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Above I have briefly described the structure of the nuclens and
the details of the karyokinesis in Closterium Ilwenbergii. As appears
from what has been said the nucleus, as far as the nacleoli are
goncerned, does not agree with the nuclei of Spirogyra, as earlier
investigators have supposed. In this vespect the nucleus of Closte-
vium differs on an important point from those of Spirogyra, namely,
it does not possess a nucleolus which may be identified as or
compared with a nucleus. The nuclei agree with nuclei, which are
generally found among plants, especially the higher plants. Never-
theless they show one peculiarity: the nucleoli which are indeed
present in great numbers, form in the middle of the nucleus a con-
glomeration. ‘

The nucleus divides by karyokinesis or mitosis. All phenomena
which generally occur, also take place in Closterium. In Closterium
the nuclear division presents the following particulars : the distribution
of the nucleoli in the nucleus and their extrnsion into the cytoplasm,
the great flat equatorial plate, the great number of chromosomes
which is more than 60, the different length of the chromosomes,
which in general are short and of which the longer ones only have
free ends, protruding sidewards, the wide, feebly developed spindle
and the translocation of the daughter-nuclei along the cellwall.

Later I hope to give a more detailed account of the kavyokinesis
in  Closteriwm and to illustrate with figures the above meniioned
results. In this paper hardly anything has been said about the
cell division and the growth of the cellwall. To this I also hope
to refer later.

Mathematics. — “On the relation between the vertices of o definite
sixdimensional polytope and the lines of a cubic surface”.
By Prof. P. H. Scroure.

1. In his investigation about semiregular polytopes. and polytopes
possessing a higher degree of regularity Mvr. E. L. Birs, whose
dissertation is to appear shortly has met with a sixdimensional

3
polylope of degree of regularity " with 27 vertices. Our aim here

is to point ounl the complele correspondence in rvelations of position
between the 27 wverlices of this polytope and' the 27 lines of a
cubic surface.
The symbol of the characleristic numbers of this polylope is
(27, 216, 720, 1080, 432 + 216, 72 - 27),
24
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i.e. the polytope has 27 vertices, 216 edges, 720 faces, 1080 limiting
bodies, 648 fourdimensional limiting polytopes and 99 fivedimensional
ones. Herc the numbers 27, 216, 720, 1080 between the brackets
are left undivided, as the corresponding elements are of the same
kind: all the edges have the same length and — with respect to
the whole figure — the same position, all the faces are equal equi-
lateral triangles in the same position, all the limiting bodies are equal
regular tetrahedra in the same position. On the other hand the 648
equal regular fivecells forming the fourdimensional limiting polytopes
split up according to their position into two groups, while the 99
fivedimensional limiting polytopes consist of 72 regular simplexes
S(6) with six vertices and 27 vegular cross polytopes Cr(10Y with
ten vertices; of the 648 fivecells 432 are common to an .S(6) and
a Or(10), the remaining 216 to two Cr(l0).

2. In order to be able lo enter into our subject immediately we
start from the 27 points with the coordinales

4
0 0 0 0 0 ——pB....q
1
1 —1 =1 —1 =) ——=3... 5
1
1 1 1 1 1 ——y3 by 1
1
(=1 =1 1 1 1) —5v8.. 1
2 {
@ 0 0 0 0 v 5bL’
. :
(-2 0 0 0 0 ?l/s...scmin

In this scheme the symbols aga;.- ;05085 - Cogs0ys - Dgtyys e 65 OF
the last column represent the points in a iransparent manner;
moreover this nolation is enfively the same as that generally used
for the 27 lines of the cubic surface. Indeed, if — by means of the
well known formula for the distance of two poinls with given
coordinates — it has been shown, that any of the 27 poinls is al
distance 2172 from 16 and at dislance 4 from 10 other points and
it has been found for each of the 27 veriices which are the 16
adjacent ones and which the 10 remote ones, il is immediately
- evideni that in using the same symbols @, b, ¢ for the 27 verfices of
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the polytope and the 27 lnes of the cubic surface two adjacent
vertices (edge distance = 2172) always correspond to two crussiny
lines, two remwte vertices (diagonal distance — 4) always correspond
to two intersecting lines. We will show that this correspondence
leads to simple geometrical results; but to this end we have to
know the projectious of the new polytope on different axes of
symietry.

4
3. All the 27 vertices are at the same distance §V3 of the

origin. So the origin is the centre of the polytope and all its axes
of symmetry pass through this point.

The projection of the polytope on the axis OX, passing through
the vertex «, can be deduced immediately from the coordinates. It
has been given in the known manner in fig. 1. Moreover the Listl
gives the names of all the edges, faces, etc.

From this projection (1,16, 10) it is evident that a limiting cross
polytope Cr(10) is oppositely placed to the vertex a,. We say that
these elements are rightly opposite to each other, as the line from
the vertex to the centre of the polytope passes if produced through
the centre of the opposite cross polytope Cr(10).

4. We repeat in fig. 2¢ the position of the 27 vertices in the
projection (l1,16,10) and indicate now how the other projections
(2,10, 10, 5), etc. given there have been obtained. We thereby enter
into detail with respect to the first new case (2,10, 10, 5) of 2,
where the axis passing through the midpoint of the edge a,a, isthe
axis of projection.

The coordinates of the inidpoint of the edge a,a, are

1
0, 0,—1,—1,—1,—=y3.

So
(@, + @, 4 ) V3 + a,
1 /10
is the standard equation of any space S, perpendicular to the axis
under consideration. The constant of the second member takes for the
groups of vertices (@,a,), (¢ @;a,¢; Cy5¢0,¢050a40a5¢ 15D (D104 6510061561 4012060400)

== ¢onst.

o . . . 10

(0,030,; ¢,,) indicated in fig. 2% successively the values T
£ 28 b f il lues il iti £tk

~ 780 180 /30 y means of these values the position of the

24>
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points of the axis where the 2,10,10,5 vertices projecl themselves,
with respect to the origin indicaled by the dotted vertical line, is
easily found.

The centre of gravity of the regular fivecell (b,0,0,b.¢,,), lying
opposite to the edge (a,4,), i.e. the point with the coordinates

0, O? ?’ ;4)—’ ;5 _1-4:5_ V3’ -

is situated on the axis of projection. So the edge (a,a,) and the
fivecell (by0,0,05¢,,) are rightly opposite to each other. From the
number 216 of the edges it follows, that each of the opposite five-
cells must be common to two cross polytopes Cr (10); really the-
fivecell opposite to the edge (e,a,) is common to the two Cr(10)
opposite to the vertices «,, a,.

5. In an analogous manner the other projections are found.
So fig. 2¢ deals with the case of the axis passing through the
centre of the face a,a,e,. The standard equation

&, + @, + 2, + 3 (@, + @)+ 2,18
2176

corresponding to this case gives for the groups of vertices

— ¢onst.

(01090, )y (@0@,05004605645)1 (691002005614C24054615625055)y (010,056, ,6,56,5)s (050, 05)

4 P/ 0 2 4
. V6 V6 V6 6
we find the projection (3,6,9,6,3), showing that the faces of the
polytope are placed in paivs rightly opposite to each other. For
the centre of gravity of the triangle 0,0,0, lies on the axis of
projection.

So fig. 24 treats the case of the axis through the centre of
the tetrahedron «,a,a,a,, by means of the slandard equation
(‘IUI + Ly + @y + &, + 2"”5) ‘/3 + ?‘mu

AT
7 4 1 2 5 8
T el el el et el Vil
tion (4, 3,8,6,4,2). Here the edge 6,0, corresponding to the value

successively the:values — of the constant. So

= const. and of the values

" of the constani, the projec-

8 . . .
el is placed obliquely opposite to the tethrahedron a,e,aa,, for
the midpoint of the edge does not lie on the axis of projection. A
closer examinalion shows thal in this manner each edge is placed

obliquely opposile to five limiting letrahedra, ie. (o the five limifing
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tetraliedra of the fivecell placed rightly opposite to the ed,ge.' In
accordance {o his the number 1080 of the limiting tetrahedra is
five times that of the edges. -

Farthermore fig. 2¢ gives the projection on the axis passing through
the centre of the fivecell «,a,0,a,a; common to the simplex «,a,a,a,a,a;
and a cross polytope Cr(10). The standard equation is

3(v, + @, + v, + @, + ) V3 + B,
41710

= const.,

8 5 2 1 7 10
730" 130" 130’180 1/30° /30’

4
the fact that in this arithmetical series the term 30 is lacking will

the values of that constant are —

be accounted for in a natural way later on. The opposite point ?,
lies obliquely opposite {o the fivecell from which we started. A
closer nvestigation shows {he following. There are — we have
already stated this — 216 fivecells, each of which is common to two
Cr(10); ie. of the 27 X 32 limiting fivecells of the cross polytopes
432 cover each other by pairs, while the 432 remaining ones are
covered by the 72 X 6 limiting fivecells of the S(6). So the 32
limiting fivecells of each Cr(10) are coloured alternately white and
black, if we call a fivecell in contact with an S(6) white, a fivecell
in contact with a Cr(10) black; now each vertex is obliquely opposite
to the 16 white limiung fivecells of the Cr(10) rightly opposite to
it. Indeed the number 432 of the fivecells common to two five-
dimensional polyilopes of different kind is 16 times the number of
vertices.

Finally 2/ represenis the case of the axis through the centre of
gravity of the simplex a,a,a,a,0,6,. To this corresponds the standard
@yt by byt e+, )3

21/2
1’2 of the conslant and the simple projection (6,15, 6) of the points
a,¢, b gwven in fig. 3, while the List II gives the names of all the
limiting elements®). This projection shows us that the 72 limiting
S (6) are placed by pairs rightly opposite {0 each other.

equation = const. wilh the values — 172, 0,

6. Before we consider the obtained projeclions in connexion with
the 27 lines ol a cubic suvface it will be well (o extend our termi-
nology by puiling side by side the simpler corresponding properties
of the two systems of 27 objects. In this comparison “ihe polytope”

1) Here the subscript O has been replaced by 6.
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stands for

the 27 lines of the: cubic surface.
The polytope has

.- 216 edges and 135 diagonals,

lying three by three in 45 planes ;

720 (riangulayr faces, forming
360 pairs of rightly opposite tri-
angles;
¢ 1080 limiting tetrahedra;

" 648 limiting fivecells;

72 limiting simplexes S (6),
forming 36 pairs of rightly oppo-
site S(6);

27 limiting polytopes Cr (10),

the figure with the 27 vertices, “the con{mummon” {or

_The configuration has

216 twocrossers and 135 two-
infersecters, the points of inter-
section of which form 45 frjangles ;

720  threecrossers,  forming
360 pairs of threccrossers lying
on the same quadratic surface;

1080 fourcrossers;

648 fivecrossers;

72 sixcrossers,
double-sixers;

36

forming

27 {enlines admitting one of ihe

placed rvightly opposite {o the|other lines as common transversal ;
veriices;
27 fivedimensional sections with

sixteen verlices;

27 sixteenlines
of the other
crossing line;

of the 648 fivecrossers 432
belong to half a double-sixer.

admifting one
lines as common

of the 648 fivecells 432 belong
to the limils of an ,S(6).

7. We now consider the obtained projections in connexion with
the lines of a cubic surface and distinguish the element placed in
the diagram at the lefthand side as the “starting element”, the
element placed at the righthand side as the “end element”. In this
comparison we immediately find this parficularily that the property
— following in fig. 22 from the assumed relation beiween the vertices
of the polylope and the lines of the cubic.surface — i.c. that the

10 lines of the end element intersect the line forming the starting
" elemeni, maintains itself up to fig. 2¢ in this form that all the lines

.of the end element are common transversals of the lines of the
starting element, while in fig. 2/ each line of the end element cuts
only five of the six lines of the starting element. Itis easy to express
this by a rule without exception indicating the rclations of position
much more accurately, if we measure as in fig. 4 on a horizontal
line OX from the origin O equal segments, mark the poinis of
division by the row of numbers 0,1,2,3..., place under O the
lines of the different starting elements') and writc under0,1,2,3...

1) As lo this point, according lo lhe last senlence of this arlicle, the process
has lo undergo a small 'tmphf'catlou, which will be perfecly clear lo the reader
il Tie has gone (hrough the whole article.
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the groups of lines, any line of which cuts respectively 0,1,2,3 ...
of the lines forming the starting element. We then really fall back
on the projections (1,16, 10),(2,10,10, 5), etc.

The cases in which the starting element contains one, two, three
or four lines, give al mosi rise to the remark. that we find back
in fig. 4 the old projections represented on a different scale; for the
mutually equal _segments of each projection have really different
length for the different projections of fig. 2, while all the segments
have been taken equal to each other in fig. 4.

For the four remaining projections of fig. 4 the starting element
is in the language of the confignration successively :

a fivecrosser not belonging {o half a double-sixer;

a fivecrosser belonging to half a douable-sixer;

a sixcrosser ;

a tenline.

Of these four cases still to be discussed the first is that of fig. 2¢,
the last that of fig. 27, both taken veversely, i.e. with interchange
of starting and end element, while the second and the third corre-
spond to fig. 2¢ and fig. 2.7, <

We treat of the second of the four cases, that of the projection
(5,1,5,10,0, 5,1) in the first place, in order to fix the attention on
the point bearing no projection indicated by the nought. Wherefore
has this empty place (fig. 2¢) to present itself? Because the number of
lines culting respectively 0,1,2,3,4,5 of the five lines a,,a,,a,, 4,0,
forming the starting element is 1,5,10,0,5,1; in other words any
of the 27 lines cuiting three of the five lines «, at least cuts four
of them. By this rational explanalion of the mentioned hiatus the
three other projections are also explained. If we take the projection
of fig. 20 in the reverse sense, we find that each of the ten lines
(D, by 64y Cyq - - - 6y5) cuts three, each of the iwo lines (e, a,) cuts five
of the lines of the élarting element (b, 0, 0,0, ¢,,). The third of the
four cases, that of the projection (6,15,8) of fig. 2/, can be explained
in the same way. Finally we have still to remark that in the last
case the displacement of the starting element, the tenline, over one
segment to the right of the origin, is no mistake; it correspond: 10
this that the ten lines do not cross each other altogether, but that
each of them iniersects ong of the nine others.

b
8. So the subject proper of this communication is exhausted.
However we will finally move the question if it may be possible
that considerations analogous lo those mentioned above lead from
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other known configmations ol lmes to unknown polydimensional
polytopes with a cerfain degree of regularity and reversely newly
discovered polytopes of this character to_unknown configurations of
lines. According to our opmon there can be no doubt about the
answer to this question.

But 1nstead of entering mto tlus new subject just now we will
only pomt out the configuration of the 16 lines crossing one of the
27 lines, to which corresponds the fivedimensional polytope with
the 16 vertices (5w, b,, 10¢;). As 1s known this configuration
presents 1itself on the quartic surfaces with double come On the
other hand the 16 pomts (54, 6,, 10c;) are the vertices of the

1
half measure polytope 5[111 11] of the fivedimensional space

1
Z, =*—§l/3- So we have here before us a second example of a

correspondence as the one treated above. In order to enable the reader
to study this correspondence we have repeated in the fig. 5 and 6
the part of the fig 2 and 4 which relates to these systems of 16 objects

LIST 1.
Vertices.
a,—bay, by, 10¢,—5d,, 5e,,.
Edges.
Sa,a,y a3bgs 100y, — 10a,a,, 30a.c,, 10be,,, 80¢, 0, —
5a,b,, 20a,c.,, 5b,by, 80b,0,4, 20c,,6,, =100, ,, 200 ¢y,, 10¢;,0, ..
Faces.
10a,a,a, 30, a,y, 10ayb e, ,, 30a,6,,6,,—
10a,a,a,, 80a,a,6,,, 60a,¢,5¢,,, 30bge, 0,4, 200,504, 100 0,40, —
30605644, 30,645, 60a,¢),¢,,, 300D, .4, 600,¢,,¢,,, 30¢,,¢,,0,,—
200,0,¢440 30a,604609s 100,0,04, 3 b,Dy0,,, 60D,¢y,¢0,, 10¢,,¢5.6, —
100,4,0,, 800,D,¢44, 80b,¢0,¢,,. 10¢;,¢,605
Tetrahedra.
10¢,0,a,a,, 30a,a,a,0,,5 60a,a,c,4¢,,, 30a,dyc, 4014, 20a.e, )0, 0, 4
10¢,¢,,6,4¢5, — daya,a,0,, 10a,a,a.c,, 30a,a,0, 055, 20ae,4e, ¢,
208,6,5054C540 200001361361 40 10000,,0116,50 56156146,46,, —
200,054y 600,0,0036301 60,8,0,46,4, 60a,005¢,56,0
60[)02)10”('24, 201)1023024625’ 20[’1%3"24”34’ 20601012013014 -
800,0,0,5C4y 60¢,D,0056,4 8111605605054 80D,0,0,¢,,, 30b,D,¢, ¢4,
600,6,,0456,, — 30a,b,64,6451 20@, 65044604 1000D,D,0,, 100,05, D¢, .
600, ,¢,5¢4,5 300,6y,¢0,¢,, — 50,0,0,0,, 2000, .¢,,, 800D ¢,.¢, .,
20D 1€448030041 OC01C02C03C04r
Fivecells common to S(6)and Cr(10).
Sa,a,a,a,a,, 800,0,a,¢,,6,;, 200, ¢,,¢, .60, 200, Dyc 5,56, 4

s . Eh o o o p
56y 5610014015 — G008y 05y 106,0,6,,04,6,5y D046, 46,460,015 ~~

-10 -
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200, 0030046 15y 200,016,105, 0s50 205,516,105 200,0.6,,6,,0,, ——
10a,0,0460 6051 300, 0g80,6046 45 006,016030 30240 800,D.0,04464,,
10b1bx6340!5‘;45? 201’1002"‘2.!‘;24625 - 20“}_?1"01”0'}"04’ 5(‘1002601"040051
anblbzb'xbv 20[)11)21),0046“, 8061111‘04"04"141 - blb;bﬁbabsv
10b1bnbacn4coﬁ' 5b160200 1004(’05'

Fivecells common fo two Ci(10).
106,0,@,0,6, 50 200,0,6,,6,,% 255 100,00y 461 50050,y ltyCygs
80,00,604¢5 1045 200,0,6,46, Un40 20a,06456,400462 59 DLy1013013014005 —
10,0, b,64¢45, 80D,b,095644¢4 1 106,8,645¢0 4455 300, b,045(0023 —
5b,6,050,6450 106,0,644004¢0,0 CarCoatusCosCos:

Simplexes S (6).
By Gty Gy 100,01 050446458455 Btybgt12014614005 — 108,,8505,60:C45
20,D,64565505 4ba5y 10040:0,854055645 — 5a,0,64C03605C00s
bobxbzbab4b5’ 108,0,54604605045-

Cross polytopes Cr(10)
5a0a1b0b1023‘;24625634035645’ saﬂala‘la“ia4cﬂ5(’150‘1503504a -
ala2a3a4a5601602003("04005’ 1Oalaiblb?cﬂ3bﬂ4005034030045'
504010,040,05615625035645 — 0,6,0.b,b5¢ 185260004 vs0

LIST 1I
Vertices.
6a,, 6b,, 15¢,,.
Edges.
15a,a, 60a,c,4l00
155,580 80D 0ny | O s
Faces.
20a,a,a, |90a,a,c,,|180a,¢,5¢ i i o
2000|900 B | 180bropson| O Cr2trs0re|2061s8salas
Tetrahedra.
15a,a,a4a,|60a,a,04¢,; 180@,a,64,655]120a,0056, " 45
150,b,b,0,60b,b,bc,,|1806,D,0404; 1200,¢,4¢,,645
60a,¢,4C,,C
Gob:c::c;:c:: 180a1b1023024‘30012613014613
Fivecells common to S(6) and Cr(10).
Ba,a,0,a,%; 60a, @, @664 60a,@,64,645C45 30a,¢,46046,5 20 120a.0 6.6 ¢
6b,,0,,0; 600,0,046456461600,0,64464504s 80D,0,46,0C05 20| asboaaee
Fivecells common to two Cr(10).
15a,a,a.a,¢,..|80a,a,6,,04,0 |
151)1[):[):1):('23 601):1);0::0::(}:2 60@,0 €55¢,4004 \Gcm"ucncucw'
Smplexes S(6).
U AL 20a,0,0,6,644Css 4o
b1bab3b4b5bu 200,0,D404564460 80a,0103401.6a50. s

Cross polytopes Ci(10).
6a1a2a3a4a501 ﬂcﬂﬂcﬂll(;‘l ﬂoﬁ [

15c,a,0,0,64,Cq50 34045 44"
, , 10q010905,Cg5" 34%45" 40050
Gblbzbanbs"xuczucaa“wow
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