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Physics. — “On the solid state”’ IV. By Mr. J. J. vaAx Laar. Com-
municated by Prof. H. A. Lormntz.

13. TIn the paper in the Arch. Teyler already cited a few times, =

I derived in § 6 (p. 34—35) the formula for the pressure of coexistence
of two arbitrary phases (liquid-vapour, liquid-solid), when association
is assumed in both phases.

I will just state the derivation of this fundamental formula here
once more.

For equilibrium between two coexisting phases the moleenlar
thermodynamic potentials of the components must be the same in
the two phases. If these components are distingmshed by fhe indices
1 (complex molecules) and 2 (simple molecules), we have eg. in
our case

()ng = (y)sokd - - - - .+ « . . (@)

On account of the relation of equilibrinm p, = 2 p, in both phases

naturally (@,)ug = (#.)sond. Now
02

yl—:Cl—&:—{—RTlogcl,. N (2]
1

in which (see I, p. 767 and 768)
Q' = | pdv — pv — RT Zn, . log Zn,,

or

Q= Zn, . Rﬂlog —{——-——-—pv,. N (4]

when we make use of VAN DER WAALS equation of state:

__2n,.RT a
P="0 vt
!
So we find for —-:
On,
a-., b ‘-an R.l' Qa
=BT log— —RP —— 2" p + 2
on, 0'(]2' v—> bt v

ob
because — == 0, follows from b =mn,b, + 2,0, while from
7,

Oa
a=n2a, 4 2n,n, 0,4 nta, is found Fv =2, a, 4 20, @, =
1

= (2n, 4 n,) a,, while ¢, is evidently =1/,a, (cf. also I, p. 769).
: G
Fuarther 272, 42, =2(1 —§) 4 28=2, hence finally a—a = 2,

n

e
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v . . .
3 all neutralize each other in consequence of the
7,

equation of state. -
We can now write for the expression found:

0L —b RT 2
— = RT log T l:v +ng (bl—b,)] —f——:—l—,

The terms with

on, Zn, v—b
because (v —b)+2n,. b — (n,D,+n,0,) + (n, +0,)b, = v-+n, (b,—b,).
17
If we still substitute = + / - , we get:
>n, v—b
0L v—b P9y 2a, RT
— = RTlog —— — ———n, (b, —
0n, %9 2, Zn, s PR ¢, )
or
CYe v—b  po 6 1428 —b,
=RT — T .
o, byieTire T o 1as PR L @

as a=a, (see I, p. 769), Zn, =14 B and =», = 2[3,
I = 0, this passes into
0%

2 a
— = RT'l —0) —pv + —
o, og (v—0) — pv 2

i.e. the expression (¢) for &', because then there is only one kind
!

of molecules (viz. complex ones), and hence P must be = &,

nl
when Zn, =14+ 3=1.
Now we find for the relation of equilibrium () in consequence
of (b) and (d), as the function of the temperature C, disappears:

RTlogv’—b’l—l—B _p( o . vﬂ)_}_a(l_’ 1428 1 1+25)

b 14g  T\I+F I+ o 11§ v 1ip

- B’ B . 1 Bl"I"B
_.2RT(61—1>2)(;,T:5:“;‘__1,)~R1 log (H—B’l B) ;

n 1
because ¢, = El_ — 1= The accented quantities refer to the solid

1§
RT

—b
phase. If we now substitute i for , we find finally after

148 P+

division by RT"

g DX _ P (_1’;__”__)__“_(£1+2ﬁ'_l1+23 +
V=T (75 T5) "R T~ v 1)

g B 1—§ 148
a0 (=) + (5 15)

(16)



;

-

(135)

[For the coexistence liquid-vapour, instead of liquid-solid, this
relation would pass into

e po L eh1H o hb log(l-ﬁ'lﬂf)

p (IR ETTRFILE P s 17816

for sufficiently low temperatures, when v (liquid) may be neglected

log

1 1 1
by the side of ¥’ (vapour), — by the side of —, and i by the
v v v—

1 -
side of P + ¢/, then being = ¢/, and p + %/,= then being = p;
v—

or it may pass into

tog 1 1426 0 — Q4B 1:@'1“"__3)
I TRT1:B v—b I\i+gi—s)
o b,—b, _ v-(1-8)b:-280,-24(0,-b,) _
because m?_1 and 1—28 Py 3 =
_v—(1+8)5,
T wv—=b )

If now moreover 8 =0, 8’ =0, so that we have to deal with a
simple substance, this () = b,) becomes:
4 a/ v a/v
log P —'ﬁJ{‘ 19
vaN DErR Waars’ well-known relation for the pressure of coexistence,
as viz. 9/ may be expressed in p, and ¢/, in 7, (see TrviER,
p. 36—37)].

14. Let us return to the coexistence liquid-solid. The formula
(16) holding for this might also have been found from the relation:
v’ v

1 1 A+BRT
=3 ﬁdv_v'—vf( v—b —F)dv’
v

v

in which now the quantity 8 must be assumed to be variable in
the integration between » and ¢'. But this course would have been
far more lengthy, because then we should also have had to make
use of the relation of equilibrium (2) [see I, p. 770]. We have,
however, convinced ourselves that the result, as might be expected,
is identical with (16).

As v and v may be eliminated by means of the equation of state,
B and 3 by means of the relation of equilibrium (2), the derived
velation (16) is really the required relation p = f(7'). But unfortu-
nately these eliminations cannot really be carried out, so that we
have to restrict ourselves to deriving the value of the pressure of
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coexislence p in the different points of the curve SM (see fig. 6 of
the Plate) from the relation (16) in connection with (2) and the
equation of state.
With regard to 7'==10, we have already found by another way
in II (see p. 35), that then
Yo a
T = = . . . . . (0
( 0) P =T8T (10)
For in the relation (2) on p. 26, viz.
(p+a/) (—Lb)—g,

g ot RT
1~_‘32_p_}:a/02 < . [}

B will alwayss be =1 for 77=0, when (p - %) (— LD) > ¢,
(portion FE of fig. 5 on the plate of III; » is then constantly
= 20,). For then the second member =0 X ¢° = . If on the
other hand (p 4 %2 (—AD) < ¢, (part D(, where v is constautly
—=b,; and part OB, where v increases from 0, to o), 8 will always
be = 0 in consequence of 0 X ¢=* = 0.

Along the portion ZD of the isotherm, where 3 changes from 1
to 0 with variable v, (p - 9/.2){ —¢q, must necessarily be =0,
for else B would have to be either =1 or = 0 according to the
above. It 15 however easy to see, that the mentioned quantity with

A
respect to 7" must be of the order RT log — for then
T

g _GTH-I P B A
1= ptofe gl pp-0f”

which now remains finite for 7= 0, and may yield different
values of g for different values of ». In the second member we have

p o/ = —Z-b along the mentioned part ZD, so that p- o/

has a constant value, and for every value of v corresponds a
definite value of p. Formula (10) follows then immediately from

af 1 .
Do = fpdv And as i L. +ﬁ, v—0 will then be per-

v'—w "RT T~ u—b
manently ——-O hence v =0 =10, + 8 A b, so that # may be found
from g= b (&ee also the 2nd footnote on p.120 of ITI). By com-

parison of thls lattel expression for g with the above one the value
of 2, left undetermined just now, might be easily found.
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15 W oceed ider th ion for &= 2F
. e now proceed to consider the expression for T~ TATV
more closely.
The general equalion for AV may be found from
AV=v —v'=(00—8)+[(v —b) — (¢ — 0]

In this b = b, + BAb, b’ = b, + B'Ab, hence b—b' =(B—8") Ab,
so that we get:

. 148 1+4+8" 7
Now as p—@' is always positive (we indicated the phase with the
slightest value of B, ie. the solid phase, by accented quantities),
while — Ad is supposed to be positive, — AV will have its greatest
positwe value at =0, viz. — Ab. For then 8— ' has its maximum
14-8 148
pFofn T ptafve’

value 1 —0, and the term with R7, in which

will be as small as possible. *)
For AE we may write (see (12) on p. 36 of II):

AB= (—P)(q, + vET) + (p n ~) AV,
or after gubstitution of the value of AV found:
- N,
AE = (8—B) yRT + (8—) l:qo — (10 + ;av—,) (— Ab)] +

i) 148 148"
vv 2/ p—l»—a/vlz

Now we saw above that go-(p—}—%) (-4b), ie. q,- ( o“l*%)(— Ab),

when p, is lhe pressure of coexistence at 7’=0, and v, is the
“third” volume on the part BD (cf. also II, p. 35—386), is of the ovder

— (BT log 2 — (y + 1)RT log T),

. (18)

+RT(19+

i.e. of the order
al BT log T,
so that the ahove expression for AE must be of the order
dT 4 8Tlog T =T (¢ + Blog T)
in the neighbourhood of 7'=0. So it follows from this that for
T=0 also AE=0; that for T>>0 AL begomes at first negative

) For in practice v and v will differ very litlle, whereas 8 will mostly be
considerably greater than §' (cf. also I, p. 39 footnote, where we demonsirated
on the same ground that ¥ — 0 is always > v’ — b').

10
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dAE) - )
(for —(-d-:—r-) = (a¢' + B) -+ B log T, which has the value — oo for 7'=0,

as 3 is always positive); then reaches a maaximum negative value

!
(evidently when log T = — “_Bf)’ increases again for higher

r

values of 7, becomes again =0 (When log T = — %) , and then

remains always positive, and that increasing, because the inerease of
a

7 and that of ¢, — (p—}———,) (— AD) will exceed the decrease of
v

B—p8' in consequence of the continnal decrease of the pressure of
coexistence p.
In the expression
dp AL
aT —  T(—AV)

AE

- will now be of the order o -+ 8log T in the neighbourhood of
d

T =0, so that then _E}{% is also of the order « 4~ Blog T, because

d
— AV remains finite. In other words : d—z; is =+ w for T=0;

U

becomes = 0 for log T = —-g—, where AFX becomes = 0 for the

second time (see above), and will then become negative and continue
a -

8
AL continues to increase (see above), while we have already seen
that — AV is a quantity decreasing with 7.

to decrease, because past the minimum of AE (for log T=—

d .
So this course of ?ZBT gives for the line SM (coexistence liquid-

solid) for megatieve values of Ab and AV a course as represenied
in Fig. 6 of the plate. (S is the triple-point). Ilence the line SMN
will fouch the pressure axis in the point N (7'=0), because there
7}
2 —w. Y
ar
1) Disregarding the logarithmical order of A%, it has been erroneously derived
in I1, p. 36 [formule (12¢) and (13)] that the limiting value of AE for T=0
R

. dp .
would be yRT, and therefore that of 7T would have been given by ~ AW
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d . .
In the point S dﬁT can even become positive, viz. when — AV

becomes negative. This is e.g. the case when — Ab has only a skght

145 1+ﬁ']
P+ ptem
begins to prevail for higher values of 7'; in other words: when the
sign of »—v’ is no longer only given by the sign of 5 —&’. Tn
this case the line SM rums as indicated in fig. 7; ie. with a ver-
tical tangent in 4, where — AV changes from positive to negative.
Of course this point 4 may lie at very high pressure, so that it
seems that the line SM confinues to run to the right (which will
of course only be the case for Ad positive).

positive value, so that in (17) the term with BT [

16. It follows from the expression (10j of II p. 35, viz.
% a

—Ab w'’

which we have alveady discussed there, that for small values of g,
P, (the part ON at 7= 0) may become even 0 and negative. We
shall then have a course as indicated in the figures 8—11.

The solid region contracts more and more, when p, decreases. At
the same time the triple point S will move more and more to the
absolute zero point O.

As soon as p, has become negative (fig. 9), there appear necessarily
two triple points S and §’, as the realisable pressure of coexistence
remains, of course, positive. So with sufficient lowering of the tem-
perature (the pressure remaining between that of M and S), we get
first into the solid region, but finally again into the liquid region.

The possibility of such a course has already been suggested by
Tammany (see inter alia Bakmuts Roozesoom, ‘“die heterogenen Gleich-
gewichte” I p. 83, fig. 9) — with this important difference however,
that Tammann supposes, besides a vertical tangent in 4 (see our fig. 7)
and a horizontal one in M, another vertical tangent in 4' and a
horizontal one in M’ (see fig. 12). Such a course, however, is

(T=0) p,=

so a finite negative value; whereas in reality the last limiting value is =+ .
But this error has had no further influence on what follows, as (12¢) and (13)
have no more been used.

That at first the value of p itself at T'=0 is increasing, appears from

00— (245 (—h8) =T + 8Ty T,

which is decreasing for 7'=0, while v’ then remains unchanged.

10¢
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impossible according to our above theoretical considerations, as for
T =0 always a pressure of coexistence exists (positive or negative).
The grounds on which TammanN thinks such a course possible, are
therefore theoretically not to be justified — as far as the points A’
and M’ are concerned.

Therefore Bsxmuis Roozesoom has substituted the “half” egg for
the “whole” egg of Tarmmann (see loc. cit. p. 93, fig. 10); but such
a course (see fig. 13 of the plate) too is incompatible with theory.

Bakmuis Roozesoom tried to explain with this diagram why in
many cases liquids do not crystallise, so that with lowering of the
temperature a continuous transition would take place from the
liquid into the amorphous glassy state, without this latler being
metastable.

But this phenomenon is also explained by our theqry. For with
sufficiently low value of ¢, p, becomes smaller and smaller, and
even with comparatively very low pressures the solid region (see
fig. 9, upper arrow) will no longer be reached. Finally the solid
region will quite descend below the line OX and afterwards below
the axis p=0 (see fig. 10 and 11), and we have a continuous liquid
region — viz. from the moment that the line NM touches the line
OS'SMK (fig. 10), in which then S and S will coincide.

Apart from the not accurately indicated course of the line SM
past the point M/, Tammany’s figure is therefore closer to the probable
truth (indicated by-our fig. 9) than Baknuis Roozesoom’s figure with
two pressures of coexistence in B and C at 77=0. In the latter’s
diagram (fig. 13) the solid state might sometimes be reached by
wncrease of pressure; with us, however (fig. 9), only by decrease of
pressure.

The absence of the solid state can now be ascribed {o four causes.

1. The liquid mass is already so viscous before the melting point
(lying on the line SM) is reached, that it passes into the amorphous
glassy state. In consequence of this the velocity of erystallisation is
so slight, when the melting point is reached, that no crystallisation
takes place, at least not immediately. Prof. Janeer writes me that
in such cases sometimes after a very long time devitrification lakes
place. So in this case we can do nothing but wait.

f

2. The melting point 75 reached in liquid state, but the pressure
(e.g. that of one atmosphere), is fo0 high (fig. 9, upper arrow). In
this case we might try slowly to cool the liquid in a closed glass
tube (so that at first it is quate filled with the liquid). The liquid is
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then continually under the pressure of the salurated vapour, so that
we reach the point S along the line KS.%)

3. The cooling has not been continued sufficiently long. For in
cases as in fig. 9 the triple point S lies mostly at very low tem-
peratures. Then, of course, only the cooling must be continued.
It is however to be feared then, that the case 1 occurs before the
line SM is reached.

4. There is no crystallized state (fig. 10 and 11). Then we may
wait very long before the amorphous glassy mass crystallizes.

(10 be continued).

Geology. — “Un oceanic deep-sea deposits of Central-Borneo”. By
Prof. G. A. F. MOLENGRAAFF.

In the year 1894 I discovered in the basin of the Upper Kapoewas
in Western Borneo®) cherts and hornstones, consisting almost entirely
of tests of Radiolaria, which I described as deep-sea deposits. Such
rocks are also known as Radiolarite.

The Radiolaria from these deposils were examined by Hivpe ®)
and in consequence the age of these rocks was determined as pre-
cretaceous, probably as jurassic.

The forwation, of which these Radiolarites form part, I named
the Danau-formation, after the large danaus or lakes of Western
Borneo, where this formation is well-developed and was first observed
by me. The Danau-formation there occupies a sirip of country of an
average breadth of 60—70 K.M. which is bordered o1 the north side
by older formations, namely of the old-slate-formation, while on the
souih side it disappears under younger tertiary sandstones and voleanic
products. The whole formation is strongly folded with an east-west
strike, and forms part of the Upper Kapoewas mountain range.

From the lake district I could follow this formation eastward as
far as the watershed between the Upper Kapoewas and the Upper

) Might it not be possible to try to make some of the many substances men-
tioned to me by Mr. Jareor cryslallise as e. g, several esters of organie acids,
amber-acid-nilvil, and others?

% G. A.F. Morcyaraarr. Geological explorations in Central Borneo. p p. 123 & 414,
Leiden 1902.

% G. J. Hior, ibidem, Appendix I
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