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The E-W component of the semi-diurnal lunar tide is then
represenied by the formula
0."0114-L cos (28— 251°53").

4. The amplitude of the theoretical tide, on the assumption that
the earth is perfectly rigid, is

Bm (0N et L1 5
27[[71 00810082 28

m and M denoting the mass of moon and earth, @ and » the radii
of the earth and the moon’s orbit, ¢ the latitude, I the obliquity
of the moon’s orbit to the equator and e the excentricity of the
moon’s orbit. The assumed values are:
m 1 a 1
M 814’ r T 60.27
and ¢ = 0.055.
The lunar hour O corresponds with the time of the moon’s upper
transit.
Finally we find for the theoretical tide :
0."0155 cos (2t — 270°)
and for the real tide :
0."0114 cos (2t — 251°53").

. 0 =6°11" , I = 25°3%

Mathematics. — ““Infinilesimal iteration of reciprocal functions.”
By M. J. vax Uven. (Comwunicated by Prof. Jan pg Vrigs).

(Communicated in the meeting of April 29, 1910).

§ 1. A function (&) will be called a reciprocal function of order
7, when it satisfies the functional equation
yu(@) =@ g ] o ¢(@) . fl = =
The solution of this equation is known by the name of “the problem
of Basaer” ). :
In what follows we shall occupy ourselves exclusively with the
reciprocal functions of order 2 which therefore satisfy
@) =@lg@i=a . . . . . . . ()
and which for short we shall call reciprocal functions.
The solution of the problem of BABBAGE shows us that the fune-
tional equation (L) must be satisfied by all the functions y = ()

1) See inter alia Laurent: Traité d'analyse t. VI, Paris 1890, p. 243.
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connected to « by a symmetrical equation
Szy)=0. . . . . . ... @)
We now make it our task_to build up these functions by infini-

tesimal iteration. i
Let us call the index of iteration 7, we have then to find a function

J in such a way that
JR)=r/@)+1 . flg)=r2)+n

where y, is put equal to @.(2).

If we still put f(z) =», we find

e=fa@=g@® ., y=g0+1) , pu=g@F+n).

From (1) and (2) follows that y, and 7,41 are connected by the

relation
‘S(yn 1 ,i/n-}—]) =0

As y, =g (» + 2) = & =g(v), then g¢(v) must depend exclusively on

a periodical function with period 2 for which function we shall choose
6=¢6%". . . . . . . . . . (3

The function g(v) can therefore be written as a function of 6, in

other words:

g(v) —= ]&(6).
Consequently we have
9 + 1) = k(—o),
so that the function % is determined by the equation
S{h(0) , (—a)} = 0.

§ 2. A reciprocal function y = ¢ (z) is evidently determined by
the equation S(z,y) = 0. We have therefore to examine the various
symmetrical equations S(z,y) = 0. We begin with the equation

SE,yN=e+y—2kt=v. . . . . . . (4

This equation passes on account of the substitutions

e=NM0) , y=u-0)
into
(o) - h(—a) = 2k
or
Me) — k= — {I(—o) — &,
which is satisfied by choosing for /Z(0) — % an arbitrary odd function
6. (6. So we put

(o) — k =0¢. w(c®) (w arbitrary, but univalent).
In this way we arrive at
& =h6) =k o0.0(0°) =k v (), I
y =h(—0) =k — 6. w(6%) =k — ™ w(e™), . (5)
Yn= =k eir () w(eﬁz'rr(v-}—n)). ‘
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In order to build up the function y = ¢(s) = 2k — z by infini-
tesimal iteration we have only to let n inerease gradually. It is as
easy to interpolate between x and y a certain number of functions. .

The indefinite elements in the solutions are 1 the quantity », 2
the function w.

If we have once chosen a function w, then by the choice of » we
can assign to the variable # a given value. If we start e.g. from
an initial value #, then we find v out of the first equation (5). It
goes without saying that this initial value », of » can turn out
complex. If e.g. »,=24 -, then by iteration the real part will
increase, the imaginary one will remain constant.

It to give an example, we wish to interpolate one function between
x and y and if we choose for w

w(c®) =1,
we find
w:yo.—_.-k—}—ew,y%:/c—{—ie”“,yl :y:]s—em’,y&:k——iem’.
If # is to have the initial value @, then », is determined out of
&, =k - e7n
or

1
vy = log (z, — k).
For the relation existing between Y, and 2 we find
y, =k +i(e—k) = 1—i) k + iz,
and in general

y"—H‘ - (1_'7') k + iyn

§ 3. It is easy to see that all symmetrical equations of the form
S,y =v) + vy —2t=0 . . . . . (6)
can be treated in the way followed in § 2.
We have but to put
Po) =k +0.0(0") ,, Wy ="hr—0.0 ()
hence

s=yaftto.0@) , y=paf—oc.o @),
or

@ =Y_1{k + ™ o),y =11 f—dro (@),
Yn=p fk + Ot (@C) L L L L L (7)
If we write the symmetrical equation in the form
Sy) =K,



(24 )
then it is perhaps possible to vegard S(zy) as a function of the
expression ¥(z) + ¢(¥), so that
Swy) = Flg@) + 9ol =5 . . . . . @
from which ensues .
(@) + 9(y) = Fa(K) =2k
And with this we have returned to the preceding case.
1f S(zy) is to be regarded as a function of the expression -

W(a) + Wly) = T(@y)

it must satisfy a certain differential equation. Let us now trace this

equation.
It is clear that 7'(x,y) satisfies
»7T 0
dudy
Let us put
P 2 Al A
g—fzs&,g—jzsy,g‘—jzémgvaﬁyzs,,,, ete. %:p% =7,
we thea find in the first place
S = F (1),
S =F'T, , 8§ =FTy , Sy=F'T,T)+ ['Toy="F"T:Ty;
hence
nii)
;xgy = 5’ = L{I) = G(9),
or
Sy = G5y,

and therefore also
Sy = @S2y + GSuwSy+ GS.Syy » Sapy = G'S. 8 + G8eyS; + GSiSyy,
from which ensues by elimination of G and G'
SeSy (8y8izy —SuSuyy) = Sy (S Sy* —Spy&*). + « « (9)
Let us still put

1

S;=p, S,=¢ Sau=r, Sy=s=s Spp=1t, Spy=1, Sy,=n1,
we then find - .

pglqu —po)y=s(g’> —p*).. . . .« . * (99)

So each integral S(z,y) of this differential equation can be regzu'defl

as a fanction of T'= 1 (z) + ¢ (y).

The function 27 is determined as follows:

[ l;vn(fzv)
7 — G(S) = G(F

Flz (T) G( ) ( 1)

or

e
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!

T
d/1 ar d /4T aF*
_d_T(ﬁ) - "’?ﬁ‘ﬁ(dﬁ) =—a7 =%
dF

The solution of this is

T— Cfe_fG(F"’Fdﬁ'+ ' = B(F)
(10)

80
= @_,.

—~——

As example we choose
S@@y) =ay=K==F
or
S (wyy) == elogz+logy = ¢2logl |
consequently
log @ + log y = 2 log k,
from which ensues

logw =1log &k + 6. v (6%, logy =logk — 6 o (6%
or
2 = ke o(®), y = ke—=.07%,
or
o=k eci—. ; m(cm'?u) Ly = A e__et - Jw(e‘lz’n 1) e /ce”l Tf(J-l-n)w(c‘.’z'r(J—i-u)) .

This result we can express somewhat differently. We put
6.0 (0*) =y(0) —X%(-0)
and we then arrive at

10) Q 2 (ot /
o= he—r ) = k20— B 2T
el(_"’) 52(——6) ,_O_,(_.ezﬁa)
therefore
£ (17 (4))

=k . . . ...
Yn Q(— ez.—.(;+n)) (11)
We now put £=1 and £(0)=1-—0 and we find in that way
1—6¢ 1—ow 1 — etv ()

CEIE s e VT It
consequently
1y, — 1
tx( -4 n)=lo i,
(®+ ) 9yn+1+
. Too - —1_{ .
T Y =— L0 - 17T,
P
and
yp— 1 a—1 .
l = log —— N ¢ B
V1 Wy T (12)

+
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la

If on the contrary we put £=1 and 2 (6) =2, we find

3

v — 82'. — o™ ) Yn = e‘in(a-}~n) ’
e 2
therefore
i (v +n) = log log y, ,
irr = log log &
and

loglog yn =logloge + tan, . . . . . . (13)
Now we have formerly *) shown that the equation (12) determines

the iteration of y:—% , when —1— is taken as a linear-broken function
of «, whilst (13) indicates how y==a—! is iterated when &' is
regarded as exponential function. From the above-mentioned it is
evident that these two solutions of the iteration problem of y:%
are but two of an infinite number.

§ 4. If a certain symmetrical relation is given between » and y, e-g.
S(z,y) =0,
it may happen that by a symmetrical transformation
e=YTEn , y=¥m8§ . . . . . (14
of the equation S(z,y) =0 we can arrive at a likewise symmetrical
equation 2 (§, %) =10 of the form
SE=vE+¢m—2%=0.
In this case we have
§=vaftt+o.0(0®) , n=v_fk—0o.0 ("),
= Yk+e™ o (), k—e™ o (™),
y=w [{]c_@im w (emv); , {k+ez'n) Py (6217“)}],
Yn = W [fk+emCTn) o (@A), h—ein(m) o (2CHn)].
We shall dwell particularly on the projective transformation
. a§+pBn-+v y = B5++an-+y
d@+m+e d§+m+e
where for abbreviativn we shall put

dE+m) +e=2 . . . . . . . (16)

If S(z,y) is a symmetrical algebraical function of order m, then

(15)

) M. J. va~ Uven: “On the orbits of a function obtained by infinitesimal iteration
n its complex plane. Proceedings of the Kon. Akad. Vol. XlI, pages 503—512.

s e
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Sz, y) will pass after the substitution (15) into an expression S [§7
of the form

S I.g"']] -

The equation S(z,y)=0 is then transformed into the equation
X, ) = 0. The function =(§, 1) must now salisfy
03
—_— = X, = 0.
050y =
So the differential eondition becomes

-~ ag
2%‘,7: :a
307

PmS(§ 1l = 0,

=

or
B8, +md (S + S+ mm—1)8§=0. . . (I7)

We now have -
Sy = Sar + Syyr S, = 8w, + SyYa s
Sz; = Siawgrs + Say (weys + @ayz) + Syweys + Sy + Syysa s
_le=Bomtledy =t @)

& T , Y L
oy OB Bt @ty (a—f) Bt ()
" ).2 ! “ 22 1]
P C ) d (E—1) — {(e+3) e — 24y}
T pE :
_—(a—p) (E—n) — {(¢--p) & — 2dy]
Y, — d = ]

From (15) ensues
— {(a+8) ¢ — 20y}

PG = e B
— (ag —dy) & + (Be—dy) v 4 (a—PB) ¥
(a—B) (o (x+y) — (e~+-B)}
(Be—dy) @ — (ae—dy)y + (a—B) v
(a—B) {0 (v+y) — (a+B)

§=

Y

If we now put
d(e+y) — (e+f) =1
(a-+B) e — 2dy = ¢,
we finally find after reduction
[ l { l
=~ (dv—0), yr=—(dy—B) @:=—(0v—B), ys =~ (dy—0)

I 12
e = o ¢ 2dx — (a3, vz, = = d2dy - (a4 B),



(28)

whilst at the same time holds
¢
A= — 7"
The equation (17) now passes into
Sez (o —a) (do—8) + Suy{(dv—e) (dy—a) + (dz—PB) (dy—B)} +

+ Syy (dy—e) (dy—P) + 08, {202 — (a+-B)} + IS {2dy — (a +B)} —

~— mdS {20z - (a+B)} ~ mdS; 20y — (a+B} + m (m—1) #*S =0, -
or

o (4% + 2‘7}3/8.17/ + y’S::, — 2 (m—1) ("”Sx‘*’y‘si/) -+ m (m—1) 8] --

— (a+ B) I [#Sez + (w4y) Soy + ySyy — (n—1) (S +S1] +
+ [4BSe + (B Sey + aBS)y] = 0.

In order to give to this equation a more concise form we shall
make the equation S homogeneous by introduction of a third
variable, z. ]

We then have

m(m—1) 8 = &Sy -+ 2aySyy + y* 8y + 2028,- 4 2928, + 2*8,
(m—1)8y = @8y + ySyy + 28z,
(m—1)Sy = &8sy + ySyy + 28
S0

Sy + 20ySyy + y*Sy—2(m~1) (&8; + y8)) + m(m—1) § = °8;.,

@Sz - (@ + y) Soy + ySpy — (m =1) (S’ + §)) = — 2 (Se= + 8j2)-

If we now put z=1 we find for the differential condition
*Sez + (& + 8) d(Siz + Sy2) + [a8Sw + (@ + §°) Sey + aBS,y1=0. (18)

If we exclude for the present the case ¢ =0, corresponding to
the affine transtormation, we may put into the equation (18) without
any objection d==1; by this (18) takes the form
Sez + (¢ + B) (8o + Spz) + [9B8uz 4 (e® +- %) Soy + aBS))]= 0. (18a)

We can now dispose arbitrarily of the quantities « and p.

If S(z,y) is of order fwo, then all second derivatives are constant,
so that the equation (18a) forms a connection between the constants
of the equation and the constants of the transformation. So we
can say :

The general symmetrical quadratic equation can be brought by
an infinite number of projective tramsformations into the form
W) + piy) = 2.

If e.g. is given

Sy y) = a,(® + y)* + 20,2y + 2ay(¢ + y) @, =0,
then we have
Suz = 20, . Sy = 2(a, + b,), Sy = 2a, 4 Sz = 24, , S.'lf =2a, , 8:: == 2a,.




(29)
The condition (18a) now runs
ay + 2a,(a 4 B8) + (@, + b,) (¢ + B)° — 26,e8=0 . . (19)

Consequently if we choose « and 8 in such a way that (19) is

satisfied, then S is brought to the form
(48 + BE) + (dy* + Bn) =20,
or ~ \
(&—2BE + C) + (p*—2Bn + C) = 2k,
or if we choose ('=DB"
E—B) + (n -B)* = 2k,

so that
P = E—B)Y =k + 6. w0 =k + Pwl(t™),
or .
§ =B + Vi + éo(@),
T =B 4+ Vi — dmo@™),
whilst

B VL dmw () BB+ VE— e ()i +-y
&= p— . P ————
928+ Vitero@™) + Vicero@)+e

- e ? (20)
. a}B’—{-l//c—{-eiﬂ(J-l-") w(e‘lirt!\v-{—n) )2_,_3{3’_]_‘/]0_61'7:(‘1-{—11) w(g‘liﬁ(;-}-n));_’_y \

= 2B+ Vi T e (@m0 F) 4+ Vb — o) oo @ o)) Lo

If S(zy) is of order three, then the two derivatives are of order
one, therefore of the form p, (x-+y) + p,- The equation (18a) becomes
therefore likewise of order one, e.g.

P (a+ty) + P, =0.

As this relation must hold for all values of x4y, we have to

satisfy

P,=0 , P,=0,
s0 that we have now obtained #wo relations between the constauts
of the equation and the fwo constants ¢ and @ of the transformation.
So we conclude from this :

The general symmetrical cubic equation can be brought by a
finite number of projective transformations into the form W(a)-+p(y)=2%.

If we put eg.

S(a-y)=ay(¢ +y)' -+ 3b(x -+ y)ay +Bay(¢ +y)* 4 66,0y +3a, (v + y) +a, = 0,
we have
Sz = 6 lag (w+y) + by tarf + Sy = 6 {(a,+5,) (¢ 43) + 4,40,
Sy = 6oy (e4y) + biotar} ) Sp: = 6{a, (a-+y) + by+aj} ,
8y =6 {a, (v+y) + bota) s S: =61{a, (x4y) + a,}.
So equation (18a) now becomes

N

-10 -
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[, + (Quyt-0,) (a4-B) + (4 +b5) (37 — b,8) (@ ) + :
' ‘ + [a, + 24, (al}'ﬁ) + (a,+0,) («-+-8)* —~ 2heB} = 0.
so that « and 3 are determined by )
a; + (28,+ b,) (e+8) + (a,+ by) (@ +8)* — by e = 0“ v - (21
ay 4 2a, (¢ +8) + (a,-+0,) (e+3) —“b, a8 =0. . . . 1,
Out of these equations we  find two values for «+p and two
corresponding values of ¢3, thus two sels («,3) or (B#). So in general
{wo projective transformations are possible {ransferring the symmeirical
cubic equation into the standardformn desired by us. This is

(A5 4 BE + CE) + (4%’+ By’ Cn) = 2D.
We can modify the constants in such a way that we find
(§—BY + 8u §— B + {(1—B)* + Su (4— BY} = 2k,
so that 1 .
W(E—B)=(E—B) + 3u§—B)=1k+ 6. w(6®) = kte™ @ (™),
¢ (- B) = (1—BY + 8 0—B) = k— 0. 0 (¢*) = h—d™ o (2) ,
hence
§=D" 4 ¢ b+~ o (™) , =B 4 ¢ {k— ™ o (27)},
o[ B'4-p_rfk 6™ w (2 ]+ BB+ p_if—e™ w ()] +y
= d[2B +p_ifk + €™ o (2™ )| 4Py f— ¢™ w (¥ )]+ ' )/ﬂ\
o Bl o040 o (@O B B - oGty Ty |
O[2 B Fyike ) oo e ) pap ok — e M e R B ’
If we now regard the affine transformation, we have but to put
in equation (18) d=0; we then find
aB (Sux + Syy) + (& + Sy =10

Y=

or
Sw-Z___ . af
Sia + Sy a4
For the quadratic equation this can alwavs be satisfied aund that
by two values of the ratio «:@; hence:
the general symmetrical quadratic equation can be brought by two
affine transformations into the form (@) - W(y) = 2%.
. For the cubic equation, the equation (24) demands
(aa + ba) (J"+!/) ’*" ay + bz
(2a, + &) (v + 3) + 2¢,

=const. . . . . . (24)

= const.,

therefore
ag+b, a,+ 0,
2a, + 0,  2a,

or
24,0, + by by —a by =0.. . . . . (25)

-11 -
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The general symmetrical cubic equation can be brought by an
affine transformation into the form (@) ¢(y) = 24 only when
condition (25) is satisfied.

This condition expresses that the three asymptotes of the cubic
curve represented by the given equation pass through one point.

In connection with this we might have obtained equation (25) also
in a geometrical way. Of a cubic curve which has as equation

A§® -+ B§® + C§ + An® + By® + O = 2D,
the three asymptotes pass namely through one point, a property which
can stand an affine transformation.

Chemistry. — “On the appearance of a mazimum and minimum
pressure with heterogeneous equilibria at a constant temperature”.
By Dr. F. E. C. Scaerrer. (Communicated by Prof. A. F.
Horieman,) ’

(Communicated in the meeting of April 29, 1910).

In the spacial figure of a binary system in which occurs a complete
miscibility in the liquid condition, a complete separation in the
solid condition and where the vapour pressures of the liquid fall
continuously from =0 to 2 =1, two three-phase lines appear at
the place where one of the two components in the solid condition
coexists with liquid and vapour. Whereas the pressure values on the
three-phase line of the first component increase continuously with
the temperature, this is not the rcase with the line of the second
component; RoozeBoom suspected that the latter in its P-7>-projection
always possessed a maximum ') Later, Konnsramm *) showed that
this maximum need not appear always; from the equation of the
three-phase line deduced in 1897 by van pEr Waars °), the condition
could be deduced when a maximum appeared and when not, because

&
in the former case the value of (11,,——173)——"(711—1;3) must be 0. This
&y

condition, however, may point to the appearance of a minimum as
well as that of a maximum.

The appearance of a minimum pressure on the three-phase line of
the second component becomes even very probable when a minimum
occurs in the P-z-lines of the liquid-vapour plane. For this case the

1) Bakuuis Roozesoon, Heterogene Gleichgewichte, II 831,

%) Konmwsramy, Proc. 1907, Febr, 23,
3) Van ver Waars, Proc. 1897, April 21
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