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Physics. — “On “osmotic temperatures” and the kinetic signification
of the thermodynamic potential.” By Prof. Pa. KOHNSTAMM,
(Communicated by Prof. J. D. van pur WaaLs).

(Communicated in the meeting of December 24, 1910).

1. It may be presumed {o be known, at least in Holland, how ‘
easily the laws of the diluted solutions are derived from the general ‘
differential equation of vax DER WaarLs for coexisting phases:

V, dp = — W“ ar + (e, —w(ml)(a E’)(lv e )
O i

The law for the osmotic pressure alone does not immediately
follow from the equation in the above form for the simple reason
that it has been supposed in the derivalion of this equation that the
pressure in the two coexisting phases is equal. If we, however, return
to the derivation of equation (1), we see at once the relation between
this equation and the law of vax v Horr. This derivation, namely,
rans as follows. As in two coexisting phases 1 and 2 the thermo-
dynamic potential e.g. of the first substance must be equal, and also
in two other coesisting phases 1’ and 2’, the change of this thermo-
dynamie potential between 1 and 1’, and 2 and 2’ must also be the
same, and so if we take 1 and 1’ near each other, and represent
the molecular thermodynamic potential of the first substance as
usual by g,, the equation:

[1p,], =[du], .

holds.
Now from:

p,==04—w (6;

da ]

{ollows:
0. g
du, =d; — [ = dae —ad{ =
=t = () =2 (3),
And as
av
de =vdp — ydl + an;)/lcg."v
and

bl ¢ 0*5 ¢
L = = H _l' —
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v on\ ..
(@r-Go

we get:
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Equating of this expression for the first and the second phase,
and joining the ferms with dp, d7, and de we get equation
(1). When, however, we do not perform these operations, but keep
lo equation (2), we immediately find the law of van ’r Horr. For
we now reason as follows. The compressed dilute solution is in
equilibrinm with the solvent under normal pressure; so the thermo-
dynamic potential of the solvent, which can freely move through
the membrane, must be the same in the solution and in the pure
solvent. And so the modification in the thermodynamic potential
brought about on one hand by the increase of pressure, on the othex
by the addition of the dissolved substance, must be equal to zero,
and s0, as 7'=0:

Gv) 0%
¥ ~— & dp =&l — | da
g (aw ,)Tf t (Bwﬂ pT

0*¢ BT

Now for an exceedingly dilute solution @ (5—7 =1 in the
2 S 1—a
Fi

dp —

follows from (2).

fivst member of the equation we can neglect the term with ¢, and
we need not wmake a difference between the » of the solution and
that of the solvent, and so we get:

lrdd

vodp = ; da 1,

—
the law of van ’v Iorr.

2 Now when we counsider the osmotic plenomenon, the thought of
introducing the idea “osmotic temperature’” as analogy of the osmo-
tic pressure, naturally soggests itself, and this has repeatedly been
done ®). The reasoning is then as follows. The equilibrium through
the semipermeable membrane is disturbed when on one side a sub-
stance is dissolved, because then the number of particles of the sol-
vent per unil of volume deereases. So if we want to reach a stale
in which an egnal number of particles move from the left towards
the right and from the right towards the left we must either raise
the pressure of the solution, in consequence of which more solvent
molecules are forced out, or its temperature, so that the number of
outgoing 1molecules will be increased by the greater velocify. Now
the increase of temperature which must be given {o the solution

1) Gf. Théovie Moléculaire §18.
% CGf. c.g. van Laag, These Proc. IX, p. 61,
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above the solvent to bring aboutl that an equal number of pariicles
enter and leave through the membrane, is called the “osmotic (em-
perature” of this solution. Now the supposition naturally snggests
itself that this state is reached when the thermodynamic potential of
the substance passing through the membrane has again become equal
in the solution and the solvent. This thesis would undoubtedly be
correct, if the considerations concerning the kinelic signification of
the thermodynamic potential which I gavein These Proc. April 1905,
were perfectly true. There I tried to demonstrate that the physical
meaning of the thermodynamic potential of an homogeneons phase
on which no external forces act is nothing but the number of
molecules which per second reaches a wall, which is placed in the
middle of this homogeneous phase, when the wall does not attract
the molecules, and is thick with vespeet to their sphere of action. [
expressed this definition by the formula:

My=F(N)Y4+C. . . . . . . . (8
in which NV is the number of molecules in question, and C a con-
stant. It is clear that what has been said above follows from this
formula; for the numbers of molecules which feave solution and
solvent through the membrane, are then entively determincd by the
thermodyunanic potential.

If now, however, on this ground, we try to delermine from equa-
tion (2), what the “osmotic temperature” will be for a certain sola-
tion, we come to an absurdity. For, again neglecting the termswith
2, we gel for the osmolic temperature at constani pressmre: ’

ndl=RTds . . . . . . . . (4
So this would imply that we could deteymine the total amount of
ar

entropy of the solvent through the experimental determination of T
&

And this now is an absurdily. For when we reason purely thermo-

d
dynamically and so define the entropy by dy= 7(:2 — and we have

used no other definition of the entropy in deriving equation (4), —
the eutropy has no definile value, but an indefivite, and undefinable
additive constant occurs in it; only differences of entropy have a
definite value. ?) :

3. It is nol difficall to point out the error in the reasoning which
has led us to this absurdity. We have imposed the condition thai

1) Only by starting from another, kinetic definition of the entropy, we can assign
a definite value to the enlropy in a defiite system of units. Gf. These Proe. XIlI
p. 705, seq.
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the thermodynamic potential of the substance passing tbrough the
membrane should be the same on the two sides, and we were not
justified in this. For it is indecd true that in staies of equslibrium
the thermodynamic potential of a-component is the same in every
phase, but here e have no state of equilibrium, because there
continues to exist a difference of temperature between solution and
solvent, and so a current of heal. It is just by this that the “oswotic
temperafure” is distingunished from the osmotic pressure, that the
latter gives a state of equilibrium, though under special restricting
conditions (the membrane).

Yet it is clear that it must be possible to reach a stationary state
by rvise of temperature in the way indicated ; but the condition on
which this takes place, must not defined in this way that the
thermodynamic potentials become equal. As it is self-evident that
this condition will have to be that the total number of particles
passing through the membrane is zero, it follows further that formula
(3) cannot be mainiained, and will have to be replaced by a relalion
of the form:

N=F,T). . N )]

Other guantities than the temperature (and constants) cannot occur
in this relation, because the properties of the thermodynamic poten-
tial in equilibrium, ie. at one definite temperature in all phases,
require that cquation (5) reduces to (3) for constant temperatuve. It
is now ncceessary for both problems to define the form of equation
(5) closer. It is clear that a parely thermodynamic reasoning is not
adequate to do so, because the problem we want {o solve, falls
outside thermodynamics as relating {o states of non-equilibrium. Ther-
modynamics can only give indications about the solution, however
valuable these may be; the solution itself can only be obtained by
kinetic means. Oue of these indications is this that the function of
equation (5) will have to Dbe of such a nature that the condition
N, =N, docs not lead to the absurd result (4). Now this absurdity
alrcady disappears when cquation (5) is brought into the form:

P ,
l\_.CR].........(())
in which the faclor R is required by the consideration that .V is
a number of molecules thal reaches a cerlain surface in the unit
of time. As p is-of the dimension of an energy, also the denomina-
tor will have-to be of this dimension, the factor C being in a cer-
tain relation with the unit of time and surface. If we draw up the
condition of equilibrinm by the aid of (6), it runs of course as
follows:
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in which it is jast the terms with » thal are c ancelled. Now it
appears, however, that also this expression is still too simple, for
now ¢ is found in the result, in which also an indefinite constant
occurs in consequence of the potential energy. So instead (6) we
must have an expression of the form:

A e )

in which AZ) is cither a constant, or a function of 7" whicl is
still further to be determined. But let us now still put the condition
that N becomes equal to zero for very greal volumes, and always
remains positive in other cases. Then we see that (7) cannot satisfy
this, because for very great volume the entropy becomes infinite and
so the thermodynamic potential becomes negative infinite. This con-
sideration requires a dependence of the form:
u—f(7)

N=¢e BT | e (B

in which it does not make any difference whether we take C as
a constani, or as a function of 7) as long as f{7') remains quite
arbitrary.

4. Further than equation (8) thermodynamic theory cannot go.
So we must now try if we cannot confirm the up to now only
plausible result in a kinetic way, and get a further insight into the
nature of A7'). By the way indicaled by vaN DrrR WaALs Sk. in his
communication on the kinetic meaning of the thermodynamic poten-
tial 1) ihis is easily obtained. We need only modify the train of
reasoning in so far, that we do not direct our altention to the
equality of the number of molecules {hat passes [rom the liquid into

1) Verslagen Kon, Akademie 1lI, 2056—219.
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the gas phase, and vice versa, but independent of (he second phase
determine the number of particles which may detach themselves from
the surrounding homogeneous phase, i.e. which are able entirely to
overcome the power of aftraction of the phase in which they ave
found, and so can reach a space where if no external forces are
active the polential energy is maximam and the kinefic pressure
may therefore be put zero.')

However, a few objections may be advanced to the method fol-
lowed 1. c., pacticularly with vespeet to the way in which the loss
of energy 1s calculated when a molecule leaves the homogeneous
phase. T am indebled o Prof. vax pur-Waars Ji. for the following

proof, in which these difficulties are evaded.

(42
Tel N’ be the number of molecules of one gram molecule,

»
its potential energy, then the potenlial energy which one molecule
loses when it is rvemoved from the phase (o a place where the
' 2a
N
molecnle meets with from another, can be reduced to a pressure on
the distance sphere, as this is frequently done in the derivation of
the equation of state by the virial method. This pressure, which we
MRT '
v—b

It we want fo defermine the chance thal a molecule escapes from
the phase through the capillary layer, we shall have to take this
pressure into account. For it is not constant through the capillary
layer, bul will gradually decrease if we traverse the capillary layer
from the liquid in the direction towards the vapour.

1f we choose the Z-axis noymal to the capillary layer and if we
think & (the vadius of the distance sphere) so small compared with
the thickness of the capillary layer that over the distance 2 ¢ we
may consider the pressure / as a linear function of z, the force
with which a molecule is pressed outside by the pressure P will be

- 2

5 st %{— So the total work which is exerled by P on

az

potential is zero, is . The inlluence of the collisions which one

shall call 2, is equal to p +t—6‘, or
e

equal o —

1) Prof. van pEr Waatns Jr. poinls ocul to me that these conditions need not
always he salisfled in the neighhourhood of a wall us was mentioned in my pre-
vious paper, which is easily seen if we think of liquid phases in (he neighbourhood
of their crilical lemperalure. So if we want in general lo define the thermodynamic
polential kinetically in a.defimile case only by means of properties of this phase
ilself, and nol ol coexisling phascs — and this scems desivable lo me in many
respects — we must replace the definilion by means of a non-allracling wall by
the purcly mathematic one given in the text. . ,

) 51

Proceedings Royal Acad. Amslerdam. Vol, XIiL

-~




an oulgoing tolecule is:

| (AP ' 2,
'—'Tl‘)' —‘—t[::—"—g—ﬂ/'(_l['——j),l):—l—\]—(ll'-".[)1’)

3 dz

So when a molecule penetrates into the capillary layer in the
direction from the liqud to the gas, it can travexse il enfirely
only when the z-component () of the velocity is so great that:

2a 2a 20
1 : V=Y e yp, P
Jom nE > (NU )l (Nr )q N (L £y)
Let us ecall the smallest value of u which satisfies this 1., we then

find the number of particles which escapes from the liquid per second
i N!

as follows: Let n be the number of particles perem*., son=— (» =
2

the volume of 1 gram molecule), then the nwmber that has a velo-

ut

. . . . Loon
cily component % in the z-direction is 7«3 #d —~, and the number
44 «

which passes through an area of 1 em” with that velocily :

u?
—= U
; we 7'd—
V= @
So the number that passes from liguid to vapony is:
=m0 u‘lm
ne (fu —— u ne  —-—
—_ — & 2 —_———— 2
Vad « o 2w
U=y
n

If we have to deal not with a simple substance, but with a
mixture of (1— &) molecules 1~ kind and x molecules 2" kind, and
it we wanl to ascertain {he cquilibrium for molecules 15t kind, we
get, as is easy lo sec, the same expression, in which, however,

N'(1—a) ) ) .
n = —= (v = the volume of 1 gram molecule of {he mixinre
v
and :
1 - 2{(1"_“) “1+mawl$ 2%(1"‘7’) al"‘ma‘wa’
it = N [ N'y p
2RT (b, (1—a) 40,2 b, (1—a)4 b,
TN v—0d { p—10 p
. (t—&)RT aRT .
The expressions and ; here represent the partial pres-
v—u U—

sures excrled resp. by molecules of the 15 and of the 2 kind on the
distance spheres round those of the 1% kind. The available spaces
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being different for ihe molecules of different kinds, the denowinalois
v—0b should strietly speaking also have different values. As it is here,
however, only ouv purpose {6 examine what function « is of NV, we
ey disregard these differences.

So if we take into consideration that '/;m,N'«* = MRT, the
number of particles which passes from the liquid to a space where
the potential energy is maximum and the kinetic pressure =0,
amounts 1o:

—2 (1_"”) ax+ﬁ’f‘_1_z_z+ 2 BT §b1 (1’" ""‘)“‘bwm
v } v—0b
1\7 — 1\7' (] -—';'L:)—OE v R
v 2 7
or
) 23(1—,@')(»]4—-0“,%( +2R1‘3b1“—mj—blﬁi 4 R’J‘Zl—w
v v—>b

N=CyTe BT (9)

RNT
where (= l/7 .
] 2mm

5. Ii remains to show that the expression in the exponent agrees
with o — f(T") of equation 18).

Now, if we leave the purc funetions of (he temperature out of
consideration, the thermodynamic potential becomes:

b da
BRI =

po— RTL(o—b) — 2 — & e —”’z 4+ RTU(1—g) . . (10)
vV n—>b, v

if h may be considered as a constant. This is, of course not the case
in the lignid state, and accordingly we can only expect (o obtain
agrecimen{ befween (9) and (10), when we neglect terms with higher

b
powers of — .
v

. u a . .
If we write pp = RT il the terms with @ from cgua-
v—9_ v
tion (10) become:
da
20 — @ —
da 20, (1—a) 4+ 2a,, @
v - v

and so these lerms perfectly agree with those of (9).

. b . .
With nogleei of the higher powers of —, (he tevms with 4 [{rom
U

‘ 5L*
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equation (10) can be reduced as follows:

db b
‘vc_l'— - b .UJJ-; v
v v
—_é(’u—b)——-u—b+’u~—b:—l(0)_l(1—77_)_ 'v——-b+v—?)_—
db
20 — & —
b @ db b b dz
== —22 (s D e —— =
" v dw r v v

20, (1—&) + 2,2

v

=1—1@® +

So these {erms foo perfectly agree with those of equation (9),
provided the higher powers of % are neglected. So the /(7)) of equa-
tion (8) should be chosen so that the functions onlv dependent on
temperature disappear from the thermodynamic potential, and the
whole expression is multiplied by /7" So the two methods, the
kinetic and the thermodynamic method supplement each other.
Thermodynamically it can be shown that the quantity which occurs
in the exponent of equation (8), must nccessarily be the thermody-
namic polential, at least as regards its dependence on » and &; but
concerning its pure functions of the temperature thermodynamics
cannot give a decision. On the other band the kinetic theory is
adequate to show, that we must gel an equation of the form of
equation (8) for XN, and it can determine the /(7). It can, howewer,

show with only a very rough approximation — until a proper cx-
pansion into series for & is kmown — that the occurring function of

the volume and the concentration is the same as that which occurs
in the thermodynamic potential. If these iwo methods are combined,
we may, in my opinion, conclude with certainty, that the number
of particles under investigation is really represented by the formula:

w
N=cyrTe T . 0 0 ..

in  which u' represenis the thermodynamic potential without ifs
functions only dependent on the temperature.

6. Now it is easy to draw up the equation for the “osmotic
temperature” - by means of formula (11). A slationary state will,
namely, set in when the number of molecules going to pass through the
membrane on one side of il has increased by rise of temperature
as mnch as it has decrcased by the addition of the dissolved sub-
stance, or in other words, when :

-10 -
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- N vy
) e 5p) =0 (2
&/, s

If we write ¢’ = u -+ F(1"), in which now:
T T
F(T) = _fcum dT~E+1‘f°—”Z:E aT - TH
0 1

and in which g is the ordinary thermodynamic potential, then

f )11
—~ (-%) do =22 7 (Qi) 4 T e (7) + ]
0z /). T

0T ), 2 |
follows immediately from equation 11 and 12, when the differen-
tiations have been carried outf.

0 o
And with the values for (—M') and (L) from equation (2)
a,.’b' P!T a'l Pk
9%¢ ar BT
.L-(T;)P’wa = g1”F'(T)—s——pu—1f’(T)—{— ‘2 t NGE
when we wmay consider the terms with @ as small.
T
a
Then with 6 = — — - ﬁvw dT + FE and the above-mentioned value
U
0
of Ir (1) the righthand member becomes:
’ A RT
T T

Now at low lemperature pv may be neglecied by the side of

lrs)

(42 . . .
—, and for the laiter expression we may write

. On the suppo-
] v—10 e

3

sition already introduced by us that ¢ is small, (5—3) passes into
» T

v

RT . . . . . .
g so that finally the differential equation of the “osmotic tem-
W L—
perature” becomes :

dw dar{ v 1 %
——= L (M4
1—a T ; v—b + 2 (14)

It is evident that the second mewmber is positive, and this result
was, of cowrse, already certain beforchand.

7. In conneection with this resull a single remark may be allowed
me. We might think that the experimental determination of the “osmotic
femperatnre” would give a new means {or the deflermination of the
quantity & in the liquid stale; this is, however, not the case. This

-11 -
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appears when we do not wait {ill (13) to introdnce the simplification
thal pv may be neglected by the side of ;, but introduce it imie-
diately in (11). If we write this equation in the form :

t

B
RT

we find as condition for the stationary state:

M' . M,

9 e B
( RT ) oo (a R? ) " .
dw Jpr 2T or /,." (12)

Now on the mentioned supposition, and neglecting again the terns
with @, we have:

WNY=1C + /17 +

42

w v b
= — =) S (-t = — —— — —4) -
R.’Z‘ PL-rl\ (/-7 ) ’f ( l/) ' . b l(?} (}) Z (1 ')

and so:
o w
0 — d
( RT ) o da ( RT) 2%—v [do 16
du p,T_ l—a’ or 1,},:9__(0—5?(571—')/,_—:0 o)
dv X o ,
(ﬁ) we find from the equation :
a—[ p=0
a RT
o o—b

by differentiation ; the result becomes after some reduction :

dv _o(v—0) -

1f we substitute this result and that of (L6) into (15), we get
again (f4). So we see now that (I4) does not give an independent
delermination of —U—g—, but that we can just as well determine {his
quantity from (17). And as ihe quantities occurring in (17) can
undoubtedly be determined experimentally with much greater acen-
racy than the “osmotic temperature”, (here is no reason to cxpect
that cquation (I4) will le able (o give ns any new information
about the & in the liquid stale. And in my opinion this obviales
every reason, al least for the preseni, lo {ry and conquer the
undonbiedly vevy considerable difficulties which will confront vs in
an experimental investigation of “osmolic (emperafures”,

-12 -




