Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

Huet, W.G., Notes on the trochlear and oculometer nuclei and the trochlear root in the lower vertebrates, in:
KNAW, Proceedings, 13 II, 1910-1911, Amsterdam, 1911, pp. 897-903

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'
dispersion bands enveloping the absorption lines. How the systematic displacements of the Fraunhofer lines toward the red, the obliquity of the lines in the spectra of sun-spots, and some other phenomena, may be explained from this point of view, has been shown in former: publications ${ }^{1}$).

Anatomy. -- "Notes on the trochlear and oculomotor nuclei and the trochlear root in the lower vertebrates". By Dr. W. G. Huwr. (Communicated by Prof. L. Botr).
(Cornmunicated in the meeting of January 2S, 1911).
In the course of the past year [made several observations regarding the oculomotor and trochlear nuclei and their roots, in Petromyzon, Lophius, Gadus, Hippoglossus, Rhombus, Pleuronecles, Selache maxima and Scyllium Canicula. The results of my researches can be best demonstrated by comparing the relations of the said nuclci in Petromyzon, Selache, and Lophius.

Fig. 1. Petromyzon.
Fig. 1 shows the topographic relation of the oculomotor nuclens and root, the trochlear nuclens and root and the motor V and VII root in Petromyzon.
As will be seen from this figure, the oculomotor nucleus in this animal lies partly on the level of its root-entrance, partly behind. The principal nucleus (Fig. 7), the only III nucleus according to some investigalors, lics with its dorsal edge not far from the aquaeduct. Whether the so-called "ventral III nuclens" be a III nucleus or not, I will not state positively. Its topography speaks strongly for this view, as can be scen in Figs. 1 and 6. The cell-type is, however, somewhat smaller than that of the dorsal nucleus. I have not been able to obtain sufficient cortainty about the course of its axis-cylinders to enable me to decide this question. ")

[^0]In the trochlear nucleus it is conspicuous that this lies very dorsally, above the aquaeduct in the velum (Fig. 8), as has been described by Scimunes ${ }^{2}$) and observed by Tretsakoff ${ }^{2}$) in Ammocoetes.

The further topography of this nuclens shows that it lies nearer the trigeminus root and closer to the trigeminus nuclens than to the nuclens of the III nerve. Moreover the trochlear nucleus lies in toto behind its root-end (Fig. 1 and Tretjakorf l. c.).

Fig. 2. Selache.
If we compare these relations with Fig. 2, which represents the topographic relations in Selache, we immediately find a difference in the position of the oculomotor nucleus, for the nucleus lies considerably farther frontally than in Petronyzon and surpasses the frontal boundary of its root (see also Scyllium, fig. 9). A rentral III nucleus does not appear here, all the cells lie in the upper third part of the mid-brain basis (fig. 10). Still greater are the topographical differences shown by the trochlear-nucleus and its root in comparison with Petromyzon. The trochlear nuclens no more lies clorsally from the aquaeduct in the velum, but to the side of the aquaeduct, practically under it, (fig 2). The nuclens is larger than in Petromyzon. A part of it still lies behind the root-entrance, another, much larger part lies in front. ${ }^{3}$)

The distance from the IVth nucleus to the V rool is greatly enlarged, and the shifting towards the III roob is so pronounced that the III and IV nuclei parlly orerlap each other or pass into each other (Figs 2 and 9).

[^1]I wish bere to say that the great distance between IV nucleus and cuintus-root is not to be attributed solely to the frontal shifting of the former nucleus. The isthmus in the Selachian is much more extended than in the more compressed brain of Petromyzon ${ }^{2}$) and likewisc more than in the Teleosts. That, horvever, a considerable frontal shifting of the trochlear-nucleus has taken place is also apparent from the facts that a great part of the nucleus now lies in frout of its root-entrance, and that the III and IV nuclei overlap each other for a part, while in Petromyzon there was a large gap between them.
Thus we find in these Selachii a strong frontal shifting of the IV nucleus as compared with Petromyzon.

lig. 3. Lophius.
Passing on to the relation in Teleosts, I refer to Fig. 3, in which . the topographic relations of Lophins are given. Here in the oculomotor nuclens a greal difference is noticeable as compared with Selache owing to a part of the III nucleus having undergone a strongly ventral shifting (Figs. 3, 11, and 12).

This ventral shifting should not surprise us, for it is known that the abducens mucleus in these animals also occupies a ventral position. It is highly probable that here too, the strong development of the ventral tecto-bulbar (optic) reflex tract is the canse of this displacement which, for the decussated reflexes also, may perhaps find support in the fact that the place of the lowest point of the mucleus agrees with the ventral decnssation level of the above-mentioned rellex-tract, which lies (as we know from de Lange's ") researches) principally before, partly on the level of the III root entrance and

[^2]there sends out a series of fibres to the III nucleus (compare also Edinger and (Waidenberg ${ }^{1}$)).

In connection with the more frontal migration of the dorsal nucleus which was found in all Teleosts, I may recall here the fact that de Lange found the decussation of the dorsal tecto-bulbar fibres also more frontal than the decnssation of the ventral set.

Regarding the III root I will mention that a grear number of decussating fibres originate from the posterior part of the III nucléns bordering on the trochlear nucleus, which is metesting in connection with the fact that the IV fibres have also a decussating character.

The trochlear nucleus shows us a further stadium in the process already indicated in the slark, riz. the frontal shifting of its cells which bere lie entively in front of their root-entrance. Although this may partly result from a backward displacement of the root in some Teleosts, a more frontal shifting of the IV cells is also very probable, as is seen from the fact that the IV nucleus in Lophius has also a more frontal position in regard to the IIl root and V root and therefore, with regard to these pouts also, the shifting of the IV nucleus ran be affirmed, equally in all Telcosts. (Figs. 3 alyd 11).

The position, which the IV nucleus occupies with respect to its rool-entrance in the bony fishes is strongly suggestive of that in human beings (cf. Maribuic ${ }^{2}$) where the nuclens also lies entirely frontad thereof. It has been found by van Valhenburg ${ }^{3}$) that wis secondarily produced relation is sometimes shown by a caudal remuant of the IV nucleus, which he designates "nucl. IV posterion" (cf. Jacobsons").

With regard to the trochlear-root the following point may be mentioned.
Earlier investigators haul already observed that the trochlear-root traverses the brain-stem with 2 roots (Salmo, Haller ${ }^{5}$) Gadus, Kappens ${ }^{\circ}$)) in some bony-fishes in contrast to other bony-fishes (e.g.

[^3]

Lophius). The exact comrse of both these roots was, however, never clear before.

As I had at my disposal some frontal and horizontal series of Gadus and other fishes, I was able to trace the whole system with fairly great exactness and arrived at the following conclusion.

In Lophins piscatorius the decussation of the trochlear root-fibres takes place in a fairly simple was. After their origin in the trochlear nucleus, the fibres pass in the form of one compact bundle closely round the aquaeduct upwards, and cross in toto on one and the same vertical level, the decussation occupying about 6 sections of 25μ, but not more; a difference can only be observed between the fibres mutually in so far as some decussate closer to the aquaeduct, others closer to the surface of the velum, a ferv even after the exit (somewhat as in Scheme b fig. 4).

In Hippoglossus this relation is rather more complicated, owing to some of the fibres following a pathway separated from the others. Before proceeding to decassation, these fibres (about half of the total number) pass frontally into the valvala cerebelli; then only do they decussate and after the decussation they turn laterally, rim again caudally between the valvula cerebelli and its connection with the tectum, to appear at the height of the original velum out of the groore between mesencephalon and cerebellum simultaneously, with the other root-bundle which has decussaied on the original level (somewhat as in Scheme c, fig. 4).

The impression is conveyed as if the anterior part of the trochlear-root and its decussalion were drawn frontally by the growth of the valvula into the optic ventricle under fixation of the point of exit.

This dislocation is the most conspicuous in the case of the anterior roct-half in Gadus, where the valvula protrudes somewhat farther forward under the tectum (cf. Scheme d fig. 12).

Besides by the peculiar dispersion of decussations, the anterior part of the IV root of this animal is also distinguished from the posterior by the fact that it does not ron directly round the aquaeduct medially from the tr. cerebello-mesencephalicus, but runs outside that tract (Fig. 11) as has also been observed by Kappers (l.c.p. 62).

That the frontal shifting of a part of the decussation is caused by
the frontal growth of the valvuia is clear. It does not occur in animals without valvula (e.g. sharks), and in Lophius, where the

Fig. 5. Gadus.
valvula corebell is extremely small, there is neither any question of a frontal shifting of a part of the trochlear fibres. Nevertheless the conditions in this animal furnish us with the explanation.

The diagrams given here show how the said root dispersion is to be deduced from the simple position. In lype a (shark) the decussation of the fibres occupies but a small space. As the velum is very thin there is only one decussation. In b the velum is considerably thickened, principally by the growth of the molecular and Purkinje layer over it. (Type Lophius).

Although the decussation remains on one vertical level, a distinction can nevertheless be made between the fibres which decussate close to the aquazeduct, and those which decussate more or entirely on the surface of the molecular layer.

In c the molecular and Purkinje-layer has grown still considerably further under the tectum opticum and exhibits more folds; a consequence of this is the onlargement of the distance between the fibres with a more peripheral and with a more central decussation, which attains its maximum in d, practically agreeing with the conditions as shown in Gadus.

This diagram, at the sime time, demonstrates clearly that the space in which the frontal rool decussates and runs back in a caudal direction, does not lie in the cerebellam but between the valvula and the fold connecting it with the tectum.

Summing up my results, l can state the following:

Oculomotor nucleus.

The III nucleus in the lower vertebrates occupies a more constant place in the longitudinal-axis of the brain than [V nuclens. Nevertheless il certainly undergoes a distinct frontal shifting. In a dorsoventral direction the oculomotor nucleus of the Teleosts undergoes a considerable displacement, which agrees with the ventral displacement of the abducens meleus in these animals.

Trochlear nucleus and root.

The trochlear nucleus in the lower vertebrates exhibits still greater differences in its position with regard to the longitudinal-axis of the brain. In Petromyzon it lies at a great distance behind the III nucleus even behind its own root-entrance, on the level of the trigeminus root-entrance, as has also been proved by Tretuakoff for Ammocoetes.

Moreover it lies nore dorsally, above the aquaeduct in the velum.
In the Selachin the nucleus lies at a great distance from the trigeminus rool and close to the III nuclens, passing into the latter. In Sclache it extends partly behind, thongh for the greater part in front of the IV root-entrance. Moreover, it has come to lie under the aquaeduct. In Teleosis the frontal shifting has reached its maximnm. The nucleus lies entirely in front of the IV root-entrance.

In some Teleosis the trochlenr root undergoos a peculiar spreading in bundles, e.g. Gadidae and Pleuronectidac, owing firstly to the root being split into two parts before decassalion by the passing through of the tr. cercbello-mesencephalicus; secondly, the part which runs round outside liat bundle is drawn forward by the frontal growth of the velum that grows out to valvula cerebelli, in consequence of which it decussates more frontally, and then again runs candally between valvula and its connection with the tectum.

This severing of the decussation levels also explains the spliting. of the trochlear rool into two rools at the exit, which until now has not been found in fishes without valvula (sharks) nor in those bony fishes where the valvula is very small (Lophius).

59
Proçeedings Royal Acad. Amsterdam. Vol. XIII.

[^0]: ${ }^{1}$) Proc. Roy. Acad. Amsterdam, XII, p. 266 and 466 (1909); XIII, p. 2 (1910); Les raies de Fraunhofer et la dispersion anomile de la lumière. Le ladium, t. VII Oct. 1910.
 ${ }^{2}$) This cellgruup is regarded by Ambborn, Jomston, and Samlling as being a part of the 111 nucleus, but by 'Tremanore, on the otlier hand, as a cell group independent of the oculomotor.

[^1]: ${ }^{1}$) Schiling: Das Gehirn von Petromyzon fluviatilis. Abhandl. der Senckenbergischen Naturforschenden Gesellschaft, vol. 30 p. 4411907.
 ${ }^{2}$) Tretsakofr: Das Centralnervensystem von Ammocoetrs. II. Das Gehirn. Archiv. f. Mikrosk. Analomie vol. 74 p. 7131909.
 ${ }^{3}$) The topography of the IVth root and nucleus is not the same in all Selachii. Here I take Selache as object of demonstration because it seems more fit for comparison than Scyllium. Moreover our preparations of Scyllium did not allow us to fix the limits with so much certainty as those of Selache. (Added in the English translation).

[^2]: 1) The compressing of the Petromyzon-brain is also conspicuous in the fore-brain to which Scorr has already referred. (Journal of Morphologie Vol. I, p. 253).
 ${ }^{2}$) Kappers. The migrations of the V, VI, and VII muclei ele. Verhand, der Kon. Akad. v. Wetensch. Vol. 16, 2de Sectie.
 3.) De Lange. The descending tracts of the corpora quadrigemina. Folia Neuro biologica. Yol. III, p. 644.
[^3]: ${ }^{\text {l }}$) Vorlesungen $7^{\text {te }}$ Auflage. - Beiträge zur Kemntnis des Gehinns der Teleosticr und Selachier. Anal. Anzeiger, Vol. 31, P. 369.
 ${ }^{2}$) Mareurg, Mikroskopisch-topographischer Allas des menschlichen Zentralnervensystems.
 ${ }^{3}$) C. 'T. van Valkeneurg: These Proc. June 25, 1910.
 ${ }^{4}$) Jacobsonn, Verhandl. Preuss. Akad. 1909.
 ${ }^{\text {a }}$) Haller. Vom Bau dos Wirbeltier-gehinnes. Morphologisches Jahibuch Bnd. 26, 1898, p. 508. 1 cannot affirm however Haller's statement that a pat of the IV root originates from the Pukinje-cells of the cerchellun. Nor did 1 see a "kontinuierliche Zusammenhang deses Kennes (IV) mut dem roshalwartigen Ende des oberen motorischen 'Tıigeminuskernes" (1. c. p. 505).
 ${ }^{0}$) Kappers. The structure of the Teleostean and Selachian brain. Journal of Comparative Neurology, Vol. XVI, 1906, p. 62.

