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Physics. — “Some remarks en the mechanical foundation of thermo-
dynamics.” ") 1. By Dr. L. S. Orxsteiv. (Communicated by
Prof. H. A. Lorentz.

(Communicated in the meeting of Januari 28, 1911).

§ 4. In § 2 I have discussed some ensembles and I have shown
that they can be used to dednce the properties of a real system
because they are connected with the time ensemble and because the
majority of their systems is equivalent. I shall give in this paragraph
another deduction which for this purpose may show the importance
of the energy-space ensemble (and of the microcanonical one).

If in reality we want {0 oblain a system with a given energy
we take a system of the same kind and supply energy lo it or
abduce energy from it, giving al the same time the appropriate
values to the external coordinates. Lel us suppose that it is possible
for us to construet a sysiem that contains exactly the required
energy. If we do not take special carve to get a system of a definite
internal slate, we shall obtain by our operations one of the systems
possible with the given energy, but it will be impossible to indicate
what kind of system will be produced.” We can by no means
pracilically regulate the iniernal state arbitrarily, as it is impossible
for us to influence direclly a single degree of freedom (e.g. the
phase of the molecules). But we can only give the values we desire
to the energy, densily, or concenfration in rather large parts, and
even this with a moderale precision. If in a greal number of cases
we give the energy & to a system we shall obtain it over and over
again in other slales, and the same will be the case if we bring
the energy of a greal number of systems {ogether to the value &.%)
The ensemble obtained in this way may be called a “real” energy
space-ensemble. .

Instead of giving the energy & to N sysiems we can also scleel
them in mature. I shall term ihe ensemble thus obtained a nature
energy-space ensemble. The real and the nature energy-space ensemble

1) Sec These Proceedings page 817, Putting for the probability of the homo-
geneous system oy we find for that of a system specified by the numbers -,

n k
_? E 7/2 B
W= w,e 1
B is o (unction of the volume, the diameter of the molecules and the temperature.
2) The circumstance must be taken into account that the original system will
differ also in phasc. -
1
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are nof identical; the following considerations mutalis mutandis may,
however, be applied to both. I shall therefore in the following pages
only take into account the real energy-space ensemble. Constructing
several times a veal energy space ensemble, we shall find that the
nurber of systems lyirg in a given element of the space L,
can differ in those cases. How great this number will be, cannot
be said, if one does not know anything about the way in which
the energy is supplied to the systems. If, however, we proceed
without any scheme, the distribution of systems over the space
By will differ very litile in the majority of possible cases. The
distribution occurring in the majority of the possible cases must be
stationary. The most simple stationary ensemble is the cnergy space
ensemble discussed in § 2.1).

I shall now iniroduce the lypothesis that the rveal ensemble is
identical with an energy space ensemble.

1f we had supposed the cenergy of the considered systems to have
a value between & and & -+ dg, we should have found another kind
of real ensembles which we can indicate by the term of real micro-
canonical ensembles. The most frequently ocenrring and stationary
ensemble is the ensemble with a homogeneous distribution. (Comp.
Gises Chap. XI and XII). Y

The introduced hypothesis enables us to deduce the properties of
a real system with the help of the corvesponding mean value in the
energy space or the microcanonical ensemble. An arbitrary sysiem
can be obtained by choosing a system from a veal ensemble; this
real ensemble is an energy-space or microcanorical ensemble; the

1) The ensembles having the constant 4 different for lhe sirips are also sta-
tionary Thes> must be taken into account if we know something more concerning
the constants of integration. .

9 The distribution of systems in a real ensemble can be chaned by the molion
of the representing points, if it is not identical with the energy space-enscmble.
It is impossible that in consequence of this motion an arbitrary real ensemble
changes to an energy space ensemble, if the distribution for the sirips of § 3
deviates from that in the emergy space emsemble. Suchlike ecnsembles are,
however, very rare among all the ensembles, built up of a given number of
systems in the space E2y—1. If the distribution over the slrips agrees with that
in an cnergy space ensemble, but is different from this inside the strips themselves,
the ensemble wﬁl, by the molion of the systems, take states in which it deviates
very liltle from an energy space ensemble but periodically it will again differ
more from it, Also this kind of deviating ensembles is very rare. As for a real
microcanonical ensemble, which shows a distribution different from the homo-
geneous, the distribution will differ after a long time as little as we like from the
homogeneous in fixed elements of the space Es .1 which are not too small,
(Comp. Gisss Chap. XIIL,)
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properties of a real system arve thevefore those of a system chosen
arbitrarily from one of those ensembles.

If we know {hat the state of a system is stalionary, the properties
of the system will agree with those of the most frequently ocenrring
system of the ensemble; after a sM‘ﬁcie})tly long time every sysiem
will come (o this state just for the very reason one would say that
it can be thought to belong to a real ensemble. The idea of probability
of a real system, which sivictly speaking has only sense in relation
o systems Iying on the same path, can now be exiended in the
following manner: (he system is produced by a construction which
when repeated many times will lead to a real ensemble, the latter
I identitied with an energy-space (or microcanonical) ensemble; the
probability that a real system is in a given state is therefore equal
to the probability of the same state in the energy space or micro-

canonical ensemble ).

§ 5. In the following 1 shall consider the canonical ensembles.
It is generally affirmed that these ensembles have no physical meaning
and that thewr inwoduction is only justified becaunse of the simplifica-
tions, which they allow when used in the caleulations; also Hurrz
adheres to this opinion ®). I think, however, that by changing aliitle
the considerations which enabled us to aseribe a physical meaning
1o the microcanonical ensemble, i.e. by relating them {o the real
ensembles, we can attribute @ the same sense a physical meaning to
the canonical ensembles. If we know that in natore by the action of
exactly delermined causes a system of precisely the energy &, would
be formed, it is obvious to presume that in consequence of the small

1) By the following considevations we can avoid the mentioned hypothesis. Sup-
posc that a real ensemble lias been constructed ® times; in each construction we
take NV times a point at haphazard in the space Eos—; and unite the chosen points
to an ensemble (or we proceed in the same way for the layer hetween . and
£~} de). Lach possible real ensemble appears a certain number of times among
the ¥ ensembles constructed. The probability W, of a given ensemble can be

defined, as this number divided by the tolal number of ensembles M. 1f 20. represents
N

the probability of a given state in the eusemble under consideration then £w, W,
1

can he laken as the definition of the probability of a phase, the sum has to be
extended over all the 3 ensembles. The hypotheses mentioned ahove means lhat
we put the probability for the encrgy-space ensemble equal lo 1 and take for w
the probability in their ensemble.

% This simplification is often not so very important; most questions which can
he solved by means of the canonical ensembles can be trealed in a like manuner
without much complication, also by means of the micro-canonical ensembles,
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and accidental deviations in the several causes not a system of exactly
the energy & will be produced, but one of the energy &; in general
(&,—¢&) will be small in comparison to &, Positive as well as negalive
devigtions will occur. -

If we now construct a real system Dy trying to give the energy
& 10 IV systems or by choosing N systems of this kind in nature,
we shall suppose {hat the probability that a system of the energy
&+ & will be chosen is as great as that for the one with the
energy & —¢’; a hypothesis which will be plausible as long as &
is small. If the hypothesis is right, it may easily be shown that the
canonical ensemble will play a part in the definition of the proba-
bility of a system.

In analogy of other cases (e.g. the law of errors) it seems admis-
sible to suppose that in a real ensemble the number of systems
whose energy lays between & and & -+ de can be represented by

NAe—G=xPkds . . . . . . . . (15)

It is not possible to prove this formula as long as we know nothing
about the way in which the energy is supplied to the systems, or
in which the energy & of the systems chosen from nature is
determined ).

If we form hypotheses on this subject we can deduce (15), but
much importance should not be aseribed to such a deduction. *)

Proceeding further in the same way as in the case of (he micro-
canonical ensembles we find for systems in the real ensemble which
are represented in each layer between e and &+ de a homogeneous
distribution. .

1) If we suppose that the ensemble is constructed by choosing the systems from
nature, the measurement of energy will be subjected lo an evror, the analogy with
the law of errors therefore is still more obvious. Only we have now the difficulty
that we do not know in whal distribution the differcat systems of a certain energy
appear in nature. .

%) To give an example take the following case. Irom a recipient of infinite
energy, the emergy is supplied to IV systems. Equal porlions » arve supplied to a
total amount of Nn portions to the systems of an inilial energy 0. The supply of
energy takes place in Nn distributions. In every distribution one syslem is taken
from the IV systems, the energy « supplied to it, and the system 1eplaced among
the others. This is Nn times repeated. It is evident that in a definile case not
each system has obtained the energy #.:=—¢j but it is possible to indicate the
number of the sysiems containing an energy between n'z and (#'—1) . If the
mentioned process is repeated several limes, one distribution will be the most
probable or most (frequently occurring) among all the possible distributions and
this will be that. for which (15) expresses the number of systems obtaining an
erlergy between ¢ and ¢+ de. If o is infinitely small, we can be sure that the
real ensersble obtained will be the cnsemble characterised by (15).

)
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. It we represent the volume of the layer between L, (¢) and
L1 (e 4 de) by e de, ¢ (§) heing a determined function of & and
we imagine an ensemble in which the density in the mentioned
layer amonnls to f(e), this ensemble will be identical with the real
ensemble 1f i

"(g) &™)
B Y R 1)
IACANS)

From (16) resulis
log 1 () — log (8.) + ¢ (&) — q(e0) = — k(e —&)°

developing for small values of (+—¢,) we gel

d log /(&) dy(s)

—E&,) ;( de ) =, ( ds >_oz+ |
Plgf @ | (Pre) | _ :
( ds* >‘:j: ( de’ ):._-Di = -—l(s—¢,)".

+ 1 (g—¢,)
Theretore
dlog f(e)\ dip(e)
dE = o d8 =3
and

d? logf(s)) _ (d’(p(s) "y
ds® )=y ds® )=,

In first approximation

- d;«(-!)) =, (:—-—-iu)

d= J:
S =[f&)e e 1R
If we suppose that this formula is {rue for all values of & and
' : ’ZOJf()

that therefore —— can be put 0, we find for the number of

systems having lhc energy between & and &+ de

(d()) - (d?( )) 44

f(Eo) = ds.

di(z ¥

i d + 1 Td: )=y -
Puiting A =— and: f(s) ('( ) = N¢® we find for
ds ).=, O .

this number.
Y
+ole) .

Ne © S 1)

. . . ' B )
so the ensemble is canonical. The relation {o be adopted between % and

e
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da*p(s ’ .
(——EQ does not follow as far as I can see from the physical
€ Je=y
signification of these quantities ?).

By ()~ .
Gess has proved that the quantity 55 has properties corre-

=%

sponding with those of temperature. The mentioned quantity, however,
has a definite value for a given value of the energy ¢, so the
modulus of the canonical ensemble used has to be put equal to the
value of (g—:) ' . The ensemble defined by (13) and the canonical
ensemble (18) deviate slightly from each other, but these devialions
are of less significance the greater the number of degrees of freedom
is. The deviations ave most important for those systems of which
the energy & is such that (e—s,) is Jarge in comparison to &, but
suchlike systems are very infrequent in both ensembles. We can
without fearing errors in our results suppose the real ensemble to
be a canonical one, and 1f we further suppose that in the real
ensemble the distribution in every layer is howmogeneous, we find for
the probability of a system in the real ensemble

1=z

¥ —e

e ® dp,...dgy. . . . . . .. Q9

The identity of the real and the cahonical ensemble is no more
fully proved or to be proved completely than that of the micro-
canonieal or energy-space ensemble. It exists in this respect that the
number of systems in the layer ¢...& 4 de can be represented by
Sf(e)de, f(e) being a maximum for ¢ =¢,, as well for the real as for
the canonical ensembles; in the microcanonical ensembles ithout it
f(e)=0, 1o a certain degrge the latter ensembles have therefore less
physical sense than the canomeal, provided that we do not take as
startingpoint the single system and with it the time-ensemble, but take
into accouni thai a given system has a not totally definite energy.

!

§ 6. Herrz has developed in the paper mentioned considerations
about the theorem that two systems of equal temperature produce

1) Giees has proved (Chap IX (850)) that we have the relation

(d” rp) _ 1
N 8> Jo= E“’_— (E _805;

In the real ensemble (15) the mean value (e—=,)? is equal to 2k, ~therefore in
the real and the canonical ensemble the mean value of the squares of deviations are
equal
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after their union a system of the same temperature. He supposes
the connection performed in such a way that the two systems form
together a new system, of which the reciprocal energy is small in
comparison with & -+ &,. The connection enables the systems to inter-
change energy. The (uantity = of Iltrrz is related to the average
kinetical energy iu the ensemble and is interpreted by :

— nV =an
w=35=2"
n being the number of degrees of freedom, ¥V the volume of the
extension in phase where the energy of the vepresented systems is
. av
less than & o is put instead of 5 ;

Hewrrz determines in a very elegant manner the condifions
necessary for two microcanonical ensembles of the energies &, and &,
and having =,(e,) equal to 7,(e,) to form after their connection an
ensemble of the energy & + & and the temperature z,,(s, + &,)
so that

7, (& +8) =1 () =1, (5,)

His considerations {each us only something about the equilibrinm of
temperature for stalionary systems if we have shown that the average
kinetical energy of a degree of freedom 1is equal to that in the
most frequently occurring systemn, while the conditions of Hrrrz
are complied with. We shall suppose this as proved and if we then
consider that two ensembles of energy £ and & and of equal
7-value produce an ensemble of the same z-value, and that the mean
kinetical energy in the original ensembles is also equal and with it
the kinetical energy of the most frequently occurring systems, we
shall find that also the temperature of the stationary systems are
equal before and after the union. .

Even if we unite systems in non-stationary state, we can deduce
something. If the temperalure of the considered systems would be
equal after they had come to a slationary state, they would belong
to ensembles of equal . The system formed by their union belongs
to an ensemble with the same value of z, the temperature therefore
adopted by the system formed if e unite two non-stationary systems
is, if this system has become stationary the same as thal which would
have been adopied by the separate systems in their stationary state.

Also . for the canonical ensemble we find the same results. GisBs

1} Conf. P. Herrz loc. cit. p. 243.
1) For gases and flaids I have proved Lhis in my dissertation.
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has proved thai the modulus @ corresponds in all respects with the
temperature. The mean value of kinetical energy in an ensemble is

n
E O and this average value is cqual to the corresponding value for

most freqnently occurring and [stationary system, @ can thevefore
be used to define the temperature of a stationary system.
Grrongngen, Dee. 1910.

Physics. — “On vapour-pressures i bimary systems with partial
miscihility of the lguids.” “Van pur Waars-fonds” researches
N°. 2. By Prof. Po. Konnstamm and Dr. J. TimMmerMaxs.
(Communicaied by Prof. J. D. van DER WaaLs).

{Communicated in the meeting of January 28, 1911).

In these Proceedings Vol. 9—11 ') van per WaaLs derived a series
of coneclusions concerning systems of not completely miseible liguids.
In this communication we shall compare three of these conclusions
with the experimental data which are to be found on this subject
in the liferature, and with the results of some new determinations,
which follow here. -

We shall discuss the three following points:

1. The shape of the p,7-projection of the three-phase curve L, L, 6.

2. The conuection between the shape of the plaitpointline and the
existence of a maximum in the p,r-section of the surface of saturation.

3. The occurrence of points of inflection in the p,z-section of the
surface of saturation specially in the neighbonrhood of a critical
end-point.

§1. Vaxn prr WaaLs has tried to demonstrate that the p, 7-projection
of the three-phase line does not intersect the plaitpoint line in a
critical end-point, but touches il. From this very remarkable results
would follow.

a. In the case of splitting-up of the plaitpoint line the three-phase
pressure would ascend regularly with rise of temperature. As, however,

i :
one of us?’) remarked already before, L has a very high value for

ar

this line in the case of splitting up of the plaitpoint line (d—— never
P

becomes higher than 0,04 degree per atmosphere); and so the three-

1} See also Avchives Néerl, (2) XIII p. 249—283 (1908).
%) d. Toueraans. Handelingen van het 13e Viaamsche CGongres 1909 p. 120,



