^{\prime}.

From the composition of the solutions L_{u} and $L_{u^{\prime}}$ it follows that at $T_{u}^{\prime}=T_{u^{\prime}}$ the reaction:

$$
\begin{gathered}
M n_{7}+L_{u^{\prime}} \rightleftarrows M n_{5}+L_{u} \\
M n_{\eta}+M n_{5}+L_{u^{\prime}}\left|\begin{array}{l}
M n_{7}+M n_{5}+L_{u} \\
M n_{\eta}+L_{u}+L_{u^{\prime}}
\end{array}\right| M n_{5}+L_{u}+L_{u^{\prime}}
\end{gathered}
$$

occurs.
From this reaction it follows that from $T_{u}=T_{u^{\prime}}$ one saturation line of $M n_{7}+M n_{5}$ must proceed to a lower, and another one to a higher temperature. Further, it follows that the liquid-pairs saturated with $M n_{y}$ occur below and those saturated with $M n_{5}$ above $T_{u}=T_{u^{\prime}}$.

From the composition of the solutions L_{v} and $L_{v^{\prime}}$ it follows that at $T_{v}=T_{v^{\prime}}$ the reaction:

$$
\begin{gathered}
M n_{5}+\mathrm{L}_{v^{\prime}} \underset{\leftarrow}{\rightleftarrows} M n_{1}+L_{v} \\
M n_{\mathrm{s}}+M n_{1}+L_{v^{\prime}}\left|\begin{array}{l}
M n_{\mathrm{5}}+M n_{1}+L_{v} \\
M n_{\mathrm{s}}+L_{v}+L_{v^{\prime}}
\end{array}\right| \begin{array}{l}
M n_{1}+L_{v}+L_{v^{\prime}}
\end{array}
\end{gathered}
$$

occurs. The situation of the curves proceeding in tig. 1 from the points v and v^{\prime} is in accordance with this reaction.

From the figure it follows that the dissociation region, if we only consider stable conditions, extends from $T_{k}=5,{ }^{c} 3$ to $T_{k_{1}}=43.5^{\circ}$. Between T_{k} and $T_{k_{1}}$ a separation into two liquids in the stable condition is possible, below T_{k} and above $T_{l_{1}}$, this is, however, no
longer the case and, as has been confirmed experimentally, only a separation in the metastable condition can take place.

In general the mixtures: water + alcohol + salt, in which the separation only takes place in ternary solutions, exhibit a minimum critical mixing temperature. That is to say that below this critical temperature no dissociation into two liquids can take place; above this temperature, however, decomposition may occur.

For instance, in water-alcohol mixtures $K N O_{3}$ can cause dissociation only above $79.5^{\circ}, N H_{4} \mathrm{NO}_{3}$ only above $67.6^{\circ},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ only above 8°, and $N a_{2} \mathrm{C}_{3}$ only above 27.7°.

Simlar systems with a maximum critical temperature, namely with a temperature above which no separation can any longer occur bave to our knowledge not yet been found. In the system water-alcohol - $M n S O_{1}$, however, now investigated by us, not only a minimum critical temperature T_{k}, but also a maximal critical temperature $T_{k_{1}}$ seems to exist.

Fig. 2.

If we project the special curve $k u v k_{1} v^{\prime} u^{\prime}$ on the plane of the components-triangle $W-A-M n_{0}$, we obtain something as in fig. 2. The triangle, however, has only been drawn partially in this figure. The projection of the special curve consists of two conjugated branches which form a closed curve of a peculiar form ; the arrows indicate the direction in which the temperature increases.

Each of the branches $-k k_{1}$ must, of course, exhibit a discontinuity in two poinis corresponding with the temperatures T_{u} and T_{v}.

If we intersect the spacial representation by planes perpendicular to the temperature axis, we obtain the isotherms; these have been determined at $50^{\circ}, 35^{\circ}, 30^{\circ}$ and 25°. A few points of the isotherm, of 0° have also been determined.

The isotherm at 50° can be represented schematically by the curves $d m$ and $m l$ and the isotherm of 0° by the curves $a e, ~ e f, f g$ and $g h$. A few other isotherms are represented in fig. I by the dotied curves.

[^0]: ${ }^{1}$) F. G. Cottrill. Journ. Phys. Chem. 4637 (1900).

