Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

P.H. Schoute, On the relation between the vertices of a definite sixdimensional polytope and the lines of a cubic surface, in:
KNAW, Proceedings, 13 I, 1910, Amsterdam, 1910, pp. 375-383

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Above I have briefly described the structure of the nuclens and the details of the karyokinesis in Clusterium Elhrenbergii. As appears from what has been said the nucleus, as far as the nucleoli are concerned, does not agree with the nuclei of Spirogypa, as earlier investigators have supposed. In this respect the nucleus of Closterium differs on an important point from those of Spirogyra, namely, it does not possess a nucleolus which may be identified as or compared with a nuclens. The nuclei agree with nuclei, which are generally found among plants, especially the higher plants. Nevertheless they show one peculiarity: the nucleoli which are indeed present in great numbers, form in the middle of the nucleus a conglomeration.

The nucleus divides by karyokinesis or mitosis. All phenomena which generally occur, also take place in Closterizm. In Closterium the nuclear division presents the following particulars: the distribution of the nucleoli in the nucleus and their extrusion into the cytoplasm, the great flat equatorial plate, the great number of chromosomes which is more than 60 , the different length of the chromosomes, which in general are short and of which the longer ones only have free ends, protruding sidewards, the wide, feebly developed spindle and the translocation of the daughter-nuclei along the cellwall.

Later I hope to give a more detailed account of the karyokinesis in Closteriam and to illustrate with figures the above mentioned results. In this paper hardly anything has been said about the cell division and the growth of the cellivall. To this I also hope to refer later.

Mathematics. - "On the relation between the vertices of a deffinite sixdimensional polytope and the lines of a cubic surface". By Prof. P. H. Schoute.

1. In his investigation about semiregular polytopes, and polytopes possessing a higher degree of regularity Mr. E. L. Erre, whose dissertation is to appear shortly has met with a sixdimensional polytope of degree of regularity $\frac{3}{4}$ with 27 vertices. Our aim here is to point out the complete currespondence in relations of position between the 27 vertices of this polytope and' the 27 lines of a cubic surface.

The symbol of the characteristic numbers of this polytope is $(27,216,720,1080,432+216,72+27)$,
i. e. the polytope has 27 vertices, 216 edges, 720 faces, 1080 limiting bodies, 648 fourdimensional limiting polytopes and 99 fivedimensional ones. Herc the numbers $27,216,720,1080$ between the brackets are left undivided, as the corresponding elements are of the same kind: all the edges have the same length and - with respect to the whole figure - the same position, all the faces are equal equilateral triangles in the same position, all the limiting bodies are equal regular tetrahedra in the same position. On the other hand the 648 equal regular fivecells forming the fourdimensional limiting polytopes split up according to their position into two groups, while the 99 fivedimensional limiting polytopes consist of 72 regular simplexes $S(6)$ with six vertices and 27 regular cross polytopes $C P(10)$ with ten vertices; of the 648 fivecells 432 are common to an $S(6)$ and a $\operatorname{Cr}(10)$, the remaining 216 to two $\operatorname{Cr}(10)$.
2. In order to be able to enter into our subject immediately we start from the 27 points with the coordinales

$$
\left.\left.\begin{array}{rccccccc}
0 & 0 & 0 & 0 & 0 & -\frac{4}{3} \sqrt{ } 3 \ldots & \ldots & a_{0} \\
(1 & -1 & -1 & -1 & -1
\end{array}\right)-\frac{1}{3} \sqrt{2} \sqrt{2} .5 a_{l}\right)
$$

In this scheme the symbols $a_{0}, a_{1} \ldots a_{5}, b_{0}, c_{13}, . . c_{45}, b_{1}, . . b_{5}, c_{01}, . . c_{05}$ of the last column represent the points in a transparent manner; moreover this notation is entirely the same as that generally used for the 27 lines of the cubic surface. Indeed, if - by means of the well known formula for the distance of two points with given coordinates - it has been shown, that any of the 27 points is al distance $2 V 2$ from 16 and at distance 4 from 10 oher points and it has been found for each of the 27 vertices which are the 16 adjacent ones and which the 10 remote ones, it is immediately evident that in using the same symbols a, b, c for the 27 vertices of
the polytope and the 27 lines of the cubic surface two adjacent vertices (edge distance $=2 V 2$) always correspond to two crussing lines, two remote vertices (diagonal distance $=4$) always correspond to two intersecting lines. We will show that this correspondence leads to simple geonetrical results; but to this end we lave to know the projectious of the new polytope on different axes of symmetry.
3. All the 27 vertices are at the same distance $\frac{4}{3} V 3$ of the origin. So the origin is the centre of the polytope and all its axes of symmetry pass through this point.
The projection of the polytope on the axis $O X_{\mathrm{t}}$ passing through the vertex a_{0} can be deduced immediately from the coordinates. It has been given in the known manner in fig. 1. Moreover the List I gives the names of all the edges, faces, etc.

From this projection $(1,16,10)$ it is evident that a limiting cross polytope $C r(10)$ is oppositely placed to the vertex a_{0}. We sary that these elements we rightly opposite to each other, as the line from the vertex to the centre of the polytope passes if produced through the centre of the opposite cross polytope $\operatorname{Cr}(10)$.
4. We repeat in fig. 2^{a} the position of the 27 vertices in the projection ($1,16,10$) and indicate now how the other projections $(2,10,10,5)$, etc. given there have been obtained. We thereby enter into detail with respect to the first new case $(2,10,10,5)$ of 2^{b}, where the axis passing through the midpoint of the edge $a_{1} a_{2}$ is the axis of projection.
The coordinates of the midpoint of the edge $a_{1} a_{2}$ are

$$
0,0,-1,-1,-1,-\frac{1}{3} \sqrt[V]{ }
$$

So

$$
\frac{\left(x_{3}+a_{4}+x_{5}\right) V 3+v_{5}}{V 10}=\text { const. }
$$

is the standard equation of any space S_{s} perpendicular to the axis under consideration. The constant of the second member takes for the
 $\left(b_{0} b_{\mathrm{a}} b_{4} b_{\mathrm{t}} \mathrm{c}_{12}\right)$ indicated in fig. 2^{b} successively the values $-\frac{10}{\sqrt{ } 30}$, $-\frac{4}{V 30}, \frac{2}{\sqrt{ } 30}, \frac{8}{V 30}$; by means of these values the position of the
points of the axis where the $2,10,10,5$ vertices project themselves, with respect to the origin indicated by the dotted vertical line, is easily found.

The centre of gravity of the regular fivecell $\left(b_{0} b_{3} b_{1} b_{5} c_{22}\right)$, lying opposite to the edge ($a_{2} a_{2}$), i.e. the point with the coordinates

$$
0,0, \frac{4}{5}, \frac{4}{5}, \frac{4}{5}, \frac{4}{15} \vee 3
$$

is situated on the axis of projection. So the edge $\left(a_{1} a_{2}\right)$ and the fivecell $\left(b_{0} b_{3} b_{4} b_{0} c_{12}\right)$ are rightly opposite to each other. From the number 216 of the edges it follows, that each of the opposite fivecells must be common to two cross polytopes $C^{r}(10)$; really the fivecell opposite to the edge $\left(a_{1} a_{2}\right)$ is common to the two $\operatorname{Cr}(10)$ opposite to the vertices a_{1}, a_{2}.
5. In an analogous manner the other projections are found.

So fig. 2^{c} deals with the case of the axis passing through the centre of the face $a_{2} a_{2} a_{3}$. The standard equation

$$
\frac{x_{1}+x_{2}+x_{3}+3\left(x_{4}+x_{5}\right)+x_{\mathrm{n}} \sqrt{3}}{2 V^{6}}=\text { const. }
$$

corresponding to this case gives for the groups of vertices

$$
\left(a_{1} a_{2} a_{3}\right),\left(a_{0} a_{4} a_{5} b_{04} c_{05} \sigma_{45}\right),\left(c_{01} c_{02} b_{03} c_{14} c_{24} c_{34} c_{15} c_{25} b_{35}\right),\left(b_{2} b_{2} b_{3} c_{22} c_{13} b_{23}\right),\left(b_{0} b_{4} b_{5}\right)
$$

successively the values $-\frac{4}{\sqrt{ } 6},-\frac{2}{\sqrt{ } 6}, 0 . \frac{2}{\sqrt{ } 6}, \frac{4}{\sqrt{ } 6}$ of the constant. So we find the projection ($3,6,9,6,3$), slowing thai the facos of the polytope are placed in pairs rightly opposite to each other. For the centre of gravity of the triangle $b_{0} b_{4} b_{5}$ lies on the axis of projection.

So fig. 2^{d} treats the case of the axis through the centre of the tetrahedron $a_{1} a_{2} a_{2} a_{4}$, by means of the standard equation $\frac{\left(x_{1}+x_{2}+x_{3}+x_{4}+2 x_{5}\right) \sqrt{3}+2 x_{0}}{2 V^{7}}=$ const. and of the values $-\frac{7}{V 21},-\frac{4}{\sqrt{21}},-\frac{1}{\sqrt{21}}, \frac{2}{V 21}, \frac{5}{V 21}, \frac{8}{\sqrt{21}}$ of the constant, the projection $(t, 3,8,6,4,2)$. Here the edge $b_{0} b_{5}$, corresponding to the value $\frac{8}{V 21}$ is placed obliquely opposite to the tethrahedron $a_{1} a_{2} a_{3} a_{4}$, for the midpoint of the edge does not lie on the axis of projection. A closer examination shows that in this mamer each edge is placed obliquely opposite to five limiting tetrahedra, i.e. to the five limiting
tetrahedra of the tivecell placed rightly opposite to the edge. In accordance to this the number 1080 of the limiting tetrahedra is five times that of the edges.

Farthermore fig. 2^{e} gives the projection on the axis passing through the centre of the fivecell $a_{1} a_{2} a_{2} a_{4} a_{5}$ common to the simplex $a_{0} a_{1} a_{2} a_{3} a_{4} a_{5}$ and a cross polytope $C r(10)$. The standard equation is

$$
\frac{3\left(x_{1}+v_{2}+x_{3}+x_{4}+x_{5}\right) \bigvee 3+5 x_{8}}{4 \bigvee 10}=\text { const., }
$$

the values of that constant are $-\frac{8}{\sqrt{30}},-\frac{5}{V 30},-\frac{2}{V 30}, \frac{1}{V 30}, \frac{7}{V 30}, \frac{10}{V 30}$; the fact that in this arithmetical series the term $\frac{4}{V 30}$ is lacking will be accounted for in a natural way later on. The opposite point b_{0} lies obliquely opposite to the fivecell from which we started. A closer investigation shows the following. There are - we have already stated this - 216 fivecells, each of which is common to two Cr (10); i.e. of the 27×32 limiting fivecells of the cross polytopes 432 cover each other by pairs, while the 432 remaining ones are covered by the 72×6 limiting fivecells of the $S(6)$. So the 32 limiting fivecells of each $\operatorname{Cr}(10)$ are coloured alternately white and black, if we call a fivecell in contact with an $S(6)$ white, a fivecell in contact with a $C r(10)$ black; now each vertex is obliquely opposite to the 16 white limitung fivecells of the $C r(10)$ rightly opposite to 1t. Indeed the number 432 of the fivecells common to two fivedimensional polytopes of different kind is 16 times the number of vertices.

Finally $2 t$ represents the case of the axis through the centre of grarity of the simplex $a_{0} a_{1} a_{2} a_{2} a_{4} a_{\mathrm{a}}$. To this corresponds the standard equation $\frac{x_{1}+v_{2}+x_{3}+x_{4}+x_{5}+x_{8} V 3}{2 V 2}=$ const. wilh the values $-V 2,0$, $V 2$ of the constant and the simple projection $(6,15,6)$ of the points a, c, b given in fig. 3, while the List II gives the names of all the limiting elements ${ }^{1}$). This projection shows us that the 72 limiting $S(6)$ are placed by pairs rightly opposite to each other.
6. Before we consider the obtained projections in connexion with the 27 lines of a cubic surface it will be well to extend our terminology by putting side by side the simpler corresponding properties of the two systems of 27 objects. In this comparison "the polytope"

[^0]stands for, the figure with the 27 vertices, "the configuration" for the 27 lines of the cubic surface.

The polytope has
$\therefore 216$ edges and 135 diagonals, lying three by three in 45 planes;

720 triangular faces, forming 360 pairs of rightly opposite triangles;
: 1080 limiting tetrahedra;
648 limiting fivecells;
72 . limiting simplexes $S(6)$,
forming 36 pairs of rightly opposite $S(6)$;
27 limiting polytopes $\operatorname{Cr}(10)$,
placed rightly opposite to the verlices;

27 fivedimensional sections with six̣teen vertices;
of the 648 fivecells 432 belong
to the limits of an $S(6)$.

The configuration has
216 twocrossers and 135 twointersecters, the points of intersection of which form 45 triangles;
720 threecrossers, forming 360 pairs of threccrossers lying on the same quadratic surface;

1080 fourcrossers;
648 fivecrossers;
72 sixcrossers, forming 36 double-sixers;

27 tenlines admitting one of the other lines as common transversal;

27 sixteenlines admitting one of the other lines as common crossing line;
of the 648 fivecrossers 432 belong to half a doable-sixer.
7. We now consider the obtained projections in comnexion with the lines of a cubic surface and distinguish the element placed in the diagram at the lefthand side as the "siarting element", the element placed at the righthand side as the "end element". In this comparison we immediately find this particularity that the property - following in fig. 2^{a} from the assumed relation between the vertices of the polytope and the lines of the cubic.surface - i.c. that the 10 lines of the end element intersect the line forming the starting element, maintains itself up to fig. 2^{c} in this form that all the lines of the end element are common transversals of the lines of the starting element, while in fig. $2 f$ each line of the end element cuts only five of the six lines of the starting element. It is easy to express this by a rule without exception indicating the relations of position much more accurately, if we measure as in fig. 4 on a horizontal line $O X$ from the origin O equal segments, mark the points of division by the row of numbers $0,1,2,3 \ldots$, place under 0 the lines of the different starting elements ${ }^{1}$) and write under $0,1,2,3 \ldots$

[^1]2II.SCIOUTE: "On the relation betiveen the vertices of a definute sisdinensional polytope and the Lines of a cubic surface."

the groups of lines, any fine of which culs respectively $0,1,2,3 \ldots$ of the lines forming the starting element. We then really fall back on the projections $(1,16,10),(2,10 ; 10,5)$, etc. .
The cases in which the starting element contains one, two, three or four lines, give at most rise to the remark. that we find back in fig. 1 the old projections represented on a different scale; for the mutually equal segments of each projection have really different length for the different projections of fig. 2, while all the segments have been taken equal to each other in fig. 4.

For the four remaining projections of fig. 4 the starting element is in the language of the configuration successively:
a fivecrosser not belonging to half a donble-sixer;
a fivecrosser belonging to half a double-sixer;
a sixcrosser;
a tenline.
Of these four cases still to be discussed the first is that of fig. 2^{b}, the last that of fig. $2^{\text {a }}$, both taken reversely, i.e. with interchange of starting and end element, while the second and the third correspond to fig. 2^{e} and fig. $2 . f$.

We treat of the second of the four cases, that of the projection $(5,1,5,10,0,5,1)$ in the first place, in order to fix the attention on the point bearing no projection indicated by the nought. Wherefore has this empty place (fig. 2^{c}) to present itself? Because the number of lines cutting respectively $0,1,2,3,4,5$ of the five lines $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ forming the starting element is $1,5,10, \mathbf{0}, 5,1$; in other words any of the 27 lines culting three of the five lines a_{l} at least cuts four of them. By this rational explanation of the mentioned hiatus the three other projections are also explained. If we take the projection of fig. 2^{b} in the reverse sense, we find that each of the ten lines $\left(b_{1} b_{2} c_{01} c_{02} \ldots c_{36}\right)$ cuts three, each of the iwo lines $\left(a_{1} a_{2}\right)$ cuts five of the lines of the starting element ($b_{0} b_{3} b_{4} b_{0} c_{12}$). The third of the four cases, that of the projection ($6,15,6$) of fig. $2 f$, can be explained in the same way. Finally we have still to remark that in the lasi case the displacement of the starting element, the tenline, over one segment to the right of the origin, is no mistake; it corresponds to this that the ten lines do not cross each other altogether, but that each of them intersects one of the nine others.
8. So the subject proper of this communication is exhausted. However we will finally move the question if it may be possible that considerations analogous to those mentioned above lead from
other known configuations of lues to unknown polydmensional polytopes with a ceriain degree of regularity and reversely newly discovered polytopes of this character to muknown configurations of lincs. According to our opmon these can be no doubt about the answer to thrs question.

But unstead of entering unto this new subject just now we will only point out the configuration of the 16 lines crossing one of the 27 lines, to which corresponds the fivedmensional polytope with the 16 vertices ($5 a_{2}, b_{0}, 10 c_{l l}$). As is known this configuration presents itself on the quartic surfaces with double come On the other hand the 16 points ($5 a_{i}, b_{0}, 10 c_{l l}$) are the vertices of the half measure polytope $\frac{1}{2}[111111]$ of the fivedimensional space $x_{6}=-\frac{1}{3} V 3$. So we have here before us a second example of a correspondence as the one treated above. In order to enable the reader to study this correspondence we have repealed in the fig. 5 and 6 the part of the fig 2 and 4 which relates to these systems of 16 objects

LIST I.

Vertices.
$a_{0}-5 a_{1}, b_{n}, 10 c_{12}-5 b_{1}, 5 c_{01}$.
Edges.
$5 a_{0} a_{1}, a_{0} b_{0}, 10 a_{0}{ }^{\prime}{ }_{12}-10 a_{1} a_{2}, 30 a_{2} c_{2}, 10 b_{0} c_{29}, 30 c_{12} r_{13}-$
$5 a_{1} b_{1}, 20 a_{1} c_{02}, 5 b_{0} b_{1}, 30 b_{1} c_{23}, 20 c_{01} c_{12}-10 b_{1} b_{2}, 20 b_{1} c_{02}, 10 c_{01}{ }^{\sigma_{02}}$.
Faces.
$10 a_{0} a_{1} a_{2}, 30 a_{0} a_{1} a_{23}, 10 a_{0} b_{0} c_{12}, 30 a_{0} c_{12} c_{13}$ —
$10 a_{1} a_{2} a_{3}, 30 a_{1} a_{2} c_{34}, 60 a_{1} c_{23} c_{24}, 30 b_{0} c_{12} c_{13}, 20 c_{12} c_{19} c_{14}, 10 c_{12} c_{13} c_{23}-$
$30 a_{1} a_{2} c_{03}, 30 a_{1} b_{1} c_{23}, 60 a_{1} c_{02} c_{23}, 30 b_{0} b_{1} c_{23}, 60 b_{1} c_{23} c_{24}, 30 c_{01} c_{12} c_{13}-$
$20 a_{1} b_{1} c_{02}, 30 a_{1} c_{02} c_{03}, 10 b_{0} b_{1} b_{2}, 3 b_{1} b_{2} c_{34}, 60 b_{1} c_{02} c_{23}, 10 c_{01} c_{02} c_{1}-$
$10 b_{1} b_{2} b_{3}, 30 b_{1} b_{2} c_{03}, 30 b_{1} c_{02} c_{03}, 10 c_{01} c_{02} c_{03}$.
Tetrahedra.

$$
\begin{aligned}
& 10 a_{0} a_{1} a_{2} a_{3}, 30 a_{0} a_{1} a_{2} c_{34}, 60 a_{0} a_{1} c_{23} c_{24}, 30 a_{0} b_{0} c_{12} c_{13}, 20 a_{0} c_{12} c_{1} c_{1} c_{14}, \\
& 10 a_{0} c_{12} c_{13} c_{23}-5 a_{1} a_{2} a_{3} a_{4}, 10 a_{1} c_{2} a_{3} c_{45}, 30 a_{1} a_{2} c_{34} c_{35}, 20 a_{1} c_{23} c_{24} c_{25}, \\
& 20 a_{1} c_{23} c_{24} c_{34}, 20 b_{0} c_{12} c_{13} c_{14}, 10 b_{0} c_{12} c_{11} c_{23}, 5 c_{12} c_{13} c_{14} c_{15}- \\
& 20 a_{1} a_{2} a_{3} c_{04}, 60 a_{1} a_{2} c_{03} c_{34}, 60 a_{1} b_{1} c_{23} c_{24}, 60 a_{1} c_{02} c_{23} c_{24}, \\
& 60 b_{0} b_{1} c_{23} c_{24}, 20 b_{1} c_{23} c_{24} c_{25}, 20 b_{1} c_{23} c_{24} c_{34}, 20 c_{01} c_{12} c_{13} c_{14} \\
& 30 a_{1} a_{2} c_{03} c_{04}, 60 a_{1} b_{1} c_{02} c_{23}, 31 a_{1} c_{02} c_{03} c_{24}, 30 b_{0} b_{1} b_{2} c_{34}, 30 b_{1} b_{2} c_{34} c_{25}, \\
& 60 b_{1} c_{02} c_{23} c_{24}-30 a_{1} b_{1} c_{02} c_{03}, 20 a_{1} c_{02} c_{09} c_{04}, 10 b_{0} b_{1} b_{2} b_{3}, 10 b_{1} b_{2} b_{3} c_{45}, \\
& 60 b_{1} b_{2} c_{03} c_{24}, 30 b_{1} c_{02} c_{07} c_{23}-5 b_{1} b_{2} b_{3} b_{4}, 20 b_{1} b_{2} b_{1} c_{04}, 30 b_{1} b_{2} c_{03} c_{04}, \\
& 20 b_{1} c_{12} c_{03} c_{04}, 5 c_{01} c_{02} c_{03} b_{04} .
\end{aligned}
$$

Fivecells common to $S(6)$ and $C r(10)$.
$5 a_{0} a_{1} a_{2} a_{3} a_{1}, 30 a_{0} a_{1} a_{2} c_{94} c_{15}, 20 a_{0} a_{1} c_{23} c_{24} c_{31}, 20 a_{0} b_{0}{ }_{12} c_{12} c_{14}$,
$5 a_{0} c_{12} c_{13} c_{14} c_{15}-a_{1} a_{2} a_{1} a_{4} a_{5}, 10 a_{1} a_{2} c_{34} c_{55} c_{45}, 5 b_{9} c_{19} c_{18} c_{14} c_{15}-$
$20 a_{1} a_{2} a_{3} c_{04} c_{15}, 20 a_{1} b_{1} c_{21} c_{21} b_{25}, 20 a_{1} c_{04} c_{1}, c_{4} c_{25}, 20 b_{0} b_{1} c_{2}, c_{21} c_{31}-$ $10 a_{1} l_{2} a_{3} c_{04} c_{05}, 30 a_{1} a_{2} c_{03} c_{04} c_{14}, 60 a_{1} b_{1} c_{02} c_{23} c_{24}, 30 b_{0} b_{1} b_{2} c_{14} c_{3}$, $10 b_{1} b_{2} c_{34} c_{35} c_{45}, 20 b_{1} c_{02} c_{23} c_{24} c_{25}-20 a_{1} b_{1} c_{02} c_{03} c_{01}, 5 a_{1} c_{02} c_{03} c_{04} c_{05}$, $5 b_{0} b_{1} b_{2} b_{3} b_{4}, 20 b_{1} b_{2} b_{1} c_{04} c_{45}, 30 b_{1} b_{2} c_{04} c_{04} c_{34},-b_{1} b_{2} b_{3} b_{4} b_{5}$, $10 b_{1} b_{2} b_{3} c_{04} c_{05}, 5 b_{1} c_{02} c_{03} c_{04} c_{05}$.
Fivecells common to two $C_{1}(10)$.

$$
\begin{aligned}
& 10 a_{0} a_{1} a_{2} a_{3} c_{45}, 20 a_{0} a_{1} c_{23} c_{24} c_{25}, 10 a_{0} b_{0} c_{12} c_{13} c_{33}-5 c_{1} c_{2} a_{3} a_{4} c_{05}, \\
& 30 a_{1} c_{5} c_{03} c_{31} c_{35} 20 a_{1} b_{1} c_{23} c_{21} c_{34}, 20 a_{1} c_{02} c_{29} c_{24} c_{2}, 5 c_{01} c_{12} c_{13} c_{14} c_{15}- \\
& 10 b_{0} b_{1} b_{2} b_{3} c_{45}, 30 b_{1} b_{2} c_{02} c_{34} t_{3}, 10 a_{1} a_{2} c_{03} c_{04} c_{55}, 30 a_{1} b_{1} c_{02} c_{03} c_{25}- \\
& 5 b_{1} b_{2} b_{3} b_{4} c_{05}, 10 b_{1} b_{2} c_{09} c_{04} c_{05}, c_{111} c_{02} c_{13} c_{04} c_{05} .
\end{aligned}
$$

Sumplexes $S(6)$.
$a_{0} a_{1} a_{2} a_{9} a_{4} a_{5}, 10 c_{0} a_{1} a_{2} c_{34} c_{35} c_{45}, 5 a_{0} b_{0} c_{12} c_{13} c_{14} c_{15}-10 a_{1} a_{2} a_{3} r_{04} c_{05} c_{45}$,
$20 a_{1} b_{1} c_{02} c_{23} c_{24} c_{25}, 10 b_{0} b_{1} b_{2} c_{34} c_{35} c_{45}-5 a_{1} b_{1} c_{02} c_{03} c_{04} c_{0,}$,
$b_{0} b_{2} b_{2} b_{3} b_{4} b_{5}, 10 b_{1} b_{2} b_{3} c_{04} c_{05} c_{45}$.
Cross polytopes $\operatorname{Cr}(10)$
$5 a_{0} a_{1} b_{0} b_{1} c_{23} c_{24} c_{25} c_{34} c_{55} c_{45}, 5 a_{0} a_{1} c_{2} a_{3} a_{4} c_{05} c_{15} c_{25} c_{35} c_{40}-$
$a_{1} a_{2} a_{3} a_{4} a_{5} c_{01} c_{02} c_{05} c_{04} c_{05}, 10 a_{1} a_{2} b_{1} b_{2} c_{03} c_{04} c_{05} c_{34} c_{35} c_{45}$,
$5 b_{0} b_{1} b_{2} b_{3} b_{4} c_{05} c_{15} c_{25} c_{35} c_{45}-b_{1} b_{2} b_{2} b_{4} b_{5}{ }^{\prime} 01_{0} c_{02} c_{03} c_{04}{ }^{\prime}{ }^{5} \cdot$
LIST II
Vertices.
$6 a_{1}, 6 b_{1}, 15 c_{12}$.

Edges.

$\left.\begin{aligned} & 15 a_{1} a_{2} \\ & 15 b_{2} b_{2}\end{aligned}\left|6 a_{1} b_{2}\right| \begin{aligned} & 60 a_{2} c_{23} \\ & 60 b_{1} a_{23}\end{aligned} \right\rvert\, 60 c_{12} c_{13}$
Faces.

Tetrahedra.
$15 a_{1} a_{2} a_{8} a_{4}\left|60 a_{1} a_{2} a_{3} c_{45}\right| 180 a_{1} a_{2} c_{34} c_{35}\left|120 a_{1} c_{23} c_{24^{4}{ }_{25}}\right|$

$\left.15 b_{1} b_{2} b_{3} b_{4}\left|60 b_{1} b_{2} b_{3} c_{45}\right|$| $180 b_{1} b_{2} b_{34} c_{35}$ | $120 b_{1} c_{23} c_{24} c_{25}$ |
| :--- | :--- | :--- | :--- | \right\rvert\,

$60 a_{1} c_{23} c_{24} c_{34}$
$60 b_{1} c_{23} c_{34} c_{34}$$\left|180 a_{1} b_{1} c_{23} c_{24}\right| 30 e_{12} c_{13} c_{14} c_{15}$
Fivecells common to $S(6)$ and $C r(10)$.

Fivecells common to two $C r(10)$.

Simpleaes $S(6)$.

Cross polytopes Cr (10).

[^0]: 1) Here the subscript 0 has been replaced by 6 .
[^1]: ${ }^{1}$) As to this point, according to the last sentence of this article, the process has to undergo a small amplification, which will be perfecly clear to the reader il he has gone through the whole article.

