Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

J. de Vries, On linear polar groups belonging to a biquadratic plane curve, in: KNAW, Proceedings, 13 I, 1910, Amsterdam, 1910, pp. 44-48

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'
(44)
In drawing charts of the magnetic fields in sun-spots, showing the intensity, the direction and the polarity of the magnetic force, the determination of the direction of the force will give some difficulties.

The value of the correction to the indications of the elementary theory necessary in some cases shall be given on another occasion.

The rule, which determines the direction of the deviation, may be indicated here.

The direction of rotation in the ribration ellipses of the outer components towards the red and towards the violet shows whether ϑ is acute or obtuse. If ϑ is obtuse (Fig. 3), then the relative position of the directions of the magnetic force, of the major axis of the vibration ellipses and of the vibration of the middle component is shown in Fig. 5.

From any point O draw a line $O B$ parallel to the major axis of the vibration ellipses of the outer components and a line $O M$ parallel to the vibration of the middle component, the angle $B O M$ being always chosen acute. The projection $\overline{O F}$ of the magnetic force on a plane normal to the line of sight then makes a positive acute angle with $O B$, the angle $B O F$ being greater than $B O M$, the positive direction being reckoned from $O B$ to $O M$.

By ascertaining whether or not the major axes of the ellipses and the vibrations of the middle component are perpendicular to each other we can make sure whether the elementary theory may be applied or not.

Mathematics. - "On linear polar groups belonging to a biquadratic plane curve". By Prof. Jan ve Vries.
(Communicated in the meeting of April 29, 1910).

1. With respect to a biquadralic curve γ^{4}, with the symbolic equation $a_{a}{ }^{4}=0$, the points X, Y, Z, W form a polarquadruple when the relation $a_{x} a_{y} a_{z} a_{w}=0$ is satisfied. If we take X, Y, Z arbitrarily on a line r and if we take as fourth point W the point of intersection of r with the "triple polar line" $p_{x y z}$ of X, Y, Z, we get a "linear" polarquadruple. The linear polarquadruples on r evidently form an involution I_{3}^{4}, its "principal points" (fourfold elements) are the points of intersection of γ^{4} with r.
If we assume for the points on r such a parameter representation that two of its principal points are indicated by $\lambda=0$ and $2=\infty$ we find for the groups of the $I_{3}{ }^{4}$ the relation

$$
\begin{equation*}
\sum_{4} \lambda_{1} \lambda_{2} \lambda_{3}+p \sum_{6} \lambda_{1} \lambda_{2}+q \sum_{4} \lambda_{1}=0, \cdots \cdot \tag{1}
\end{equation*}
$$

by which to each triplet $\lambda_{1}, \lambda_{2}, \lambda_{3}$ one value λ_{1} belongs, unless at the same time

$$
\lambda_{1} \lambda_{2} \lambda_{3}+p\left(\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}+\lambda_{3} \lambda_{1}\right)+q\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)=0
$$

and

$$
\left(\lambda_{1} \lambda_{2}+\lambda_{2} \lambda_{3}+\lambda_{3} \lambda_{1}\right)+p\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)+q=0,
$$

are satisfied.
So there is a "neutral" involution $I_{1}{ }^{3}$, the groups of which are completed by each point to quadruples. The right line r is thas triple polar line for ∞^{1} triplets of poles lying on it.
2. If we put $z_{k}=a_{k}+\lambda y_{k}$ and $w_{k}=a_{k}+\mu y_{k}$ we find for the linear polarquadruples on the line $X Y$ the relation

$$
a_{x} a_{y}\left(a_{\iota}+2 a_{y}\right)\left(a_{x}+\mu a_{y j}\right)=0
$$

or

$$
a_{x}^{3} a_{y}+(\lambda+\mu) a_{x}^{2} a_{y}^{2}+\lambda \mu a_{x} a_{y}^{3}=0 .
$$

If we choose X and F in such a way, that at the same time the three relations

$$
a_{x y}^{3} a_{y}=0, \quad a_{x y}^{2} a_{y}^{2}=0, \quad a_{x} a_{y}^{3}=0
$$

are satisfied, then X and Y form a "ncutral pair"' of the $I_{3}{ }^{4}$; i. e. a pair forming with each two points of r a quadruple of the $\Gamma_{3}^{4}{ }^{1}$). In this case the points of intersection of γ^{4} with r are indicated by

$$
a_{x}^{4}+\lambda^{4} a_{y}^{4}=0
$$

So for them the relation ${ }^{2}$)

$$
\left(\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}\right)=-1
$$

bolds, so that the principal points form a harmonic group.
The neutral points of such a "harmonic" $I_{3}{ }^{4}$ we shall call "cussocirtedl" with respect to γ^{\prime}. They form with each point of their connecting line r^{r} a triplet of poles, of which r is the triple polar line.

The line connecting two points U and V of γ^{1} intersects it in two points more determined by

$$
4 a_{u}^{3} a_{v}+62 a_{u}^{2} a_{v}^{2}+4 \lambda^{2} a_{u} a_{v}^{3}=0
$$

They lie harmonically with respect to U and V when $a_{u}{ }^{2} a_{c}{ }^{2}=0$ is satisfied.

For a given point U this equation represents a polar conic of U. As this conic tonches the curve γ^{4} in U and intersects it in six

[^0]points V, each point of γ^{4} bears six right lincs cut by γ^{1} inlo harmonic groups. With this we have proved the known property according to which there is a curve of class six of which the tangents are cut by γ^{4} into harmonic groups.
3. If we write the erfuation (1) in the form
$\left.\left(\lambda_{1}+\lambda_{2}\right)+p\right] \lambda_{3} \lambda_{4}+\left[\lambda_{1} \lambda_{3}+p\left(\lambda_{1}+\lambda_{3}\right)+q\right]\left(\lambda_{3}+\lambda_{4}\right)+\left[p \lambda_{1} \lambda_{2}+q\left(\lambda_{1}+\lambda_{2}\right)\right]=0$, it is evident that $\Gamma_{0}{ }^{4}$ will have a nerutral pair when at the same time the three relations
$\left(\lambda_{1}+\lambda_{2}\right)+p=0, \quad \lambda_{2} \lambda_{2}+p\left(\lambda_{1}+\lambda_{2}\right)+q=0, \quad p \lambda_{1} \lambda_{2}+q\left(\lambda_{1}+\lambda_{2}\right)=0$ are satisfiect, so when we have $2 p q=p^{3}$.

If $p=0$, the neutral pair is determined by $\lambda^{n}=q$, if $q=\frac{1}{2} p^{2}$, we have for it $i^{2}+p^{2}+\frac{1}{2} p^{2}=0$.

From this ensues that the neutral points coincide when we have $p=0$ and $q=0$. But then we tind the principal points out of $\lambda^{3}=0$, the neutral poiuts out of $\lambda^{2}=0$. Two associated points can therefore only coincide in a point of inflection of $\boldsymbol{\gamma}^{4}$, and the $2 \pm$ inflectional tangents are the only xight lines on which the $I_{3}{ }^{4}$ of the polarquadruples have a neutral double point.

The degree of the locus of the associated points muss therefore be a multiple of six.

To determine that degree we make X to describe a line r. Out of the relations fornd above

$$
\begin{equation*}
a_{1 .}^{3} a_{y}=0, a_{x}^{2} a_{y}^{2}=0, a_{1} a_{y}^{3}=0 \tag{2}
\end{equation*}
$$

is evident, that the polar cubie $p_{x}{ }^{3}$ describes a pencil, the polar conic $p x^{2}$ a system with index 2, the polar line $p x$ a system with inclex 3 . From this it is easy to deduce that the points of intersection of $p_{x}{ }^{2}$ and $p_{2}{ }^{3}$ describe a curve r^{4} which has donble points in the 9 basepoints of the pencil $\left(p_{土}{ }^{3}\right)$, whilst the points of intersection of $1 x_{a}^{3}$ with p_{x} describe a curve γ^{10} possessing in the basepoints just mentioned threefold points.

In each point of intersection of r with γ^{1} the curves $p_{x}{ }^{3}, p_{x^{2}}$, and p_{x} touch each other; those four points are therefore at the same time points of contact of γ^{5} and γ^{10}. As those hwo curves have 54 points of intersection in the 9 basepoints mentioned above there will be 18 points Y, where three corresponding polar lines $p_{x}{ }^{3}, p_{x^{2}}{ }^{2}$, and p_{x} concur.

The locus of the associaned points is therefore a curve of order 18 which osculates γ^{4} in ils points ${ }^{1}$) of inflection.

[^1]4." The principal points of a $\Gamma_{a}{ }^{4}$ can in general not be united to a group of the involution. If again $\Gamma_{3}{ }^{4}$ is represented by (1), then $4 \lambda^{3}+6 p \lambda^{2}+4 q 2=0$ furnishes its principal points; so these are determined by $\lambda_{1}=0, \lambda_{2}=\infty, \lambda_{3}+\lambda_{4}=-\frac{3}{2} p, \lambda_{3} \lambda_{4}=q$.

If we put in (1) $\lambda_{1}=0$ and $\lambda_{2}=\infty$, we find

$$
\lambda_{3} \lambda_{4}+p\left(\lambda_{3}+\lambda_{4}\right)+q=0 .
$$

This is satistied by the principal points λ_{3} and λ_{1}, when we have $3 p^{\prime \prime}=4 q$. But then the four principal points form an equianharmonic group, as is easily evident by substitution into the wellknown condition.

If U and V are two principal points of such a particular $I_{3}{ }^{4}$, the other two are determined by

$$
\begin{equation*}
4 a_{u}{ }^{3} a_{v}+62 a_{u} a_{u}^{2} a_{v}^{2}+4 \lambda^{2} a_{u} a_{v}{ }^{3}=0 \tag{3}
\end{equation*}
$$

will the condition

$$
a_{u} a_{v}\left(a_{u}+\lambda_{1} a_{v}\right)\left(a_{u}+\lambda_{2} a_{v}\right)=0
$$

or

$$
\begin{equation*}
a_{u}^{3} a_{v}+\left(\lambda_{1}+\lambda_{3}\right) a_{u}^{2} a_{v}^{2}+\lambda_{1} \lambda_{2} a_{u} a_{v}^{3}=0 . . \tag{4}
\end{equation*}
$$

Out of (3) follows however

$$
\frac{1}{2 b_{u} b^{3}{ }_{v}}=\frac{\lambda_{1}+\lambda_{2}}{-3 b^{2}{ }_{u} b^{2}{ }_{v}}=\frac{\lambda_{1} \lambda_{2}}{2 b^{3}{ }_{u} b_{v}}
$$

By substitution in (4) we now find

$$
\begin{equation*}
4 a^{3}{ }_{u} a_{v} b_{u} b^{3}{ }_{v}=3 a_{u}^{2} a^{2}{ }_{v} b^{\mathbf{2}}{ }_{v} b_{r}^{\mathrm{e}} \tag{5}
\end{equation*}
$$

This relation can be interpreted in a peculiar way. The points of intersection of the polar cubic of $U, a_{u} \alpha_{w \mid}{ }^{3}=0$, with the line through U and the point V taken arbitrarily, are found out of

$$
3 a^{3}{ }_{t} a_{s}+3 \lambda a^{2}{ }_{4} a^{2}{ }_{v}+\lambda^{2} a_{4} a^{3}{ }_{v}=0
$$

If now (5) is salisfied, this equation has two equal roots 2 and $U V$ touches the polar cubic of U.
The tangents out of the point U lying on γ^{\prime} to its polar cubic are therefore cut by γ^{4} into equianharmonic groups.

With this we have likewise proved the wellknown property according to which the lines divided equianharmonically by γ^{4} envelop a curve of class four. The tangents of this curve cut γ^{4} into linear polurquadruples.

If besides (5) also $a_{n}^{2} a_{n}{ }_{0}=0$ is salisficd, we have either $a^{3}{ }_{u} a_{v}=0$ or $a_{u} a_{v}^{3}=0$.

In both cases the equation $\left(a_{u}+2 a_{n}\right)^{4}=0$ has three equal roots $\left(\lambda^{3}=0\right.$ or $\left.\lambda^{3}=\infty\right)$. By this the well known property is confirmed according to which the 24 inflectional tangents of γ^{4} are the common langents of a curve of class 4 wilh a curve of class 6 .

The polar conic of a point of inflection possessing the inflectional tangent as component part, this replaces according to $\$ 2$ two of the tangents out of the inflectional point to the envelope of the harmonic quadruples; this curve therefore touches the inflectional tangents of γ^{4} in the inflectional poinis. '

Indeed, this follows also from the fact, that no tangent of γ^{4} can bear a harmonic group unless ils point of contact is inflectional point.
5. If U and V are the points of contact of a double tangent of γ^{4}, then as $\left(a_{u}+i a_{r}\right)^{4}=0$ slows, $a_{u}{ }_{u}{ }_{u} a_{u}=0$ and $a_{u} a^{3}{ }_{v}=0$ are satisfied; each of those points is then the point of intersection of the polar line and the polar cubic of the other point
If we allow U to describe the carve γ^{1} then $p_{n t}$ and $p^{3}{ }_{u}$ touch each other in U and thein point of intersectian describes a curve of order 32. For, p_{n} and $p^{3}{ }_{a}$ describe respectively systems with index 12 and 4 , since the poles of the polar lines and of the polar cubics passing through a point V are generated on γ^{1} by $\nu^{3} v$ and p_{1}. On a right line the two systems determine a $(4,36)$ correspondence and as γ^{4} belongs twice to the generated locus, the locus of the point of intersection of p_{u} and $\psi^{3}{ }^{3}$ is a curve γ^{3}.
In each point of contact of γ^{4} the line p_{u} and curve $p^{3}{ }_{u}$ have three points in common; therefore γ^{4} is osculated there by γ^{33}. The remaining 56 common points of the two curres are evidently the points of contact of the 28 double tangents of γ^{4}.

Physiology. - "About eschanye of gases in cold-blooded animats. in connection with their size." By F. J. J. Buytendiuk. (Communicated by Prof. H. Zhwardeminerb).

In a previous communication ${ }^{1}$) I have been able to prove that in fishes as well as in a number of invertebrate sea-animals the consumption of oxygen of the smaller individuals is considerably larger than that of the larger ones of the same kind.
Through the kindness of the Director of the Royal Zoological Society "Natura Artis Magistra" at Amsterdan I have been enabled to examine the gas-exchange of a great number of cold-blooded animals, in order to see whether the phenomenon slated in sea-animals occurs also in amphibia and reptilia.
The older investigations of Rmgnauit and Reisert ${ }^{2}$), Moleschotrt,
${ }^{1}$) These Proc. XII p. 48.
${ }^{2}$) Reignaul and Reiser, Amnales de Cllimie et de Phys 1849. Vol. 26. p. 209.

[^0]: 1) Since $a_{x}\left(o a_{z}+\sigma a_{y}\right)^{3}=0$ has the same scope as $p^{3}=0, X Y$ is the tangent in the point of inflection Y of the polar cubic of X. So $X Y$ forms a part of the polar conic of X and Y and it is therefore polar line of any point Z on $X Y$.
 2) We have namely

 $$
 \frac{\lambda_{1}-\lambda_{3}}{\lambda_{2}-\lambda_{3}}: \frac{\lambda_{1}-\lambda_{4}}{\lambda_{2}-\lambda_{4}}=\frac{1-i}{-1-i}: \frac{1+i}{-1+i}=\frac{(1-i)^{2}}{(1+i)^{2}}=-1 .
 $$

[^1]: b) According to a wellknown rule we find out of (2) by elimination of y_{k} an equation of order 26 in x_{k}. From the above follows that this can be broken up into an equation of order 18 and two times the equation of γ^{k}.

