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Geophysics. — “On the determination of tidal constants from obser--
vations performed with horizontal pendulums.” By Dr. J. P.
VAN DER STOK.

(Communicated in the meeting of April 23, 1909).

1. When applying the theory worked out with astronomical
accuracy of the analysis of tidal observations we are checked in
practice by disturbing influences of meteorological nature which may
be greal with respect to the quantities to be calculated, making thus
the accuracy of the theory as well as that of the results illusory.

These disturbing influences are greatest when we calculate the tides
of long duration, where meteorological factors of irregular nature
play such a preponderant part, that the definition of the constants
is only then possible if it is based upon series of such long duration
that those disturbances can be regarded as eliminated. Each investi-
gation onught then to be preceded by a study of those disturbances
and a taxation based upon the latter of the demand to be put as a
minimum for the length of the series.

For most tides of short duration these objections do not hold, or
at all cvents in a mach less degree, they do however for those tides
whose period differs but little from that of mean solar time and which
are connected with it in a systematic way, namely the sidereal
tides proper K, and K and the sidereal tide improper 2.

As the disturbances of meteorological nature appearing herc have
not only an irregular but also a regular character, the former can
be eliminated by making the calculation over a great many years, but
not the Jatter and only by means of more or less uncertain hypotheses
shall we be able to come closer to our aim.

Thus e.g. the tides X, and P can only then be calculated out of
the observations if we assume that the diurnal meteorological tide
S, remains constant during the whole year, a supposition which is
certainly inaccurale because the mean amplitudes of the motion S,
finding its origin in the land- and seawind, must be considerably
less in winter than in summer.

As lucky circumstance can be regarded that S, is generally small
a. 0. on European coasts, where however on the other hand X, and
P too, are abnormally small, abnormally, namely, with respect to the
value evalnated -out of the theory of equilibrium. In tropical regions
S, 15 in many places not small, and only where, as in the Java sea,
K, and P are greai, an approximative determination of X, is possible,
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whilst for that of the small tide P the circumstances will be un-
favourable always and everywhere.

9. In a recent publication *) Prof. HeckEr has made an investigation
of the influence of forces generating tides on two horizontal pendu-
lums set up for this aim in a pit so that the influence of changes
in temperature was reduced to & minimum.

The result of this investigation surpasses the expectations about
the possibility of such a determination of disturbances of gravity
caused by celestial bodies which were until a short time ago decidedly
unfavourable.

The two instruments are not of equal value; the pendulum set
up in an azimuth of 222° proves to be a much better instrument
than the other; the results obtained with the best pendulum are,
expressed in deviations of an equivalent vertical pendulum in are
seconds
Calculated 0".00922 cos (2 t — 305°.5)

Observed 07.00622 cos (2 ¢t — 285°.4)

Calculated 0".00399 cos (2 ¢t — 305°.5)
S: | Observed  07.00244 cos (2 ¢ — 273°.6)

Deviations in the sense of the movement of the hand of a time-
piece are reckoned positive for this instrument.

Heckrr concludes from {his that the earth deforms itself under the
influence of the forces of the tides and that its rigidity or resistance
against deformation is about equal to that of a steel sphere. This
result is in accordance with the conclusions drawn from the variation
of the velocity of propagation of the first forerunners of a seismic
wave (longitudival vibration) from 7 to 13 K. M. and of the second
forerunners (transversal vibration) from 4 to 7 K. M. with the depth
of the layers passed through and likewise with the fact that the
principal periodical oscillation of the geographical latitude does not
take place in a period‘of 306 d. (Euvirr) but of 427 d. (CraNDLER),
from which would ensue a still greater resistance against deformation,
namely about twice that of steel.

In the last chapter Hrckzr discusses in short the possibility to
deduce from the data the influence of the partial tidal force X,
diurnal periodical with sidereal time; here however he is checked
by the above mentioned difficulty that evidently there exists in the

diurnal periodic movement ,S,, (Table I) not of astronomical origin,
an annual variation.

9

1) O. Hrcker. Beobachtungen an Horizontalpendeln iiber die Deformation des
Erdkérpers unter dem Einfluss von Sonne und Mond. Veroffent! des Kén. Preuss.
Geod, Inst, Neue Folge, no. 82, 1907.
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He therefore regards an arrangement according to sidereal time
not recompensatory and from a proof taken by shifting of the monthly
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means he concludes:

“Immerhin konnen wir aber aus den angefthrten Werten ent-
nehmen, dass die Amplitude einer etwa vorhandenen Sternzeitwelle

nur sehr gering sein kann”.

TABLE 1.

v

Diurnal inequality in the movement of the pendulum No 1.

Commencement of time: Midday. M. E. time.

S

January 0".0021 cos (f— 270.0) }~ 0".0029 cos (2 £— 921°9
February 65 249.4 43 307.4
March a7 274.7 52 300.0
Aprit 142 260.7 35 281.6
May 153 254.6 20 249.8
June 196 242.0 7 164.0
July 190 244 .4 15 165.1
August 188 246.5 19 244.8
September 208 234.0 ] 250.7
October 165 233.4 4 259.7
NO\{ember 137 231.5 29 962.1
December 34 259.7 25 319.3
Year 0".01296 cos (£—245".4) 4~ 0".00244 cos (2¢ — 2717 5)

In consequence of this discussion we can remark: 1. that for an
accurate calculation of the sidereal tides an arrangement according
to sidereal time, proper or improper, is unnecessary, so that little
trouble is attached to it, and 2 that the influence of those sidereal

tides cannot be

Besides ihe sideveal-time solar-lunar tide proper K, also the solar tide
P appears which moves with respect to the mean solar time in the
same way as sidereal time but in an opposite sense.

s0 insignificant.

The angular velocity of K, is:
15° 4 0°.04107 an hour

that of P:

15° — 0°.04107
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The theoretic coefficient of importance') expressed in the mean
amplitude of M, as unity is
for K, : 0.58
for P: 0.19
so that yearly twice the two tides strengthen each other, namely in
June and in December, when the relative amplitude is: 0.77, whilst
in March and in September it comes to: 0.39.

There must therefore be, even though the meteorological tide .S,
were constant during the whole year, a considerable annual variation
in the diurnal inequality.

Although during the period under treatmeni the lunar declination
was particularly small and the circumstances therefore were un-
favourable for the determination of the constants of the sidereal tides,
yet the theoretical amplitude of K, expressed in deviations of the
vertical pendulum, amounts for Potsdam to:

0".0050
whilst the amplitude of P is in square numbers :
0".0020

The amplitude of the annual variation in the diwrnal mequality
must therefore be about:

0".0070
i.e. almost twice that in the principal solar tide S, :
0".0040.

From the amplitudes of the diurnal movement of Table I is
‘evident that the amplitude of the annual variation :

v 196—384
June—December —= — = 0".0081

differs but little from the theoretical value, so that we have every reason
to make an attempt for an accurate determination of the constants,
which promises to lead, at all events for the tide K&, to satis-
factory results.

The value of such an investigation is not so much to be found
in the determination itself as in the fact that, if the investigation is
continued over several years so that the wregularities of meteoro-
logical origin have disappeared, we shall be able to correct the
monthly means of the diurnal inequality for the influence of the
astronomical tides, in order to obtain in this way accurate series of
numbers from which the nature and the origin of the S, tide can
be studied and deduced.

Y) Sir Georee Darwiw. Scientific papers, Cambridge. 1907, vol. 1. p 25,

)
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3. The amplitude of a vertical pendulum under the influence of
a celestial body can be represented by the expression -
Hpqsin2§,
§ = distance of zenith, .
H — general coefficient or greatest amplitude which the celestial
body could effect on a place situated under the equator with a

declination zero:

3 206265/

Expressed in arc seconds H is for the moon = 3 X 2

H forthesun = 0.4604 H,

=0."01737,

if we put:

f==81.4 = quotient of mass of earth by mass of moon.

% = 60.26 — mean distance from moon to earth, in earthradii.

p = geographical or local coefficient, dependent on the geogr. latitude
of the place of observation and the azimuth of the horizontal
pendulum; for the rest different for diurnal and semidiurnal
movements.

g = astronomical coefficient dependent on the inclination of the
orbit and its eccentricity.

If the general expression is developed in a series of terms, behaving
itself purély periodically, we find for the components in the direction .
of the meridian, N (north’ positive), and in a direction normal to it,
W (west positive), as far as the terms are concerned, in the direction
of sidereal time, inclusive of P, for the moon:

N=Hgncos2psinyr
W=—Hgusm@pcsyt @
¢ = geogr. latitude .
y = 15° 4 4 ==15°.04107 an hour
g = sin I cos I (I = inclination of orbit of moon)
and for the sun:
N=~Hcos2¢[gsinyt — ¢ sin(y —27) 1] o
W = H'sin ¢ [— gs cos yT -+ ¢ cos (y — 2 1) 7] - )

The deviation of a horizontal pendulum set up in an azimuth
180° 4 @ is:
— WV sin a + W cos a)
If we pat:
— sin ¢ 00S & == P stn Y
— ¢cos 2 ¢ stn & = P cos ¥,
then for Potsdam : \
¢ = 52° 28/, o= 42°
p = 0.6129, y = 286°.15, ¢ = 0.4127.
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For the period treated (Dec. 1902—April 1905) holds:
I—=18°3%, » = (°.31
with which we find with the aid of the wellknown tables of
BoreEn for the astron. coefficient of the K, tide composed of (1)
and (2) ‘
q' = 0.4732,

from which follows for the theoretical value

K, = 0".005037, P =10".001869

4. Already 15 years ago I have pointed out in ‘“Studién over
Getijden in den Indischen Archipel”, that for the determination of
the constants of the tides X, P and K, the trouble of an arrange-
ment of the hourvalues according to the angular velocities of these tides
is superfluous and that we can deduce these constants with equal
accuracy and little labour directly out of the monthly means.
The application of this method has furnished good resuits not only
for the Indian tides but also for the determination of the tidal
constants on the Dutch coasts where all three tides are very
small.*) Hspecially if as in this case hour-observations are at hand,
the calculation is exceedingly simple, for the diurnal variation can
be represented in its variability in {he course of the year with great
approximation by the expression:

S, cos (15t — C,) + K, cos (15t — p, + 302) + Peos (15t — 9, — 30z), . (3)

where

b=1—V, , Vu:ko——v'—g:204°.71,

by=x— V', V'o_—_~/lo+% = 155°16;

hy = length of the sun at the commencement of the time (epoch)
(294°.84) i.e. in this case January 16; »' is a small correction,
caused by the inclination of the orbit of the moon with respect to
the ecliptic. It is clear that the inaccuracies committed here, namely
1 the angular velocities holding for one day being all taken equal
instead of respectively :

15° , 15°4-9 , 15°—7q
And 2 the monthly means being regarded as 12 equidistant points,

can have no perceptible influence on the result of the calculation.
Omiiting the first term we can bring (8) into the form :

1) Etudes des phénoménes de marée sur les cotes néerlandaises 1. Utrecht, 1904,

W [ R
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cos 151 (K, cosp, + Pcosp,)cos 30 &
+ (K, sinp, — Psintp,)sin 30 2

(K, sin 1, + Psinp,)cos 80 w:l

T sin 151 l:—— (K, cos P, — Pcosp,)sin 80 2
If we put the formula for the diurnal inequality of Table I into
the form :

Acos 15 ¢t - Bsin 15 ¢,

and subtract from the values 4 and B the annual means A’ and 5’

and then again represent the differences formed in this way by :
A— A =PRcos8) a4 Qsin 30z
B—B =Rcws30z -+ Qsin30x

we obtain the equations :

K, cosp, 4 Pcosp, = R
K, sinp, — Psinp, = Q L . 6
K, sinp, + Psinp, =R
~— K, cosp, -+ Peosp, = Q'
from which the four unknown quantities can be solved; then the
amplitudes must be augmented, monthly means having been used,
by multiplication by the factor: .
4

—_— — 1.0115
27 12 sin 15° 1

and to the values ¥, and w, the astronomical arguments V', and
V’, must be added.

In all cases in which the S, tide is so small that even if it is
submitted to an annual variation it can only exercise an influence
small with respect to the amplitudes of X, and /P, this simple
method leads to good results. )

If S, is mot small, we can start from the assumption that land-
and seawind are different in winter and summer, but that they
can be regarded as constant during each of the seasons. We can
then eliminate out of the six summer months of the differences (4)
the value S, cos(15:—C,) and likewise out of the six winter-diffe-
rences, and then we can calculate out of the equations the four
unknown quantities. The combinations of the different monthly means
necessary for this are of course less favourable than in the former
case, but this disadvantage can be compensated by taking a great
pumber of years together which is necessary for every method
when we have to deal with disturbances of a meteorological nature.
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5 Neither of the two methods, which can be used when we
calculate watertides, is applicable to the case under discussion; as
evidently the tide S, is great we may not assume that the annual
variation of S, will be small with respect to the quantities to be
found. Neijther is there a reason to assume that in winter or in
summer, regarded separately, S, will be fairly constant, as we are
still quite uncertain about the natnure and the origin of it.

Another favourable circumstance however, not appearing for
watertides, makes in this case an approximative solution possible.

For when X, appears in the monthly means with a certain value
K and an argument y,, then we can say almost with certainty that
the tide P will make its appearance with an amplitude:

P =K,

in which @ is the theoretic proportion of P to X :
a=—0.371.
Furthermore we can state with equal probability
g Ko =1 + + + + « o+ « - . (6)
Thus out of the equations (4) two unknown quantities disappear
and they can be replaced by two others characterizing S, more
closely.
We represent this tide by the form:
{8 4+ Lcos (80 2 ~ m)}cos (15¢ — ()
and so we assume that the amplitude is submitied to an annual
variation, but that C, remains constant, which, if this phenomenon
finds its orgin in the radiation of the sun, cannot be far from the
truth.
Furthermore follows from (6)-
P, =1, -+ Vo — V'o =, +a= Y + 49°.55.
Instead of the formulae (5) we get the four equations

L cos C cos m - ICcosp, -+ Kacos (@, + a) = R
L cos C sinm + K sinp, — Kasin (¢, + a) = Q )
Lsin Ccosm + Ksinp, + Kasin (¢, - a) =R T

L an C sin m — K cos p, + Kacos (P, + ) = Q'

With
R= 42.22 R = 69.94
Q= 34.98 Q= 0.96
C = 245°.5
we find from this:
K, =512 L =463
P, == 44°.5 m = 248°,7
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or, after applying the augmenting factor B, and the astronomicaj
argument, as the result of this investigation: -

.

Jre Calculated 0".00504 cos (¢ — 286°.2)
' | Observed 0".00518 cos (¢ — 249°.2)
Calculated 0".00187 cos (t — 286°.2)
Observed 0".00192 cos (¢ — 249°.2)

and then for the monthly means of the diurnal inequality the
expression -
0".01296 {1 4~ 0.361 cos (80 & — 248°.7)} cos (15 ¢ — 245°.5)

6. Just as for watertides the superposition of the partial tides
S, and K, causes a maximum in March and September (the equi-
noctial tides known to every mariner) and a minimum in January
and July, here too such a semi-annual variation must appear in the
expressions for the semi-diurnal inequality. Indeed this variation makes
its appearance clearly at first sight in the amplitudes of Table I.

If we assume that the S, tide is constant during the whole year,
then the general expression for the monthly means is:

S, cos (30 t — C,) + K, cos (30 ¢ — Cor + 60)
where
Cor=y—V, , Vi=2h —2v".

We have then to do nothing but to analyse the expressions of
Table I, after subtraction of the mean for the whole year, into the
components:

Acos30t-+ Bsin30t ,

A = cos (60 £ — Cap)

B = — sin (60 2 — Cz)

If we bring through the differences 4 and B doubly-periodic
curves, we obtain for each of the quantities to be found:

K, sin Co, and K,cosCor. . . . . . . (8
two values which must be about equal and from which we deduce,
after applying the augmenting factor

y = ———— = 1.0472
6 sin 30
and the astronomical argument
V,=2h, — 29" =229°.68 — 0°.25,
the quantities K, and y.
The astronomical coefficient calculated according to the tables of

BORGEN is:
g = 0.0878

and if we put

\ -

-10 -
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-— sin @ cos & = p sin y,
U P COS @ Sin & = P COS 3
we then find for the theoretical value:
K,=10".00085 , y=305°5.
From the data of Table I we find, however, for the values (8)
quantities, which are equal in sign but which differ, for the rest
pretty much, namely:

97—

K, cos Cop, = ; 0.77 —
, 410 =R
K, sin Cop = 11634_Q'

So here too we must assume that ,S, is not constant and that
there is a semi-annual variation in the semi-diurnal inequality which
indeed is immediately evident from the amplitudes of Table I on
account of the inequality of the two maxima and minima.

If, as above, we represent the S, tide by

{S, -+ L cos (60 & — m)} cos (30 ¢ — C)
we then find out of the four equations
L cos C cosm -+ K, cos Cop, = R
Lcos Csinm + K, sin Cop = Q
Lsin C cosm -|- K, sin Cgp = R’
L sin C sinm — K, cos Cop, = ('
as the result of the investigation:
Calculated 0".00085 cos (2 ¢ — 305".5)
Observed 0".00070 cos (2 ¢ — 260°.6)
and for the semi-diurnal inequality :
0".00244 {1 -+ 0.574 cos (60 & — 158°.6)} cos (3 ¢ — 277°.7)

This result justifies the expectation that if monthly means of the
diurnal variation are available calculated over a greater number of
years and by preference over years in which the declination of the
moon is great, also the calculation of the small tide X, can be made
with all the looked for accuracy. For, at the greatest declination of
the moon the amplitude of X, is almost twice greater than at the
smallest.

Out of the munthly means of the diurnal variation for the second
horizontal pendulum set up at Potsdam these sidereal tides do not
admit of a deduction. The continual displacements of the zero point,
considerable for both instruments, surpass for this instrument all
the small regular movements entirely.

A determination of the siderial tides might thus serve as a
criterion for the quality of seismic instruments.
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