Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

W. van der Woude, Double points of a c6 of genus 0 or 1, in:

KNAW, Proceedings, 13 II, 1910-1911, Amsterdam, 1911, pp. 629-635

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Mathematics. - Double points of a cs of yerus 0 or 1. By Dr. W. van der Woude. (Communicated by Prof. Schoute.)
(Communicated in the meeting of ${ }^{-}$November 26, 1910).
§1. A curve of order n is in general determined by $\frac{1}{2} n(n+3)$ single conditions. So a curve of order five is determined by 20 points, or - a node counting for 3 single data - by 6 double points and 2 single points. However, it is not possible to take arbitrarily the double points of a rational curve of higher order than the fifth; for the number of double points of this curve amounts to $\frac{1}{2}(n-1)(n-2)$ and for $n>5$ three times this amount is larger than $\frac{1}{2} n(n+3)$. Between the double points of a curve of order n whose number of double points is greater than $\frac{1}{6} n(n+3)$ one or more relations must exist. "So far no attempt seems to have been made to express those relations geometrically" ; ${ }^{1}$) in the following paragraphs I intend to do this with reference to the curve of order six.
$\$ 2$. A curve of order six is determined by 27 single data, hence by 27 points. It can possess at most 10 donble points; according to the preceding 9 of these can be taken arbitrarily and really a curve of order six is determined by 9 double points taken arbitrarily; this is however degenerated into a cabic curve to be counted double through those 9 poinis.

If therefore a (non-degenerated) curre of order six has 9 double points, there must be a relation between these already; only 8 can be taken arbitrarily. In future we shall understand by $D_{1}, D_{2}, \ldots, D_{8}$ points taken arbitrarily; the locus of the point forming together with these a system of 9 double points of a curve of order six not degenerating into a cubic curre to be counted double we shall for the present represent by j_{n}, whilst by c_{n} an arbitrary curve of order n is meant.
$\$ 3$. If D_{9} is a point of j_{u} there exists a (non-degenerated) curve of order six possessing a double point in each of the points $D_{1}, D_{2}, \ldots D_{9}$; furthermore we can lay through these 9 points a cubic curve. If these

[^0]two curves are represented respectively by the equations $w_{s}=0$ and $u_{3}=0$, then by $w_{0}+2 u_{3}^{2}=0$ a pencil of curves of order six is determined, each of which possesses in each of the base points of the pencil a double point. Hence

If $D_{1}, D_{2} \ldots D_{0}$ are double points of a curve of order six not degenerating into a cubic curve to be counted double, these points are the base points of a pencil of curves of order six with nine common double points.

For shortness'sake we shall in future call such a pencil a c_{a} pencil with 9 double points; of course through each point passes one curve of this pencil.
$\$ 4$. Out of the c_{3} pencil determined by the base points $D_{1}, D_{2} \ldots D_{8}$ we choose one u_{3}; we furthermore introduce a variable c_{6}, possessing double points in $D_{1}, D_{2} \ldots D_{8}$, but being for the rest undetermined. These two curves intersect each other in 2 more points; the line connecting these two points intersects u_{3} in another point T. This last point is according to the Residual Theory of Sylvestrer a fixed point, i. e. independent of the c_{6} chosen by us. Point T is easy to determine; it is evident that if we take for c_{8} a c_{3} counting double, T is the tangential point of B_{9}, the ninth base point of the c_{3} pencil through $D_{1}, D_{2} \ldots D_{9}$.

If of a pencil c_{5} the double points $D_{1}, D_{2} \ldots D_{\mathrm{s}}$ and a point P are determined, then according to the preceding another point P^{\prime} of c_{8} is determined; if nanely we lay through $D_{1}, D_{2} \ldots D_{8}$ and P a cubic u_{3} and if we determine on it the tangential point T of B_{9}, then the third point of intersection of $T P$ with u_{3} is the point P^{\prime} under discussion. Farthermore it is evident from this that only these points of u_{3} having T as tangential point can be the ninth double points of a c_{6}, which has already double points in $D_{1}, D_{2} \ldots D_{8}$. If 'however we impose the condition that this c_{0} may not have degenerated into a c_{3} counting double, then one of these points, viz. B_{9} does not count; for, there is not a single non-degenerated c_{6} which has double points in $D_{1}, D_{2} \ldots D_{8}$ and B_{9}. For then we should be able to bring a c_{3} through these points and a point chosen arbitrarily on the curve c_{6} and the curves c_{3} and c_{6} would have nineteen points in common. If however J, J^{\prime}, and $J^{\prime \prime}$ are the other points of u_{3} having T as tangential point, then each c_{6}, having double points in $D_{1}, D_{2} \ldots D_{8}$ and passing through one of these points, will have there two points in common with u_{3}.
§5. We can determine a c_{6} pencil by the double points $D_{1}, D_{2} \ldots D_{8}$
and 2 points P and Q chosen arbitrarily; the two other base points of the pencil P^{\prime} and Q^{\prime} are then by this completely determined. From the preceding is evident, how we can determine those two last points and also, that one of these points e.g. P^{\prime} is independent of Q and the other Q^{\prime} of P.

We now again understand by u_{3} an arbitrary cubic through $D_{1}, D_{2} \ldots D_{8}$, whilst also J, J^{\prime} and $J^{\prime \prime}$ have the same meaning as in $\S 4$. We then further regard the c_{6} pencil (β), having $D_{1}, D_{2} \ldots D_{8}$ as double points and moreover J and an arbitrary point Q as single base points. An arbitrary curve out of (β) will touch u_{a} in $J_{\text {whilst }}$ the last base point of (β) lies on the c_{3} through $D_{1}, D_{2} \ldots D_{8}$ and Q and is to be determined in the way indicated above; the line tonching in J the u_{3} as well as an arbitrary curve out of (β) we shall call j. If we then draw through J an arbitrary line l and if A is a point moving along l, then always through A passes one curve a_{6} out of the pencil (β); if we allow A to coincide with J then the lines j and l will both have in J two points in common with a_{6}. From this ensues that J is now a double point of a_{6} and lies therfore on the curve which we have indicated by j_{n}.

If inversely it is given that J is a point of j_{n} and if we bring a c_{8} through $D_{1}, D_{2} \ldots D_{8}$ and J, then J must possess the same tangential point on c_{3} as B_{3}. We have then proved:

If we generate a c_{a} pencil with double points in the points D_{1}, $D_{2} \ldots D_{\mathrm{s}}$ chosen arbitrarily and single base points in a point J of the curve j_{n} and in a point Q chosen arbitrarily, then the curves of this pencil have in J a common tangent. In this pencil is included a curve, having in \int a ninth double point.
§ 6 . We have seen, that on an arbitrary curve u_{3} out of the c_{3} pencil having $D_{1}, D_{2} \ldots D_{s}$ and B, as base points lie three points of j_{n}; these points have on u_{3} the same tangential point T as B_{9}. We now regard first the locus of T when u_{3} describes the c_{3} pencil which we shall now call (β '). Each line l through B_{9} determines one curve out of (β^{\prime}), touching it; so l intersects the indicated locus besides in B_{s} in one point. Farthermore this locus has in B_{s} a triple point, three curves out of (β^{\prime}) possessing in B_{0} a point of inflexion. The point T describes therefore a quartic curve t_{4} possessing in B, a triple point; the points $D_{1}, D_{2} \ldots D_{8}$ lie also on t_{4}, as each of the lines $B_{9} D$ is touched by one curve.

Let $T^{\prime \prime}$ be the tangential point of D_{1} on u_{3}, then if again u_{2} describes the pencil (β^{\prime}), $T^{\prime \prime}$ describes a quartic curve $t_{4}^{\prime} ; t_{4}$ and $t^{\prime}{ }_{4}$ have
besides the base points of ($\boldsymbol{\beta}^{\prime}$) three more points in common, which points to the fact that three times one and the same point is at the same time tangential point of B_{0} and D_{1}. If, however, \mathcal{B}_{9} and D_{1} have on a curve out of (β^{\prime}) the same tangential point, then D_{1} will lie on the curve j_{n}. This last will be cut by ${u_{3}}$ in each of the points $D_{1}, D_{2} \ldots D_{8}$ three times and once in three other points; so it is of order nine.

If $D_{1}, D_{2} \ldots D_{8}$ are points chosen arbitrarily, then the locus of the point which can be the ninth double point of a curve of order six already possessing double points in $D_{1}, D_{2} \ldots D_{8}$ is a curve j_{n} of order nine with triple points in $D_{1}, D_{2} \ldots D_{8}$.

Moreover we have found the following generation of j_{n} :
If we determine on a curve u_{3} out of the c_{3}-pencil (β^{\prime}) with the base points $D_{1}, D_{2} \ldots, D_{s}$ the points having the same tangential points, as the ninth base ponnt B_{9}, then if u_{s} describes the pencil (β^{\prime}) these points will describe the curve j_{n}.
§7. We shall now show analytically that the curve j_{n} is of order nine and possesses triple points in $D_{1}, D_{2}, \ldots D_{8}$.

To this end we regard the net of curves $v \equiv w_{\mathrm{B}}+\lambda u^{2}{ }_{3}+\mu \nu^{2}{ }_{3}=0$, where $w_{0}=0$ represents a curve of order six with double points in $D_{1}, D_{2} \ldots D_{8}$, whilst $u_{3}=0$ and $v_{3}=0$ are the equations of two cubic curves through those eight points. The curves of the net passing through an arbitrary point form a pencil; we choose the pencil of curves passing through an arbitrary point J of j_{2}. In $\$ 5$ we have seen that in this pencil appears one curve possessing in J a ninth double point ; therefore:

Each point of j_{n} is the ninth double point of one of the curves contained in the net (v).
§ 8. We take an arbitrary triangle $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}$ as triangle of coordinates; the locus of the double points of the net $\nu \equiv w_{0}+2 \mu_{a_{3}}++\mu v^{3}{ }_{3}$ $=0$ is then found by elimination of λ and μ out of the equations $\frac{d v}{d x_{1}}=0, \quad \frac{d v}{d x_{2}}=0$ and $\frac{d v}{d v_{3}}=0$.

As equation of that locus we then find:

$$
\begin{aligned}
& u v\left\{\frac{d w}{d x_{1}}\left(\frac{d u}{d x_{2}} \frac{d v}{d x_{3}}-\frac{d u}{d x_{3}} \frac{d v}{d v_{2}}\right)+\frac{d w}{d x_{2}}\left(\frac{d u}{d x_{3}} \frac{d v}{d v_{1}}-\frac{d u}{d x_{1}} \frac{d v}{d v_{3}}\right)+\right. \\
&\left.+\frac{d w}{d x_{3}}\left(\frac{d u}{d v_{1}} \frac{d v}{d x_{3}}-\frac{d u}{d x_{2}} \frac{d v}{d v_{1}}\right)\right\}={ }_{n} 0 .
\end{aligned}
$$

The factor $w v$ in the first member of this equation means simply
that each point of the curves u_{3} and v_{3} counting double can be regarded as a double point; as locus of the point J we find:

$$
\begin{aligned}
& \frac{d w}{d x_{1}}\left(\frac{d u}{d x_{2}} \frac{d v}{d v_{3}}-\frac{d v}{d x_{2}} \frac{d u}{d v_{3}}\right)+\frac{d w}{d v_{2}}\left(\frac{d u}{d x_{3}} \frac{d v}{d x_{1}}-\frac{d u}{d x_{1}} \frac{d v}{d x_{3}}\right)+ \\
&+\frac{d w}{d x_{3}}\left(\frac{d u}{d x_{1}} \frac{d v}{d x_{2}}-\frac{d u}{d x_{2}} \frac{d v}{d x_{1}}\right)=0 .
\end{aligned}
$$

This equation of order nine represents the curve j_{n} which for the future we shall call j_{9}.

We now allow the vertex O_{3} of the triangle of coordinates to coincide with. D_{1}; the equations of the curves v_{6}, u_{3}, and v_{3} are ranged according to the descending powers of x_{3}, written thus:

$$
\begin{aligned}
& w_{0} \equiv x^{4}\left(a x^{2}{ }_{1}+2 b w_{1} x_{2}+x^{4} x_{2}\right)+\ldots=0 \\
& u_{3} \equiv x^{2}\left(a^{\prime} v_{1}+b^{\prime} v_{2}\right)+\ldots=0 \\
& v_{3} \equiv x_{3}^{2}\left(a^{\prime \prime} x_{1}+b^{n} v_{2}\right)+\ldots=0
\end{aligned}
$$

The first member of the equation representing the curve j_{9} evidently possesses now no term in which x_{3} appears to a lower power than the sixth; so D_{1} is a triple point of j_{9} and $D_{2}, D_{3} \ldots D_{\mathrm{s}}$ likewise.
§ 9 . To the curves of order six possessing in $D_{1}, D_{2} \ldots D_{8}$ double points belongs one degenerated into the line $D_{1} D_{2}$ and a curve of order five having in $D_{3}, D_{4} \ldots D_{8}$ double points and passing moreover through D_{1} and D_{2}. The latter is cut by $D_{1} D_{2}$ in three points more which must lie on j_{9}; thus on each of the lines connecting $D_{l} D_{l}$ three points of j_{0} can be indicated.
Let us suppose a conic $D_{1}, D_{2} \ldots D_{5}$ and a quartic possessing in D_{0}, D_{7} and D_{8} double points and passing also through $D_{1}, D_{2} \ldots D_{5}$; then these form together also a c_{6} with double points in $D_{1}, D_{2} \ldots D_{8}$; the remaining three points of intersection of the two curves lie on j_{0}. Thus on each of the 56 conics $D_{i} D_{k} D_{l} D_{m} D_{n}$ three points of j_{0} are determined.

Each c_{3} through $D_{1}, D_{2} \ldots D_{8}$ cuts j_{0} besides in these points in tbree points more; we have already seen how these points can be determined. We have also seen that B_{0}, the ninth base point of the c_{3} pencil, does not lie on j_{0}; by allowing the vertex O_{3} of the triangle of coordinates to coincide with B_{0} we can easily deduce this out of the equation of \dot{j}_{0}.
§10. Let w_{0} be a curve of order six possessing in $D_{1}, D_{2} \ldots D_{0}$ double points, whilst u_{a} is the cubic through those points; then by
$\beta=w_{8}+2 u_{\mathrm{s}}{ }^{2}=0$ is represented a pencil (β) of curves of order six with nine double points. To a pencil of curves of order nine belong in general $3(n-1)^{2}$ curves possessing a double point; this amount must howeser be diminished by seven for each common double point which the curves possess in the base points. So we can expect that there will be twelve points, which can appear as tenth double point of a curve out of the pencil (β). It seems however desirable to prove that in this case too where one of the curves is a c_{3} counting double the number of these points is twelve.
The points indicated are found by elimination of λ out of the equations:

$$
\begin{gathered}
\frac{d \boldsymbol{\beta}}{d x_{1}}=0, \frac{d \boldsymbol{\beta}}{d x_{2}}=0 \text { and } \frac{d \boldsymbol{\beta}}{d x_{3}}=0, \text { or } \cdot \\
\frac{d w}{d x_{1}}+2 \frac{d u}{d x_{1}}=0, \frac{d w}{d x_{2}}+2 \frac{d u}{d x_{2}}=0, \frac{d w}{d x_{3}}+2 \frac{d u}{d x_{3}}=0 .
\end{gathered}
$$

By this elimination we find:

$$
\frac{\frac{d w}{d x_{1}}}{\frac{d w}{d w}}=\frac{\frac{d w}{d x_{2}}}{d x_{1}}=\frac{\frac{d w}{d x_{3}}}{\frac{d u}{d x_{2}}},
$$

which equations represent three curves, whose common points of intersection - if only differing from the base points of (β) -- are the demanded double points. (The factor $u=0$, which we have omitted means that each point of u_{3} can be regarded as a double point,

We write them in this form:

$$
\begin{align*}
& \frac{d w}{d v_{1}} \frac{d u}{d x_{2}}-\frac{d w}{d x_{2}} \frac{d u}{d x_{1}}=0 \tag{1}\\
& \frac{d w}{d x_{1}} \frac{d u}{d x_{3}}-\frac{d w}{d x_{3}} \frac{d u}{d x_{1}}=0 \tag{2}\\
& \frac{d w}{d x_{2}} \frac{d u}{d x_{3}}-\frac{d w}{d v_{3}} \frac{d w}{d x_{2}}=0 \tag{3}
\end{align*}
$$

The curves represented by (1) and (2) have forty-nine points of intersection; among these there are however ten which do not lie on (3), viz. the points which satisfy $\frac{d v}{d x_{1}}=0$ and $\frac{d u}{d x_{1}}=0$. The remaining thirtynine points must still be diminished by the points of intersection lying in $D_{1}, D_{2} \ldots D_{0}$. If again we allow the vertex O_{3} of the triangle of coordinates to coincide with D_{1} and if we note down the equations of w_{0} and u_{s} ranged according to the descending
powers of r_{3} (see $\S 8$), it is evident, that (2) and (3) possess in D_{1} a double point, whilst (1) has in D_{1} a single point; farthermore they have all three in D_{1} a common tangent with the equation

$$
w_{1}\left(a b^{\prime}-a^{\prime} b\right)+x_{2}\left(b b^{\prime}-a c\right)=0 .
$$

Sn in each of the base points of the pencil (β) lie three common points of intersection of (1), (2) and (3); besides $D_{1}, D_{2} \ldots D_{9}$ the curves (1), (2) and (3) have $39-3 \times 9=12$ more common points So there are really 12 curves, possessing besides $D_{1}, D_{2} \ldots D_{9}$ strll a tenth double point.

We can directly indicate those twelve points. Each of those points must lie on the curve j_{3}, determined by $D_{1}, D_{2} \ldots D_{3}$ and likewise on the curve $j_{n}^{\prime \prime}$, which is determined in the same way by $D_{2}, D_{3} \ldots$ D_{4}. These two curves have 81 points of intersection of which, however, nine lie in each of the points $D_{2}, D_{3} \ldots D_{8}$ and three in each of the points D_{1} and D_{0}. The remaining points are those indicated.

To a co-pencil with nine double points belong twelve curves possessing still a tentl double point.
§ 11. I wish to draw attention to another property of these points. If $P\left(x_{1}^{\prime}, x_{3}^{\prime}, x_{3}^{\prime}\right)$ is an arbitrary point then the polar lines of P with respect to the curves out of the pencil (β) are represented by

$$
x_{1}\left(\frac{d w}{d x_{1}}+j_{u} \frac{d u}{d x_{1}}\right)_{P}+x_{2}\left(\frac{d w}{d x_{2}}+2 \cdot u \frac{d u}{d v_{2}}\right)_{P}+v_{\mathrm{a}}\left(\frac{d v}{d x_{3}}+2 u \frac{d u}{d x_{3}}\right)_{P}=0 .
$$

We shall now put the question whether it is possible to give P such a position that the polar line of P with respect to each curve out of the pencil is the same. Evidently for that it is necessary that the coordinates of P satisfy the equation $u=0$, or the equations,

$$
\begin{equation*}
\frac{\frac{d w}{d x_{1}}}{\frac{d w}{d x_{1}}}=\frac{\frac{d w}{d w_{2}}}{\frac{d u}{d x_{2}}}=\frac{\frac{d w}{d x_{3}}}{\frac{d u}{d x_{3}}} \ldots \tag{I}
\end{equation*}
$$

So P must be on u_{s} or - as the system of equations (I) is the same as the system which we came across in $\$ 10-P$ must be one of the 12 points found there. Hence:

If $D_{1}, D_{2} \ldots D_{10}$ are the double points of a rational catrve of order six, then the polar line-of one of these points with respect to the curres out of the c_{0}-pencil possessing the other nine as double points, is a fived line.

[^0]: 1) Salmon Fiedler, Hohere ebene Kurven, p. 42.

 Proceedings Royal Acad. Amsterdam. Vol. XIll.

