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Crystallography. - “On the opientation of microscopic crystal-
sections.” By J. Scumurzur. (Communicated by Prof. C. E. A.
WICHMANN).

(Communicated in the meeting of December 24, 1910).

If in a slide a crystal shows the traces of three non-parallel planes
it is possible to determine the ovientation of the section without
making use of the extinction angle. If the optic constants of an
anisotropic mineral are known, it is sufficient to know the extinciion
angle and the apparent angle between two planes (crystal, cleavage-
or twinuing-planes) as will be more distinetly demonstrated in a
subsequent communication. . .

Fig 1.

In fig. 1 the crystal planes B, V,, and V,, the former of which
is supposed to be the projection plane, are cut by the secant plane
S, producing with ir ihe secanis 0B, 04, and O4,. In slead of
the two angles ¢, and «, one measures in the secani plane, conse-
quently in the slide, between the planes V7« [f and V.. E the
apparent angles 4,05 =14, and A, 0B =1h,.

Be the sccani-plane S given by its pole ./, of whichthe height
PQ = is measured >0 above and < 0 below the equator planc,
whilst  the azimuth C,BQ=y¢ is >0 il measured in opposilc
divection to the hands of a clock, then is in ABA,C:
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sin 4, BC, ot 4,C. B + cos 4, BC, cos BC,
sin BC,
st (90—6) cot &, + cos (90—6) cos (9p—90)
sin (0—90)

cot 4.8 =

—cobh, =

coth,cos 9 =cosoeota, +sincsing . . . . . (1)
Now is — C,C,=v a constant that can be calculaled with the
ielp of the given angles «,«, and @ from AC,C,D and (hat is
neasured from C) positively in a divection opposite to the hands of
v clock. In ABA,C, is then:
sin A, BC, cot A,C,B + cos A,BC, vos BC,

cot A, B —
% sin BC,
sin (90—0) cot &0, 4~ cos (90—5) cos (p—90—7)
— cot by == .
sin (0—90—7)
¢0s G ot , - sin ¢ sin (0—7)
— ot /12 =

- cos (@—7)
o0t oy (05 Q@ cos ¥ - s @ sin ¥) == cos 6 ¢ot &, -} sin 6 sin (9 —7)
0t h, cos Q COS Y == ¢0s G Cot ¢t, - stn G 8in (Q—y) —cot by sin @ siny . . (2)
If one divides (2) by (1), then becoines

ot &, cos v {cos 6 cot «, - sin 6 sin Q) =

t
== ¢ot b, {eos @ cot &, - sin G sin (v —y) — cob kb, sin @ sin ¥l
0s G (cot e, 0ot I, cos v — cot «, cot hy) S sin 6 fsin @ (cot hy—cot b,) cos y -
- cot hy cos @ sin ¥} <t cot by cot hy sin 9 sin y =
If one sapposes

¢ob ¢t cot Loy cos y — cob ey cob hy = w;
(ot hy—cot b)) cosy =10 ’

cob by sin y = ¢ ~ ) ®)
cob by cob by sin y = d '
ien the f(ormula changes into
acos 6+ sin 6 (b sin g + ¢ccos 9) 4 dsing =0
bsino-ceoso | -,
Cos G == — —-—-——;—««smo — —;suzy N )
It one substitutes this value ol cos o in (1), one obiains:
cot hy ros @ = — cob et (b sin @ ¢ cos @) sin 6+ d sin @} -+ wsin G sin g =

— 0';—— (bsin @ 4 4 cos Q) cot «c, -+ a sin Qf — d oot et, sin 0
romn which follows:
4%
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‘ ) a cot hy cos 0 4~ d col e, sin @
s 0 =

(a—0 cot @,) sin 9 — c oot t, sing
When worked out this formula furnishes: )

, ’ acos @ 4 cot &, cot h, siny sin Q
S0 = —

cot at, sin y ¢0s @ - (cot @, — cot ¢, ¢os y) cos @
It one supposes herein again
cot ce, cothysiny == ¢ é

cte, —cota,cosy=4f . « « « . . . (9

ot e, sy =g ,
then becomes

. a ¢os esin g
.smG—_—-—-——g_*——_—‘ e S ()
gcosQ 4 fsin g

We found above

bsing 4+ ¢ccosQ | d
0§60 = — ————————— 8N 0 — —S§in g
a Sa

bsing - ceos @\ facos 9 + ¢sin @ d .
€0s 0 == —-—8%72.9‘:_

a gcos @ + fsing a
(b sin 9 4 v cos @) (acos 9 4 esin Q) — d (g cos @ + f sin @) sin ¢
- a (g cos @ -+ fsin ) =
sim® @ (eb — fd) + sin @ cos y (ad + ec — gd) + ac vos® @
- a(gcos o -+ fsing) i

2 1y 2 19 ) . pned
—/L-SLH 9+ bsingcosg 4 ccos® 9

geosQ -+ fsino
in which
h=vcothysiny . . . . . . . . (8)
The variables ¢ and ¢ are consequently separaled; the ratio
sin* g+ ceosfo=1
furnishes
(@ cos ¢ + ¢ sin @) + (hsin® @ + b sin 9 cos @ + ceos® 9) = (g cos 9 4- fsin @)’
cos® ¢ (a®—g*) + 2 sin 0 cos ¢ (ae—fg) 4 sin® ¢ (¢ —/*) +
+ (hsin® 0 4- b sin g cos ¢ 4 ¢ c08* 9)* = 0.
If one introduces: '
. _LlA4wos29 _l~c'052_({_ o
s Q= o3 st Q= 3 Zein g uos o =sin 20,
the laller ratio changes into:
cos® 20 o—N)* — D 4 2eos 29 (a® + ¢ A~ fF — ' — g* — i)
0 A (4 ) 2a e — gt — L
+ 2 sin 20 [2(ae—fg) + b (b 4 ¢) + b (c—h) cos 29§ =0

Vo
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1f one supposes
At fr——yg b)) .
T A —F =7

b+ (h+o)f +2(a* ¢ —g*—f7) _

Y 7
(c—h)*—0°
]
A(ae—f9)+2b(h+¢) .
(=R —b*
2o(c—1h) ]
(e—Rhy}—b* :
then becomes
00s°29 +peos20 + g=—(r +scos2¢)sin2¢ . . . (10)
and '
9 9 L] 2ot
cos* 20 - (p:s_';? cos 29 4+ }_J_—{-lg_—:—;__: cos® 20 |
U 00— 1 2___ 2 )
LA e r T g L
145 1-45°

This equation can now be solved; the value found for o, infro-
duced into (6) furnishes o. .
It however in the equation (6)
aeosQ - esing =gcosQ + fstno =0,

then sim ¢ becomes indefinite. In that case is

. @ g

90— —— = — =

g\ e .f
af = ey

consequently
(cot ce, cothycocy — cot cey cot b)) (cot «, — cot e, cos y) =
= cote¢, cot h, sin® y = cot® ¢z, cot b, (1—cos’y)
eot ¢¢, ot by (cot ¢, cos y — cob «e,) 4 cot e, cot hy (cot ey 608 Y — cob 4,) ==Y

cobrx, cob b, oot (x| cosy — cole,

= . (12)
cot @, cot hy  cot «, — cot ar, cosy

¢ is then found by introducing the value of ¢ in (1).

What is said here finds an application to the determination of the
plane that cuts the octahedron planes (111), (111) and (111) in such
a way thal the ftraces of the planes (111): (111) aud (T11): (111)
enclose right angles. I one supposes (111) (o be the equator plane,
then becomes:

C1e, = 180° — 70°31'48", { V, = (L11)}; «, = TO°31'43", {V, = (111)};

?y=—060"; by =h,=90°; ¢ =—30° ‘
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"The equation (12) changes info 0 =10; in (6) not only the nume-
ralor becomes =—= 0 because # =—=¢—=—=20; but also the denominator
becanse

geos 9+ feing=
= cot @, sin y cos 0 + (cot @, — cot @, cos y) sin @ =

= cot a, {sin y cos 0 — (1 - cos ) sin 0} =
1
= ¢0t @, 3— sin? 60° 4 (1 + ?) s 30°‘ =

= cot a, (—— (%VS)Z-’— —z— . %) =20

From (1) one finds on the contrary
cot by cos @ = 0 = cos 6 cot @, -+ sin 6 sin @

. cot a, cot 70°31'43"

0= — _——

J sin 9 sin 30°

from which 6= — 35°15'53", the angle between (001):(111) — :—2!

The sccant plane is consequently (001).

Fig. 2.

A «ingle example wmay suffice to demonsirate the applicability of
the formulas deducted above; I choose for it a problem in which
the resnlt obtained can easily be controlled.

The three rhombododecahedron planes (101), (110) and (011) are
eut by a plane in such a way, that their {races include angles of
80°. What is the orienfation of the secant-plane?
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Take /7 (110) as equator plane; 1, : F=n, = — 60°;
V, B=a,=60°; h=,0G04=060°; h,= , FFOB=—060°
y= ~ AB = (111) : (lll) = —109°28'17".

cot o0, = — cot ¢, = ~— et by = cot h, .
So according to (3), (5) and (8):

o == ¢ot’ e, (cos y—1)

p— 2 .
e = cot” a, siny
b =2 cot a, cosy

J=—cot a, (14-cos7)

¢c—= — cot a, siny g = cot a, stn'y
d = — cot’ a, siny h = cot o, sin y.
Here is
1 1
ot o, = — —3—]/? 3 cot® o, = —
1 . 2
08y = g sy = — V2.
so that (9):
e+ fr—et—g*—h?) 2
T e—hyp—b — Tl
P () 2 @ —g—f) 1
= —h — b’ =77
_ Ao Wit b,
(e—hy* — b* 21
2b (c—"h) —_ %
= (e—hy—0* 7
furiher is in equnation (11):
j 2ty 4 4
14-¢* 27 8
P2+t —st 14 14
S WECEE T AT
_ 2(pg—rs) 20 20
T 14 T TR
_ = 23 23
Ti4st T 7200 3
Consequently we have to solve the equation:
cos* 20 —-]—;;cos’ 20 — ;cor 20 —g—ocoe 20 —g: 0 . (13)
1 Co1]
Suppose ¢cos 20 = o — Z l=a— 3 , then (13) can be changed into:

ot det e k=0 . e (19)
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in which

27
d=m— — = — T
1 1 g1
u:n—Elm—l—§l :"59_/
1 t] 4 212
1’:0"‘zl’ll+ﬁl’ﬂb—“§gé :—ﬁ
If one composes now the equation
y' 4+ ayt by =0 B 1))
in which
.2 20
== —
2 3¢
Vo A —dy o
18 3u
: - M:‘ 91s
¢ = — 571 — — 3—1T
then the roots of (14) are given by
T1234 = =+ ‘/yl *= V.’/z + ‘/y'ﬂ -
in which
w2
l/[lh Vyz ‘/."/3 - é‘zgz/
1
In order to solve (15) one supposes y = e~y a', by which the
equation changes into: ,
Sz fw=0 ., . . . . . . (16)
In this is
1 21‘.‘ 1 28 2
=) —— = [ =0
’ 5 T3 g (3*)
1 1 2091 g g
—_ it [ — . —_
w=—=¢ —"gab +§§a = —37+§~.—ﬁﬁ—§: gﬁ—_
— 218 | 3,218 2918
= 3T =0
(16) furnishes consequently 8 equal roois z = 0.
1 20
(15) farnishes 3 equal roots y —z — 3 a' = 3
To (14) correspond the values
a3

o=+ Vy -+ Vy + l/y=31/y=—;;

2 !
w,==+l/y—l/y—l/y=~l/y=—-§;-
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The roots of (13) ave consequenily represented by :
1 2+ 1 23
33 3 8

€os 291 = J&; —

20, = == 31°35'8"; o, = == 15°47'34"
1 20 1 1
cos 20, = v, — ST T T 3

20, = == 109°28'16"; o, = == 54°44'8",
The corresponding values of ¢ are calculated from (6)-

) acos 0 + esin @ eot® «, (cos y—1) cos 0 4 cot*ce s y sing
ny—=— ————— == - . — =
) g cos Q + fsinQ cot ¢, stn 7y cos 9 — cot &z, (14-cosy)sin o

4

) , —— 080 — — V' Zsin

{cosy—1)cos @ + sinysing 3 7 3 v ©

= —cot &) — — == —cof ¢, =
sinycos o — (1 +4-cosy)sinQ 2

— = 1/20039-——3—32729

2 ¢ n Q. V2 1
s Fsing. ¥ :——cotal.;/z.zgl/()'. oo @1

= —cota, . 5 —
V2. 0080 + sing

1 which however the term sin ¢ 4- 172 . cos ¢ disappears m the nume-
wor as well as in the denominator.
From

s @ 4 1V2.¢c0s0 =10
1e finds

tgy = — V2,
» which corresponds

0 = — 54°44'8" (or 180° ~- 54°44'8")

id this 15 one of the two values ¢, Whilst from (17) results the
vue 6=+ 54°44'8" (or 180° — 54°44'8") the value of & corve-

onding o ¢ = — 54°44'8" must be calculated from (1).
ot b, :’cos G oot e, -+ sin o sin @
¢0s 0
1 1
1 “—§V30030'-——3—|/Gsino
=13
7V
1 .
-?,—l/3=—coso—|/2sw6 R ¢ 1))

4

2 1
$*0 -{—51/30096—{—?7:2(1 — ¢os* 0)

2 5
s"'0+—9—‘/30036——§:0
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3445 1 4 1 3
086 = — — l/d:}: l/—i_——-:—a—[/’ﬂ d:a—l/d: —{—é—|/301'—§|/3.
To cos6=— |/3 corresponds
0 = £ 54°44'8"
of these two values only o= — 54°44'8" cooresponds {o (18).

A further invesiigation shows that the pole of the secant plane S
is vepresented by
0 = — 54°44'8", ¢ = — 54°44'8".
whereas the other values of ¢ and ¢ do not correspond. The secant
plane is the octahedronplane (111) as appears clearly from fig. 2; o
corresponds (o the angle between (001): (111) the cosinus of which
is represented by '
heihy =k kT, L L 1
Vit oVt V3
If the planes %, V, and V, (vide fig. 1) lie in one zone the form-
ulas (10) and (6) obtain a much less complicale form. Because
y = 0 the coefficients (3), (5) and (8) change into

@ = cot &, cot h, — cot ¢, col h,

os @ = 5 /8.

b=rcoth, — cot b, . (19)
f=cot e, — cot e,
=d=e=g=b=10

st

so that:
oUa® 3 b2 9(qd —F2
CO.QQQQ—MU()SgQ—)——I_—(E———):O. .. (20)
b* b?
a
sime=——ct0o . . . . . . . (21)

In an amphibole crystal the planes (110), 110 and (010) are lying
in one zone; (110) may serve as equator plane. Whilst the real

angles between (110): (110) and (010): (110) are resp. o, = 55°50'

and @, = —62°5" the apparent angles, measured in a rock slide,
amounted lo /, =43° and ), = — 79°
(19) gives:

a— 0,43625 s a*=0,19032

b— — 1,26674 ; b* = 1,60454

f=—120858 ; f*=1,46070
from which:

b 49t —
‘_‘._';I_-—1.02875 ; ’+ @ =7 = — 0,58074

-10 -
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consequently :
ros® 20 — 2(L,02875) cos 20 4 0,58074 = 0
wos 20 = 1,02875 = V/(1,08875) — 0,58074 =
= 1,02875 = 0,68948 = 1,71823 ¢r 0.33027.
Only the second value corresponds, so thai:
29 == 70°10" or — 70°10'
0 =35 or — 35°% .

$n 6 — — i(;oto: —Maot@: 0,36096 et o
N —1,20858 ’ S
from which
0,= 35%' , 6,=  30°5%
9, — — 35°5' s 0y == — 30°55".

As will appear afterwards the oplic exfinction offers an expedient
to decide in a given case whether one has to do with the secant
plane (9,6,) or with (0.6,). S

In a graphical way the problemt of the orientation of crystal-
sections can be solved in a considerably simpler way. To do so one
can make use of diagrams, that give for any discrefional angle
between two planes, the apparent angle /i as « function of ¢ and .

?u.
2
¢

Vig. 3.

In fig. 3 be 4 again the projection plane, ¥ Lhe crystalplane,

-11 -
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that with £ includes an angle «, (0) O (a) the sccani line between
L and V7; the azimuth of a secant plane (P,{J) be measured from
(0) positively opposite to the direction of the hands of a clock. If

3
one indicates the globe octants (0) (%),(—g—) (@), (=) (7)—11) and

[

3
(——— ar) (0) respectively by the numbers 1, 2, 3, and 4, in so far as
they lie above the equalorplane, by 5, 6, 7, and 8 in so far as they
lie below it, then one can deduct-from the figure with regard to

the sign of % in the various octants what follows.

HFolulL % , and if' the pole ¢ of the secant plane Q liesin the

first octant, & becomes = , AOB > 0. In the opposite 7t octant
one finds for the secant plane (¢',@) a negative apparent angle;if Q
and )’ coincide, so that the distance of the poles is g:q' =a, then
h, becomes = — L.

1f the pole of the secantplane les in the 2v¢ octant, then £ becomes

. 27 .
< 0; it one applies @, with regard to the plane 0(3‘) symmetric-
ally with @ then A, becomes again = / 4,08, = —1(/ AOB).
aT ~

9

If at last the pole lies in the plane 0( ), then 4 =0 indepen-

<

dently of the value of o.

In the octants 3 and 4 the pole of the secant plane moves exelu-
sively within the obtuse angle /£:1. If with a constant value of o,
we substitute for the pole (p) of the plane (/) successively all the

bz 4
values of 6 between O and 5 it appears that tor 6 =0, A =0;

it 6 becomes >0, as in the plane (p’ L), 4 becomes =  C,0.D < 0;
this negative angle becomes larger if s increases till the pole liesin

4 . ’

p, and h has become = / COD:-E. Now the negative angle
14 R ‘-

surpasses the value — and is consequently measured positively

&

as far as O (h < —2) )

. . > T T
By construction the point p can easily be found, becanse ~ Cp = rE

From (1) follows, that here

cot hcos 9 = 0 == cos ¢ cot & -} sin v sin @

S U SO SO WS P P S

-12 -
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cot o
g6 —= —

sing'

From this ratio the course of the curve vpO can be deducted,
which is the loens of all poles of secant planes that cat the angle
between the planes 77: [ in a way so as to produce the apparent

4 14 3
angle h=—. For o= one finds 6=—; 0= 5% produces
2 . X .
ty o ==cot e, Or 0= 5 «; whilst for ¢ = 2a, « becomes again 5
B | IS
+ e - |
| I I i
) Q > >
. :‘ , « . © ©
o~ \\ a %
R\ AN
. \ N
2y - \\ & \&
~ \ = N
ﬁ ™ \\\\ ﬁ \
ol N @ |ea :
\\‘ N N
S — N S —
\\ ______ - e
\\‘ E
m \‘ // =
1 e -~
. t§ T | T &
=== [ = =
L/”’- A \\ X\
- \
- -~ i A
‘ﬁ \
\\\
————————— -~ \
S = s TR
A q AN \\\ \
® lew Bl 3 Y
o s N s
AN
<~ DN w\ ~
\\\ \ \\
Ti \ \\&\\\“_A S CIDI \ \\x
(=2 Qor

-13 -
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. 3
It is casy {o see that the areas O (m) (—2— n) vpO and Ovr furnish

a negative, 0(0) (—7— .n')m'() and Osp on the contrary furnish a
positive value for 4. For the oclants 5 and 6 we find the same as
for 3 and 4, only / takes here the opposite sign.

In the figures 4 and 5 one finds the scheme of the /A-diagram
for, « = 60° with the area-division discussed here; the secant planes
the poles of which lie in the shadowed areas, form a positive angle £,
the while areas form a negative angle. The squares into which the
figures are divided, are 30 by 30°; the meridiancircles, on which
o is measured out, are drawn as parvallel lines, so thal a.line equal
in length to the equator takes the place of the pole Q. In fig. 4
the octants 1-—4, in fig. 5 the octants 5—8 ave represented.

In the first oclant the curve AB indicates the locus of the
poles of all the secant planes that produce % =60"; the curve

CD gives £ =30"; symmetrically wilh regard {o the line

(9 = g—)(a = g) (g = g) (a = 0), to which corresponds /=0

lie in the 28d octant the curves D’ with 4= — 30° and 4’5’
with /o = — 60°.

Jr ’ .
It for ¢ = a, ¢ vavies {rom 0° to 3 then A takes -successively

all values from — 60° to — 90°; here the curve Opv of fig. 3

3 7T
begins going over the point (9 =g T, 0=y = 30") to

(9: 2, 6::;»). The curves LF and GH produce hers again

values 4= 60> and £ =30° the curves (A’ and 2"/’ respectively
— 30° and — 60°.

x \ c
The diagram for -—~§<G<O° needs no [urther elucidation; it

plainly expresses the above-mentioned identily of the angle /4 for

planes with poles 4 o, = o and — ¢, 5= 4. Consequently the octants

1:2, 3:4, 5:6, 7:8 are but for the sign symmelvical with regard

4 3 . - .

to the planc (§> : (5— sr) , cf. fig. 3, whilst the octantpaivs (1,2) : (7,8)
\.J

and (5,6):(3,4) are symumetrical, but for the sign of & with regard
o the plane (0): (7).

As appears further from fig. 3 the diagram for « ==60° is the

same as for @ ==—060° if one substitnies [or ¢ the value ¢ = =,

-14 -
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and consequenily changes the octant pairs (1,2) and (7,8) resp. for
(3,4) and (5,6). , ,

The diagrams of which I have served myself for the graphical
solution of the_problems discussed above, and which will-be published

elsewhere, give for angles ¢ varying between 0 and == 3 and pro-

gressing with 10°, the values of /4 for secant planes, of which azimuth
and heighi of poles, likewise progressing with 10°, vary belween

JT
0=0 and 27, s =0 and = 5 By interpolation the value of / for

any indifferent secani plane can be found from it for every value
of ¢ with sufficient accuracy.

The way in which the problem must be solved may be explained
io two of the problems freated analytically above. If one con-
siders fig. I, then it is clear, that by a graphical treatmeni one
can find , A, 0OB=/, in the diagram for «=¢, i e. with
o=~ CBQ, o=2PQ; in the same way / A,0B =1, in the
diagram for « = e, with ¢, = ~ C,BQ = ¢—y and s = PQ.

If on the contrary one wishes to determine from the given angles
«,, hy, and e, A, the locus of the secant plane £ (g,7), then the
diagrams for «, and «, must be laid on each other, the laiter with
regard to the former twrned over an angle -—v, and one must

:

|
!
S | I
BT

o

-15-
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see where the cuves /,(e,) and 4, («,) meet. The meeting point
indicates tbe pole /’(9,s) of the required secant plane.

In fig. 6 the graphical solution of two of the above discussed
problems is represenfed. If one takes (c¢f. fig. 2) the rhombododeca-
hedronplane (110) as equatorplane, then the planes (101) and (011) form

angles with it equal {0 «, = — 60" and «, = 60 . The secant plane S
gives i, = 60° h, = —60°;, y =-—109°28'17". If the diagram for

u, is removed 109°/, with regard to the diagram for «,, and both
are placed on each other, then-it appears, that the curves A, (60°)
and , (--60° weet only in the 5% octant. In the figure the curves
for v >0 and <0 are drawn side by side. If the azimuth of
A is = 0, the curve AB (e, = 60°) indicales the poles for A, = 60°
with &> 0; BC the poles for 4, = — 60" with 5 <0, AC those
for h,=60° with ¢<C0. The azimuth of D =109%/,; FD gives
the poles for A, =—60° with ¢« >0; FE and DI give those for

h, = 60° vesp. A, =—-60° with & < 0. The meeting point of the
curves BC and FI gives the pole of the requived secant plane with
0=>54""/, with regard to A4, or ¢ =--54"*/, with regard to D,

and ¢ = — 54°%/,.

The second problem refers to the amphibole-crystal spoken of on
page 732, which is eut by the section plane in such a way that the
apparent angles Detween the planes (110): (110) and (010): (110)
amount respectively to A, = 43° and A, = — 79°

In fig. 6 the zone-axis (¢ =0) is indicated by K; the curves
LOM and HNA indicale the locus of the poles for A, =43°
with o> 0 (1* octant) and » < 0 (8" octant); the curves /O and
[N indicate the locus of the poles for A, =—79° with 6 >0
(1st octant) and 4 < 0 (8" octant). The meeting point of the curves.
LM:[0 and HA:IN gives the points O (¢ = 35°, & = 31°) and
N(o=—35° 6 =—3L°) which values likewise correspond entirelv
to those found above in the analytical way.

Mathematics. — “On the Integral equation of Freviota.” By
Prof. W. Karrryn.
1. Let
b !
@) = f(a) + f K@) g@ds . . . . . (1)

be the integral equation of Frupuonm, in which the constants «, b, 2,
and the functions f(x) and K (zy) ave known, and ¢(2) is the function
to he delermined.
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