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Physics. — “On the scattering of light by molecules”. By Prof. -
H. A. Lorentz. .

(Communicated in the meeting of January 29, 1910)

§ 1. It was pointed out many years ago by Lord Ravimen’)that
a beam of light can be scattered to all sides not only by particles
of dust, but also by the molecules of the medium in which the.
propagation takes place. According to his theory the coefficient of
extinction due to this cause in the case of a body of small density,
a- gas for instance, is determined by the formula
_ 32a’(u—1y
BN
in which g is the index of refraction, 2 the wave-length and N the
number of molecules per unit of volume, the meaning of the coet-
ficient /4 itself being that (he intensity is dunmished in the ratio of
1 to e * when a distance [ is travelled over.

Rayveier has deduced his equation by calculating the energy
radiating from the molecules whose particles are put in motion by
the incident rays, and Dy taking into account that the quantities of
energy traversing two successive sections of the beam must differ
from each other by an amount equal to the energy that is emitted
by the molecules Iying between those sections.

} The problem may, however, also be treated in a different manner.
In many theories the ordinary absorption of light is explained by a
resistance opposing the motion of the vibrating particles and giving
rise to a development of heat. Similarly, the extinction which we
are now considering may be ascribed to a certain resistance which,
however, is not accompanied with a heating effect, but is intimafely
connecled with the radiation from the molecules. According o the
theory of electrons?) a force of this kind acls on an electron whenever
its velocity v?) is variable; it is represented by the expression
' ¢’ d'v
S e @

h

R ¢ §)

in which ¢ is the charge of the electron, and ¢ the velocity of light
in the ether.

1) Ravpeien, On the transmission of light through an atmosphere containing
small particles in suspension, and on the origin of the blue of the sky, Phil. Mag.
(5) 47 (1899), p 375 (Scientific Papers 4, p. 397).

"-2) See, for instance, LorENTZ, Math. Encyklopddie, V, 14, § 20. .

%) German letters represent veclor quantities.
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In the case of a simple harmonic motion the sign of the second
differential coefficient of v is opposite to that of v itseif, so that, like
the resistance assumed in the theory of absorption, the force (2) is
opposite to the velocity. As to the connexion between this force and
the radiation from the vibrating electron, it becomes apparent if we
remark that during a foll period the work of the force which is
required for maintaining a constant amplitude, and which must be
equal and opposite to (2), is exactly equal to the amount of the
radiated energy.

In a recent paper Natanson ') has shown that Raviwer’s formula
can be obtained by introducing the force (2) into the equation of
motion of each vibrating electron.

§ 2. This result is very satisfactory, but still there are some points
which require further consideration. '

In Ravreier’s theory it is necessary to take into account the inter-
ference between the vibrations which arve produced, at some definite
point of space, by all the molecules in the beam, and, on the other
band, a consideration of the resistances will be incomplete if one
does not keep in view the mutual action between the molecules.
Whetlher we prefer one course or the other, it may be shown that
a scaftering can only take place when the molecules are irregularly
distributed, as they are in gases and liquids; in a body whose
molecules have a regular geometrical arrangement, a beam of light
is propagaled without any diminution of its intensity.

Let us begin with the second method, and let us observe in the
first place that, according to (2), the resistance per unit of charge
is given by

e d'
b’ de

It v is the displacement of an electron from the position ‘of
equilibvivm which it has in a molecule, this expression may be
replaced by

&

e dr
Goro® dt®
for which we may also write
1 d%
bac® dt*

G
if we put ,

1) L. Narawsow, On the theory of extinction in gaseous bodies, Bulletin de
I'Acad. des Sciences de Ciacovie, déc. 1909, p, 9165,
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er =y,

This latter quantity is the electric moment of the molecule, if
¢ is the only movable electron contained in it.

The above expression contains the #hird differential coefficient of
r or p with respect to the time, and it is easily seen that terms of
this kind, or, in general, terms of odd order, are the only ones in
the equations determining the propagation of light which can give
rise to an extinction of the beam. This circumstance will enable us
to distinguish the terms with which we shall be principally concerned,
from others which determine, not the extinction but the velocity of
propagation, and which it will not be necessary to consider in
detail.

§ 3. It 18 important to remark that the field belonging to a molecule
with an alternating moment p acts with a force like (3), not only
on the electron ¢ in the molecule itself, but also on elecirons lying
outside the particle, at distances that are very small in comparison
with the wave-length.

At a point (z,y, 2), at a distance r from the molecule, the scalar
potential ¢ and the vector potential a are determined by the equations

1o [

g=—mdiv—, . ()

1 ay
=, . . . . . . . .
e Aaper [dt:{ )

in which the square brackets serve to indicate that, if we want to
know the potentials for the time #, we must use the values of the

. 3 . 7’ »
enclosed quantities corresponding to the time ¢t — —. Hence, [»]isa
¢

function of ,y, 2,1, and we may write for the vector potential

1w
T daer O

Now, if r is very small with respect to the wave-length, we have

o] 7 dp rdi et dy

= ‘ 5 e . @

N=r—Catwaw oo T

For our purpose it will suffice to consider the parl of ¢ corre-

sponding to the fourth term of this series, and the part of a corre-
Al

sponding to the second term. In equation (4) (he uantity 0
»

may therefore be replaced by
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7 dp
"6 dr
a vector whose components are
r* d*py r* d*py 7 d®p,
T 66 ar ' 66 df ' 6e dr*
and whose divergence is
1/ & &y, Py,
_ﬁ(‘”%“w d;urz d:“)’
if the point from which r is reckoned, is taken as origin of coordinates.
We have therefore
1 d*pe dp a*p,
0 s (P YT )
denoting by the symbol (=) that terms irrelevant to our purpose
have been omitted.
The differential coefficients of the quantity within the brackets
with respect to x,, z are
d'pe  dny  dp;
a od T ode

so that we find

1 d
9708 9 (=) Tt agt
Combining this with
drvc® di*
we are led to the expression
1 d%
, Gac® dt*

which has already been mentioned, for the force acting on unit charge
1.

(which is given in general by ——a —grad ¢).
[

Simple examples may serve to show that this result agrees with
the law of energy. Suppose, for instance, that two molecules placed
very near each other contain equal electrons vibrating with equal
amplitudes and phases along parallel straight lines. Then the flow of
energy across a closed surface surrounding the molecules will be
equal to four times the flow that would belong lo one of the particles
taken Dby itself. Hence, for each molecule, the work necessary for
maintaining its vibrations must be doubled by the influence of the
other particle. This is really the case because the resistance is doubled,
eaclr molecule contributing an equal part to it. ’

o ——— —— TR
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Again, if the two vibrations have opposite phases, the amplitudes
still being equal, the two forces acting on one of the electrons
according to our formulae — one produced by the field of the
electron itself and the other by the field of the other molecule —
will annul each other. But in this case the system of the two mole-
cules does not lose any energy by radiation.

§ 4. The preceding considerations show that a correct explanation
of the extinction - of light, by means of the forces acting on the
vibrating electrons, can only be obtained by examining the mutual
actions between the molecules. In order to take these into account
I shall tollow , the same method which I have used on previous
occasions.

We shall start from the fundamental equations by means of which
the elect.omagnetic field between the electrons and even inside these

small particles can be described in all its details. Let » and § be

the electric and the magnetic force, ¢ the density of the electric
charge, and v its velocily. Then

divd =9,

divl, =0,

1 .
roth = — (>4 g1).
¢

rot d = -——(.).
[

Any electromagnetic state which satisfies these conditions may be
represented by means of a scalar potential » and a vector potential
a. These are determined by the equations

' 1 (o]
=) =as8,. . . . . . . (6
p= 5 ©)
1 ([ [ob]
= — > -d8, . . . . . . . (@
‘ 437(;] P )

in which the integrations are to be extended over all space, and we

‘have
102

Y= — —— —grad ¢ .

} ¢ 0t

" We may now pass on to the equations that may be used for a
description of the phenomena in which the details depending on the
molecular structure and inaceessible to our means of observation
are omitted. We obtain these by simply replacing each term in the
above formulae by its mean value over a space S surrounding the
boint considered, whose dimensions are so small that, in so far as
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it can be observed, the state of the medium may be regarded as
the same at all points of S, and at the same time so great that S
contains a large number of molecules. A space of this kind may be
called “infinitely small in a physical sense” and the mean value of
any scalar or vector quantity A is defined by the equation

— 1
A—==- [ Ads,
sf

in which the integration extends over the small space S.

We shall suppose the medium to contain neither conduction- nor
magnetization-electrons, but ouly polarization-electrons, i.e. charged
particles whose displacement from their positions of equilibrium
produces the electric moments of the molecules. Let P be the electric
polarization (the electric moment per unit of volume). Then?)

o= —dn®,
v =1,

and, if we put ¥ =€ (electric force), €+ P=2 (dielectric displace-
ment), Y =H, g=0¢, a =219,

div D=0, \
div H =0,
1 .
rol H=— D, I ()]
¢
- 1.
7'0t€:—?_f9,
< 1 0Y
C=—— ——grado. . . . . . . (9
¢ 0t

In those cases in which the field is produced by polarization-
electrons only, we have by (6) and (7)

o= L (L9

4z g
1 1o
gl p— mf“’:‘ [—a‘t-] dS. . . . . . . . (10)

In the first of these two equations it has been tacitly assumed
that there is nowhere a discontinuity in the polarization P. Whene-
ver such a discontinuity exists at some surface o, the equation must
be replaced by

1 [ [div 9] 1 (1 .
b= B i) - Dllde . (1)

das,

1) Math. Encyklopadie V 14, § 30.

Proceedings Royal Acad. Amsterdam. Vol, XIIL
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where » means the normal to the surface 6, drawn from the side
1 towards the side 2.

§ 5. The fundamental equations show that the fleld may be con-
sidered as produced by the electrons contained in the source of light
and in the media traversed by the rays. Let ¢ be a closed surface
in the medium with which we are concerned and let the value of
€ at some point on the inside of ¢ be decomposed into two parts,
the first of which (£,) is due to all the electrons lying outside the
surface, whereas the second part (£,) has its origin in the state of
the medium within ¢. This latler part can be determined by the
equations (9), (10} and (L1}, if, for a moment, we confine ourselves
to the matter enclosed by o, with the values of § existing in it.
Then, drawing the normal to ¢ towards the outside, we have d,, =0
and we may write .

_ 1IN
=)
if we omit the index I in %, and if we take for granted that the
vibrations are transverse, so that div P = 0.

Confining the integration in (10) to the space within 4, we find

for the second part of €

o, . . . .« . . . (12

G ———1—9;11-- grad Q. (13)
2 c at . . . . . .
As to the first part
¢ =€C-¢,

it vepresents the value which § would have at a point within the
surface, if we removed all the particles contained in it, without
changing anything in the state of the matter on the outside.

In what follows we shall conceive the cavity made in this way
io be infinitely small in a physical sense. But, nevertheless, we shall
suppose its dimensions to be very great in comparison with those of
the space S that has been mentioned in the definition of the mean
values. Under these circumstances and if we except those points of
the cavity which are very near the walls, there will be no diffe-
rence between the mean value of d and this vector itself. Hence,
¢, may be considered as the real value of b within the cavity.

§ 6. In order fo find the laws of the propagation of light, we
have o combine the equations (8) with the relation between D
(6r M and ¢, which can be deduced from the equation of motion
of the elecirons vibrating in the molecules.



(99)

We shall simplify by assuming that each molecule contains no
more than one vibrating electron. Let us fix our attention on a
single molecule M and let us denote by v the displacement of its
movable electron from the posilion of equilibrium, by » = ¢t the
moment of the molecule, and by m the mass of the electron. The
forces acting on the electron are: 1. the quasi-elastic force, for
which we shall write — fr, 2. the resistance (3), and 3. the force
ed, if b is the electric force produced at the place of A/ by all the
surrounding electrons. Now, after having described around M an
infinitely small surface o, such as has been considered in § 5, we
may conceive d to be made up of two parls, the vector €, that has
already been mentioned, and the part that is due to the molecules
@ surrounding Jf and lying within the surface 6. Let v, be the
part contributed by onc of these molecules, and let the symbol =
vefer to all the molecules . Then, the equation of motion becomes

2 3‘
m%: —fi 6;655%—{—0(@—@2) +eZo,. . . (14)
and here, on account of what has been said in § 3, we may put
1 d*p
20 (=) 50y 27:317, :
if we confine ourselves to the resistances.

The determination of the sum occurring on the right-hand side
would be a very simple matter, if the molecules were arranged in
some regular way, if, for example, they occupied the points of a
parallelepipedic net. In such a case, the moment p, of any one of
the molecules @ may be considered as equal to that of the particle
M itself, for which we want to write down the equation of motion
(because the dimensions of ¢ are very small with respect to the wave-
length). On the confrary, in a system of particles having an irve-
gular distribution, unequalities may arise from the mutual electro-
magnetic actions ; this is easily seen if one considers that the dis-
tance to the neavest particle is not the same for the different mole-
cules. . On account of this cirenmstance, it would be very difficult
accurately to calculate the sum for a liquid body.

In the case of a gas the problem becomes more simple. Indeed,
it can be safely assumed that in such a body the influence of the
molecules on the propagation of light is rather feeble. It is only in
& small measure that the state in a definite molecule depends on
that of the surrounding ones; it is chiefly determined by the stale
of the ether, and this may be' taken to be nearly the same that could
exist if the beam were propagated in a vacuum. Consequently, in

74\

(15)
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the equation of motion of the electron belonging to a definite mole-
cule, the terms expressing the action of the other molecules are
small in comparison with the remaining terms, and we shall neglect
only quantities that may be said to be of the second order, if, in
calculaling the terms in question, we reason as if the moments of
the molecules @ and that of M itself were wholly independent of
the mutual action between (hese particles. But in this case all these
moments would be equal to each other. Therefore, in calculating the
sum in (15), we shall take cach p; to be equal to the mean value
of p for all the molecules M contained in an infinitely small space.
Distinguishing mean values of this kind by a double bar above the
letter, and writing » for the number of the molecules @, i.e. for
the number of particles, with the exception of M, lying within the
closed surface 6, we may replace (15) by
d®p
2y (—)gﬁﬁ'
§ 7. It remains to consider the electric force €, determined by
(10), (12) and (13). Let us put for this purpose
[(P]=9P+ 5,
and let each of the three quantities ¢, % and €, be decomposed into
two parts in a way corresponding to this formula. The first part of
¢, depends only on the values of § which are found, at the definite
moment ¢, on the surface ¢ and inside it, and even if account had
to be taken of the changes of P from one point to another — which
can be represented by means of the differential coefficients of } with
respect to the coordinates, it could be shown that the part in question
contains differential coefficients of even order only, at least if the
form of ¢ is symmetrical with respect to three planes passing through
M and parallel to the planes of coordinates. It will therefore suffice
for our purpose to consider the second part of €,, and to substitute
in (13) the values
1 D.n

=— ) =do. . . . . . . (16
4>4n’ TO’ (16)

1 1 99
S (T R L
=) w @

In the following transformations, whose object is the determination
of €,, the coordinates of the point M for which we want to know
¢, % and €, are denoted by 2',7/,7, and those of a point on the
surface ¢ or within it, by ,y,2.

and

-10 -
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It may be remarked in the first place that (16) may be wriiten

in the form
1 09 048D 0
—_ = — . . (18
? 4n.f(afc 7'+6Jr+az ')ds (18)

and that here the differential coefficients with respect to «, y, z, may
be replaced by those with respect to ', 4/, 2" with the signs inverted.
In order to show this, put

Po=F @yat)hy=7f@yahP=/1f@y 1)
and write /"5 (2, y, 2, #) etc. for the partial derivatives, taken for a
constant #, of these expressions with respect to =, v, z. The vibrations
being transverse, we have

So@y )+ @y )+ @y 0=0, . (19)

aud also

»
flz("l Ys z,t~_> + foy (w,y, z,t——c—>—|—
P
_I_ f,SZ (a}, Y. =2 t — *c—) = 0, .. (20)

because (19) is true for any value of ¢

Now,
'Qx —jfl(fb y,z,t——-) — /i (@ ymt):
=—§fa(w1y,~at——)*—fg(w,y,z,t) ;
—Q———— (%z,t———) — i@y 2.9,

and, if this is substltuted in (18), we get two groups of terms, some
’ g Q

depending on the explicit occurrence in — ete. of @, y,2 and the
”

remaining ones arising from the variability of . Equations (19) and
(20) show that the terms of the first group annul each other, and
we may replace (18) by

' . .1 09, 09, 90,
qD:—ZJ;f(a{b - +a_y—'7+§:7 T)CZS .. .(21)
because
o o ~
a(?:———a;, ete,

Let us next substitute in (21) (ef. § 3)

Q:[‘p]-—'m:—*—"““ é—cg'a—t;—-—.—:;—,—-—l—.-,. (22)

-11 -
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. .5 3 . a -\ . J
where the differential coefficients ?)i etc. are independent of &, 3/, 7.

) -

After this expansion none of the terms in — contains a negative
”

power of 7, and in differentiating (21) with respect to 2’,y’, 2’, asis
necessary for the determination of grad o, we may effect the operation
under the sign of integration. Thus

p 1 0° 9, 0 9, 0¢ .
—— s — —_— S. .
Oa' 43](6(0”‘ » T 0z 0y’ » + o' 02" » ) @5 ete

or, confining ourselves to the part of this expression corresponding
{o the last lerm 1 (22),

09 1 0%,
—~—(=) — ——d 38§, ete.,
oz ) 127¢* ) 08 » o
i o
1 oD

— grad [ (=) — as.

127c) o

101 . . . .
As {o the lerm——--—a?, it will suffice to substitute in (17) the first
¢
term of (22), so that
1081 (o'
T Awe) of
The result of our calcnlation is

. 1 o p

as.

oM
or, since 3% may be considered as constant throughout the small
space enclosed by o, if the magnitude of that space is denoted by U,
€ (= ! U ik
z (—) @ atn *

Fmally, the equation of motion (14) takes the form

de NG I R LY
771L—’:——f1'--‘—6€+6—J%;;(—(:Z—2?+7) w“-UW +0,. . (23)
where several aclions of which we have not spoken and which are

not 1o be reckoned among the resistances, ave taken {ogether in the
ferm 3.

§ 8. We have now to distinguish {wo eases.
a. Let the molecules have a regular arrangement insuch a manner
that cach occupies (he centre of one of a system of equal paralle-

-12 -
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lepipeds which ave formed by three groups of planes. In this cass
= 1

there is no difference between » and p. Fuorther, if Xris the volume

of one of the elementary parallelepipeds, and if we take for the
space U a parallelepiped consisting of £ elementary ones,

P =Ny,

U=

k
N,
By this the expression enclosed in brackeis in (23) becomes
' 0%p
(1 + v - ]C) &a— .

But, » 41 Dbeing the total number of particles in the space U,

we. have
v+1=¢k,

so that, after all, there is no resistance, and there can be no eatinetion
of the rays of light.

0. The case of an irvegular distribution of the molecules is best
treated by applying equation (23) to each of the molecules within an
infinitelv small space and taking the mean value of each term. Suice

P = Z\7=$,
N being the number of molecules per unit of volume, we get
d‘;l_': = - 4 1 = NU a“b—— = 94:
= —frtef -— — 5. . . (2
meo Jrtet+ e (l+» i’ (24)

Now, the number of particles in the space U considered in § 7
was L -4 w», and therefore it would almost seem at first sight as if

‘the mean value 14 v were equal to NU. In fact, however, we
have, in the case of an irregular distribution

»=NU..,. . . . . . . . (25

In order to see this, we must remember that 1 -+ » represented
the total number of paxticles lying in a space U that had been chosen
around a molecule M on whick we had previously fived our attention.
Let us imagine in the gas a volume ¥ very great in comparison
with the infinitely small space U, and let us conceive the NV
molecules which this volume is to contain, {o be placed in it at
.random, no difference being made between one part of space and
another. After having assigned its position 1o the first molecule, we
choose around it the small space U and we ask how many of the
-remaining NV —1 particles will, in the mean, come to lie in that
space, if the experiment of placing the NV — 1 molecules in the

-13 -
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volume V is vepeated many times. Obviously, this mean number,

which we may take for v, is

U U
F NV =) =N~

U .
and this may be replaced by (25), beczmse? is a very small fraction.

Oul conclusion must {herefore be that the coefficient 1 4+v—NU

1 (24) has the value 1, and we may express this by saying that
among {he terms in (23) which represent resistances, one only remains,
namely the term that is due to the field belonging to the molecule
itself which we are ronsidering.

Finally, in order to give a more convenient form to the equation

N .
of motion (24) we shall multiply it by e—~, replacing at the same time
m
the vector N e f= sz by P. We shall also pnt
€N:
—§=v S:pv
m

where, with sufficient approximation, v may be considered as a con-
stant coefficient, and

—— v =n,"

In this way we arve led to the formula
aD ¢ 63D
B P L
o o ¥ + T e 6mc'm ot
from which, if it is combined with (8), RaYLEIGH’S extinction coeffi-
cient can be deduced.

§ 9. We shall conclude by briefly showing that, like the method
which we have now followed, that of Rayiien, namely the direct
calculation of the energy emitted by the molecules, leads to a scat-
tering of the light, only for a system whose molecules are irregularly
distributed.

Let us consider a bundle of parallel homogeneous rays, and let
Z be a line or a very narrow cylinder having the direction of the
rays, AB a part of L very long in comparison with the wave- -length,
AP 2 line making a certain angle with AB, and P a point of that
line whose distance from A is many times greater than 4B. We
shall take the axis of @ along 4B and we shall simplify by assuming
that, for cach molecule situaied on the line L or in the narrow

-14 -
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eylinder, the electric moment may be represented by an expression
of the form '
acos (nt-4-p),

in which p is a linear function of #. The amplitude a may be
regarded as constant, if we neglect the unequalities that may arise
from the mutual action between the molecules of a gas or a liquid
(comp. §6), and if we suppose the extinction along the length of 4 B
to be very feeble.

For one of the components of the light vector at P, so far as it
depends on one molecule, we may now put

bcos(nt— q),

where b is a constant, and ¢ a linear function of z, and we have
to calculate the sum

s=Zbcosmnt-tq, . . . . . . (26)

extended to all the molecules.

Suppose in the fiest place that £ molecules ocecupy equidistant
positions on the line AB. Then the values of ¢ form an arithmetical
series ¢,, ¢, + 4, ¢, 1+ 2 4, ete. and we have

[sinint + ¢, + (£ — 3) A} ~—smznt+ 9, — Q] =

in
B et g, £ (1) )

It appears from the first form that the resulting disturbance of
equilibrium can be conceived as consisting of {wo vibrations emitted
by points near the extremities of the row of molecules, and the

second formn shows that, when the length of the row is inereased

~ Ssin 10
=1

and

b
constantly, the amplitude of s remains comprised between -} A
szn

— Though there is a certain residual vibration, its intensity
sin § 00

cannot be said to increase with the length of AB.

——

§ 10. This conclusion also holds when the molecules of a gas are
distributed in such a manner over the cylinder L that equal paris
of it, separated from each other by normal sections, contain exactly
equal numbers of particles. Then, for an element dz, the number
will be fdz, with a constant f, and we have instead of (26)

s = bf f cos (nt + g) do = bf - {sin (nt 4 ¢") — sin (nt - s
[ being the length of A8, and q g" the extreme, values of ¢. While

-15-
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! increases, the ratio - remains constant, and, like in the former

"

case, the resulting vibration may be considered as made up of two
components emitted by the extremities of 4B.

In order not to encumber our formulae with this small residual
vibration, I shall suppose the difference ¢ — ¢’ to be a multiple of 2.

When the distribution of the molecules is an irregular one, equal
parts of the cylinder L will not contain exactly the same number
of particles, and we shall now show that these differences must
cause a 7real scattering of the rays. For this purpose we begin by
dividing the cylinder 4B into a number of parts 44, 4'4" ete,
such that along each of them ¢ changes by 2x. Next, always using
normal sections, we divide each of these parts into a great number,
say £ of smaller ones, all of equal length dz. Having done this,
we take together the first part of 44', the first of 4’4", etc., con-
sidering their sum as ome part of the cylinder 4B; in the same
manner we combine into a second part of it the second part of A4',
the second of 4’4", and so on, so that after all the whole cylinder
is divided into £ parts of equal volume. For all the molecules lying
in one of these parts the phases of the vibrations which they produce
at the point P, may be taken to be equal. Let the L phases be
determined by the quaniities g,, ¢,, ... qi, which form an arithmetical
series.

Now, if ¢, ¢, ...9. are the numbers of molecules contained in
the £ parts of the cylinder, we have

s==b[g, cosint + q,) + g, cos (ut -+ q,) + ...+ grcos(nt +gr)] . (27)

According to what has been said, this would be zero if all the
numbers ¢,, g, - .. g& were equal. Consequently we may also write

8 = b [k, cos (nt + q,) + 2, cos (t + q,) + ... 4 ki cos (nt 4 qi)l,

if we understand by A, h, ..k the deviations of the numbers
G1> Jos + - - 91 from their mean value. We shall denote this mean value
itself by g.

The radiation across an element of surface lying at the point Pis
determined by the square of s, and our problem may therefore be
put as follows: What will be the mean value of s* in a large number
of experiments in which, all other things remaining the same, the
distribution of the particles is different, a number £g of molecules being
each time distributed at random over the £ parts of the cylinder?

In considering this we must keep in mind that, among the num-
bers Ay, kg . .. i there must always be negative as well as positive ones ;
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since %, 4 A, 4 ... =0, neither the positive nor the negative
values will predominate. '
Now it is clear that the mean value of any product of two different
#’s, relating to any two definite among the £ parts, must of necessity
be zero, in as much as there is no reason for a different probabi-
lity of equal or unequal signs of those two deviations. )
ITence, the mean value in question becomes '

b* [E cos® (nt -+ q,) -+ h,? cos* (nt + q) ...yt cos (mt - IR

and on an average, for a full period, '

O )
But, by a well known theorem in the theory of probabilities, .
7):’—:: 7;: . :—]LI‘— = ¢,
so that our result becomes
§ kg b*, ) ’
showing that, in order {o find the intensity of the radiation issding
from the cylinder L, we must multiply the intensity 4 b* that is
produced by one molecule, by the number k¢ of particles in the
cylinder. This conclusion can easily be extended to a part of the
beam of any size. Indeed, the % vibrations ocenrring in (27) mutu-
ally destroy each other for the greater part by interference, and the
vibration of which we have calculated the intensity is no more than
a small residual disturbance of equilibrium. It may have any phase
whatever according as the molecules happen to be disseminated in
one way or another. Now, if a part of the beam of any magnitude
is divided into a number of cylinders L such as we have considered
in the last paragraphs, there will be no connexion between the
distribution of the molecules in these several cylinders. The phases
of the residual vibrations due to each of them will be wholly inde-

pendent of each other, and it will be allowable, simply to take the
sum of their intensities.

Physics. — “Quasi-association or molecule-complexes” By Prof.
J. D. van per WaALs.

(Communicated in the Meeting of May 28, 1910).

In the Meeling of this Academy of January 1906 I delivered an
.address on what I then called “Quasi-association”. I demonstrated
-that the phenomena, particularly in the liquid state, led t0.the

) . RI" R
conclusion that the equation of slate p =—— — — was not in lar-
V— v v s
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