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that which is brought about the apex and the margin of the leaf
and on the leaf-surface as a result of the action of glands.

In many cuses the glands are originally mucilage-glands (Colle-
ieren, Keulenzotten, Trichomzotten) which secrete resin or balsam in
the lLud, as proved to be the case in Kerria, Sambucus, Corylus,
Ulmus, Syringa, Forsythia, but in other plants they are from the
beginning real water-glands: Philadelplus, Deutzia, Hydrangea,
Weigelia, ete.

Physics. — «“On the theory of the ZEmMaN-¢ffect in a direction
inclined to the lines of jforce.” By Prof. H. A. LoORENTZ.

(Communicated in the meeting of June 26, 1909)

§ 1. Certain phenomena observed by HALE in sun-spot spectra
have induced me to work out the theory of the Zrrman-effect on
the assumption that the direction of observation is oblique to the
lines of force, a problem that has already been treated by Voicr ),
but in which some details remained to be examined.

Our subject will be the “inverse” effect, to which the direct one
is intimately related, and we shall start from the fundamental equa-
tions in the form I have given them in a recent article in the
“Mathematische Encyklopddie” *), supposing the magnetic field to be
homogeneous and parallel to the axis of z.

We shall assume that the particles of the body through which
the light is propagated, unless they be magnetically isotropic (i. e.
of such a structure that a rotation of a particle in the field has no
influence on the frequency of its free vibrations) are turned by the
magnetic force in such a manner that a cerlain “axis” proper o each
particle takes the direction of the field. We shall further imagine
that each particle contains a cerlain number of electrons forming by
their arrangement some definite and regular configuration, and capable
of vibrating about their positions of equilibrium under the joint
influence of “quasi-elastic’” forces, of resistances and of the action
exerted by the external fleld. Thoagh, on account of the complexity
of its structure, the mode of motion of a particle may be far from
simple, we can easily treat it mathematically in a general way. This
is due to the circumstance that, under certain simplifying restrictions,

) W. Vowr, Weiteres zur Theorie der magneto-optischen Wirkungen, Ann,
Phys. I (1900), p. 389.

3 H. A. Lomenrsz, Theorie der magneto-optischen Phinomene, Encyklopidie
d. math, Wiss. V 22, p. 199,
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the electromagnetic action exerted by a particle is found to be wholly
determined by its electric moment. Therefore, in considering the
influence of a particle on the propagation of light, we may replace
it by a single electron, to which we may assign an arbitrarily chosen
charge e and whose displacements X, y, z have such values.that the
products ex, ey, ez are equal to the components of the electric
moment of the particle. This imaginary electron may be called the
“equivalent electron”.

If a particle were outside the magnetic field (but in the position
it really has in the field) and if it were free from resistances and
from the influence of the other particles, its electrons would be able
to vibrate in a number of definite modes. We shall suppose that,
in these circumstances, there are certain groups of “fundamental
vibrations”, of such a kind that all the vibrations belonging to one
and the same group have a common frequency n,, corresponding
to a definite spectral line. Whenever it is necessary, we shall
distinguish the different groups from each other by the indices
a,b,e,..., and we shall denote by £ the number of modes of
vibration in a group.

Let uws next suppose the magnetic field to be excited, without,
however, as yet introducing the resistances and the mutual actions
between the particles. Then, instead of any group consisting of %
modes of vibration with equal frequencies 7,, we shall bave £ modes
whose frequencies are unequal, all differing slightly from this original
common value. In order to distinguish these % modes, we shall
assign to each of them an index (x), which we shall write on the
right-hand side and at the top of the symbols relating to the mode
in question.

Now, in each of these fundamental vibrations that can go on in
the magnetic field under the circumstances just stated, the equivalent
electron will have a motion which, according to the theory of vibrating
systems, must be, generally speaking, a harmonic elliptic vibration.
It can be further specified, if we take into account the siates of
polarization observed in the Zpmman-effect. From these one can
infer that the path of the equivalent electron must be, either a
straight line in the direction of the field, or a circle whose plane is
at right angles to it. The index %, will be applied to those
fundamental modes for which the first case occurs, and similarly the
index #, to the second case; if we want to distinguish whether the
circular motion of the equivaleni electron is in the direction corre-
sponding to that of the lines of force, or in the opposile one, we
shall use the index #s4. or x,_. However, in order not to encumber

-
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our formulae with too many indices, we shall omit them whenever
this can be done without fear of confusion.

The states of motion =, always occyr in even number; in fact,
corresponding to each state xsy, there will be a state x#3_ whose
“frequency 7t lies at the same distance from 2, as n{»—), but on
the other side of it. The modes of motion x, are conjugate two by
two in the same way, with the exception, however, when 1 is odd,
of one of them, which has the original frequency n,.

The introduction of complex expressions, after the manner generally
followed in problems of this kind, will be found very convenient.
By this method one finds, for each mode of vibration, definute ratios
between the quantities represenling the componenis of the displace-
ments of the several clectrons from their positions of equilibrium.
These ratios determine what may be called the ‘“forms” of the
vibrations, and it is especially io be noticed that, whereas in a particle
subjected to the magnetic field only, the vibrations of the % modes
mentioned above have unequal frequencies, a periodic external electrie
force. can produce forced vibrations in these different modes, all
taking place with the period of the force iiself.

x =
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§ 2. This case of an impressed electric force occurs when a ray
of homogeneons light is propagated through the system, so that, if
n is uts frequency, the complex expressions for the dependent vaviables
all contain the factor ¢™. While a particle is vibrating, in all its
different modes at the same time, under the influence of the alter-
nating electric force € existing in the beam of light, it has an electric
moment whose components are

Py == €X, Py =¢eYy, . =€z, ‘
and the body is therefore the seat of an electric polarization (eleciric
moment per unit of volume) for which we may write
P =Ny,
where N is the number of particles in unit of volume.
The equations of motion of a particle lead to the values?)

P = Qo (€ + Z'@y) + Qe (& — i@,'/)’

% = Q2+ (@y —_ ZQT) + Q- (@]/ + idy),

)]-‘:' = Ql @:,
the coefficients @, (oy, Q:— indicating to what amount the vibrations
in the modes x;, %oy, %o contribute 1o the polarization . The first
of thegse coefficients is given by
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1) Cf. Math. Encykl. V 22, § 47.
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0)
Q=—8= B

ab. » 7%2 . .
(n + ol (n—n{?)) — ing

and for Qoy and Qs we have similar expressions, containing sums
which relate to the modes of motion %5y and #,_. The symbols
2, =, Z serve to indicate sums that must be extended either
By Hyy Ay

over the modes z;, or over the modes #:4 or x:— of one of the
groups @, b,..., and all these groups have their share in the sums

S. The coefticient g, which we shall suppose to have the same value
ab.

for all terms belonging to onc and the same group, represents the
influence of the resistances, and may be regarded as a measure of
the breadth of the absorption lines. As to the quantities B(), these
are all real and positive; their value depends on the structure of
the particles and is the same for two conjugate vibrations.

Let us denote by D the dielectric displacement, so that

D=C+P, . . . . . ...
and let us abbreviate by putting

T )

14 Qi =38,
1+ Q2++Q2—:‘821
Qo — Qo— = R.

Then we have the relations
D, =% € +iRE,

Dy=8€—iRE, }. . . . . . . . (3
D, =8 €,
which are to be combined with the general equations of the electro-
magnetic field

1.
rot.@:—cg,........@)

1.
- 7'0t€=——‘;f?. . . .« . - (5)

In these latter formulae £ denotes the magnetic force that belongs
to the beam of light and alternates with its frequency.

§ 3. We shall examine the propagation of plane waves in a
direction lying in the plane azz, and making a positive sharp angle
9 with the axis of z. Let the variable quantities which determine
the state of the system contain the coordinates and the time only
in the factor
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in t—g‘Q_ =cos S in 9)
81 [ - (2cosS v sin ] o (6)
The quantity (u), which we shall have to determine further on, may
properly be called the complex index of refraction, and if

ich

(y,):y,-—;, N (8

p will be the real index of refraction, and /% the index of absorption,
the amplitude diminishing in the ratio of 1 to ¢—* when a distance
[ is travelled over.
From (5) we infer
Dz == — () €, cos I,
Dy = () (€ cos & — €. sin 9),
9. = () €y sin I,
and then from (4)
D, = (1)? (€, cos & — &, sin F) cos I,
Dy = () &, )
D= — () (€ cos 9 — C.sin ) sinD.

If here we substitute the values (3), and if we put

(W' _
E~1+§7--------(9)

n

s B _
E—-—l—l—’)’], —S—_Q, e v e e e v e (10)

2 2
we get the velations
€+ i8C =1 4 § (Cacos & — €. sinI)cos I,
€ —e8C =01+ §)Q-’y,
QA4+NE.=— (1 + &) (Ezcos ¥ — €. sin ) sin I
Before proceeding further it will be well to turn the axes of z and
z in their plane over an angle 9, so that the second of them takes
the direction of the rays. Calling the new coordinates #’ and 2,
we have
Cp=Cpcos ¥+ Cysin ¥, € = _ Cprsin & —|\~ €. cos O,
by which our last three equations become
Cosin 9 4 1§ € = § €y cos Oy
— 25 (€yreos & 4 €sin 9) = § €,
A4 Creosd =(n— 8§ €y sin .
Finally, if the value of €., drawn from the third equation is
substituted in the first and the second, we get the following relations
between the transverse components of the electric force
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§E(L 4 ncos®9) — msin® 9} =i L (1 + n) €, cos I,

— 4L {(cos® & - ) — §sin? 9} Ep = E (1 + n) €, cos 9,
from which we deduce by eliminating these components

1+ noeos* ¥ —§(q — L) sin® I — L2 (cos? & + ) =0, . (12)

(11)

or
E+LYE—msin &+ E — ) A+ n)cos*d=10. . (18)

If the frequencies n,, the frequencies n¢) (such as they are under
the influence of the external magnetic field), the resistances ¢ and
the coefficients B™ are known, the quantities S, S,,  and, by (10),
~m and § will be wholly determined for any chosen value of the
frequency n. After having caleulated the value of § from equation
(12), we can deduce from it, first, by means of (9), the complex
index of refraction (u) and then, by means of (7), the real index of
rvefraction w and the index of absorption 4.

Moreover, when § has been found, the equations (11) give the ratio
between the components €, and €,, and also that between D, and
Dy, which has the same value, because, on account of (8),

Dy = (u)? Cyp.
The result is
Dy _B(e0s® P —Esin® 9 4 ) )
Dy~ T EA+ s
it determmes the state of polarization for any beam that can be
propagated in the manner specified by (6), for any “principal beam”,
as we shall say.

Whereas the component €, may very well be different from zero,
the equations (8) show that D, = 0, as might have been expected
beforehand. Hence, at every point of the system, the extremity of
the vector © describes an ellipse in a plane perpendicular to the
direction of propagation. This line, which shows us the state of
polarization of the principal beam, may be called its “characteristic
ellipse”; equation (14) determines, not only its shape and position,
but also the direction in which it is described.

It must further be noticed that, on account of the relation (2), the

(14)

3 ¢
ratio ?y— is equal to the ratios and -, the equality of which
(pxx gal @xl

has already been mentioned. Hence, remembering that the components
of P are proportional to those of the displacement of the equivalent
electron in a particle, one easily sees that, while a particle is made
to vibrate in its different modes of motion (in the way determined
by the sums in @i, Q4 and () the projection of the equivalent
electron on the wave-front moves in an ellipse of the same form
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and position as the characteristic ellipse, and deseribed in the same
direction. . , L

As (12) gives two values of §, there are #fwo principal beams,
differing from each other by their states of polarization, their velocities
of propagation and their indices of absorption. All these details depend
on the angle & and in general on the value chosen for the frequency n’

\

§ 4. The magnetic components belonging to one of the members
of a definite group a, 6, or ¢ ete. lie within a narvow strip of the
spectrum, which we shall hkewise denote by the letter a, b, or ¢
etc. We shall confine ourselves to the propagation of light belonging
to one of these parts, say to a, and we shall assume that the
distances of this part from the parts b, ¢ etc. are very.great in
comparison both with the breadth of ¢ and with that of b, ¢ ete.
On this assumption the part ‘

BY)

—_ >
“ (n—f—?"—) (n—n())—ing ‘
2

of (1), which relates to the group & for instance, may be simplified
by writing noe 1nstead of =z, ngy for each =), and

17ge — 70y

for each denominator. The result 1s
_2_]—_0_219(/).
nopp—"N"0g ”
The quantities Qo+, Q— may be treated in the same way and
we can repeat for the groups ¢, d,.. what we have done with .
If we assume that for each group?')
S BN =X B¥) 4+ T B =2 X B, . . (15)
1 ‘a4 ‘o— ‘24
the parts contributed by the groups &, ¢, .. taken together, to the
quantities Q,, Qoy, Qo— may be represented by s, 4s, &5, where s
is a real quantity, constant through the region a. As for the parts
due to the group «, in these we may replace every demominator by
2n, (n—nl) —in,g, v
understanding by no the value no.. We shall simplify.still further by
assuming that the group « is a magnetic triplet, so that it comprises
but one mode of vibration x;, one mode %24 and one x»—. The
frequencies of the free vibrations in these modes are
.nl:no, nop=mn, +v, mp—=n,—», . . . (16)

) See § 51 of the Article in the Math, Encykl. cited above.
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where » has a value proportional to the strength of the field. More-
over, if the relation (15) is supposed also to hold for the group «,
we may put

B(”2+) _ gl _

—_— 0 *

-
B( > =2an, ,
with a positive constant «, so that we find

2a
Q=s ——2(7&—_%):@ s
o
—-1g——°
Gy =3s 2(n—no ) —ig ’
Q-=4s— -

A(n—ng_)—ig

By this the values of S,, S, R,  and § have likewise become known.
It is easily seen thatl 4- s =g,* when g, is the real index of refraction
that would be found for » ==, if the particles were not put in motion
in the modes of the group @, but only in those of the groups &, ¢, . . .
If, finally, we put

a=u'8,
B n—m)tig an
o 2(”"—”1)—7:9' o 4("'—”'1)2'{’92 ’
voy = B 2(n—ngy) +ig o — 2(n——912__)—|—z'g 18)
S TR N i O
we get
2 ——2
e e 1)
1—(ug-—+ua-) -
[=_ 22T R 1)

1—(uogptw) '
and, after having calculated § by means of (12),
@)=l — (s + ) 1A+ . . .. @)
In the large majority of cases the absorption, even at the place
in the spectrum where it is strongest, is very feeble along a distance
of a wave-length. Consequently, the quantities % are very much
smaller than 1. Equations (19) and (20) show that %, § are very
small, and by (12) § is so likewise, so that (19), (20) and (21) may
be written *)
N = wof + to— — 2y,
E=u  — U2}y

W=p, [1—Zor +u)+38. . . . @

1) Many of Voier’s equations are free from these approximations. See also § 11 below,
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§ 5. By putting 4 =20 or }x, we areled back to the well known
theory of the Zreman-effect for directions parallel or perpendicular to
the lines of force. Indeed, from (13) we deduce for the first case

E==+C. . . . . . . .. (23
and for the second
§=—8 or §=1.
Further, when 9 =0, we have by (14)
D, ,
:D; =1

so that in this case, whatever be the Value of n, one of the principal
beams, corresponding to the upper sign, is characterized by a left-
handed, and the other by a right-handed circular polarization. This
will require no further explanation. We may, however, say some
words about the rotation of the plane of polarization that is observed
along the lines of force, and especially about its amount forn—=mn,.
In this case

) — 2pv4-1dg 2v 419
i, = L'q—, Ua :B '—4-';2—_[——9—2', 1&2_:54—‘”2—_1_—92, . (24)
4B
= o (25)

Hence, according to the formulae (23) and (22), the complex index
of refraction is

. By 2 8v
— 1—
) “% T
for the left-handed beam, and
. By 28
)= 1— . —
(u-) uug ey 4v9+9,f

for the right-handed one.
Comparing these expressions with (7), we see that the two rays
are equally absorbed, the index of absorption being for both of them

Mt By

c(42* + ¢°)’
but that their real indices of refraction are unequal. Their difference
is given by

(26)

48
e g
and, corresponding {o if, there is a rotation of the plane of polari-
zation amounting to

ot — =

Yoo T

-10 -
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n R by 2 13 v
—_ Oy — —_— . .. (27

per unit of length. B

+ As for the case 9 = 4 =, it will suffice to mention here that the
two principal beams are rectilinearly polarized. For the one, whose
vibrations are parallel to the lines of force, the maximum of absorp-
tion, which occurs when 7 =—=n,, has ar/l intensity determined by

=" @)

9
For the other beam, whose vibrations are at right angles to the
lines of force, the absorption for n —mn, may be calculated by the

formula

_ S a9

§ 6. Let us now pass on to consider the propagation in a direction
making an angle ¥ with the lines of force. In doing so we shall,

: . . . . . 1
however, exclude cases in which this angle is very near O or g %

because .for these directions some terms which may in general be
omitted, might become of influence *).

When both sind and cos® are large in comparison with the
small quantities occurring in our calculations, formula (12) may be
replaced by

§—Ensin*d —L2c0s*F=0, . . . . . (30)
so that

1 1
§:—2~1]si7z21‘}i[/ansz’n“ﬂ—{—gzcos“'ﬁ. .. (81

At the same time (14) becomes
D, L cos O i
| d=—%?ﬁ......(m
We have, therefore, when the quantities relating to the two principal
beams are distinguished by the indices I and II,

(.'D,,) (Qy) _ Lreos?y
Dy )1\D¢ Ju~  E1ém’

or, on acecount of (30),

Y NotWJthstandmu this, we shall find that, if we put $=0 or S —%7:, we

can deduce from some of our formulae results that are true for a propagation
along the lines of force or at right angles to these lines.

-11 -
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D, "\ D
vy (L = 1.
- (Qx’) I (Qx’)ﬂ

This means that one of the characteristic ellipses can be considered
as the reflected image of the other with respect to a line bisecting
the angle X’0Y, a rule which also applies to the direction of motion
in the two cases.

The imaginary parts of wi, us4, te—, on which the absorption
ultimately depends, have their maximum values for n = n, noy, 15,
and have diminished to a small part only of the maximum value,
when |n—n|, [p—ney| or |n—ns—| is equal to a moderate multiple
of the coefiicient g.

From this we can infer that, when v is sufficiently great in com-
parison with g, there will be three maxima of absorption at the
points of the spectrum determined by (16), and that, if » greatly
surpasses g, we have three absorption bands that are completely
separated, the body being practically transparent to rays of the
interlying wave-lengths. At a point where the imaginary part of one
of the quantities ui, uay, us— has its maximum value, both the
real and the imaginary parts of the two other quantities may, under
these circumstances, be neglected in comparison with that maximum
value. For n = nyy, for instance, we may put

wp =0 , wp=1:i— , w_=0,

N = ) E— N § —_— E ,
9
by which the roots of equation (30) become
§=—ncos® 9 and & =1 1
Choosing the first root, we find
Dy cosd’

1
() = 1, 1—?z‘£(1 4 cos2 9,
g

and if we take the second

Ay

N
() = u,

It appears from these results that only the first of the two principal
rays is absorbed, and that the axes of its characteristic ellipse are
parallel to OY and OX’, being to each other in the ratio of 1 to
cos 9; this ellipse can be considered as the projection on the wave-

= ¢ cos I, ~

Bl

1

-12 -
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front of a circle whose plane 15 at 11ght angles to the lines of force.
If we imagine a point moving along this circle in the direction in
which the equivalent electron moves in the mode of motion %a.,
the projection of this motion on the wave-front indicates the direction
in which the characteristic ellipse is described.

All this agrees with the elementary theory of the Zreman-effect
and similar remarks apply to the other outer component of the triplet.

§ 7. We shall now enter upon some more details concerning the
propagation of rays whose frequency n, corresponds to the middle
point of the ftriplet. In order not to exclude cases in which the
components of the triplet are not neatly separated or hardly so, we
shall not assume that v is much greater than g.

For n =mn, we may use the values (24) and (25), whereas

2 39)
N=——E& .« .« . v . . .
9
Hence, if we abbreviate by putting
vsin®d . "
;003'3‘_%'-’.. ()
we find from (31) and (32)
g—;—zqizm_gﬂ, : ... (3%)
and
g‘z’ 4:
E— i v cos D (36)

) .@_y i Frap T

In discussing these results we shall suppose the quantities » and g,
which are related to each other in the manner shown by (34), to
be positive *). ‘

The nature of the phenomena that will be observed greatly depends
on whether g is greater or less than 1. Both cases may occur. Indeed,
if we determine an angle 9, by the equation

v sin® &,

=1 . . < . . ...
g cos Py ' 37)

as we can always do, whatever be the value of 2, we shall have
9

q > or <1, according as 9 > or < 9.

1) The quantity v is positive when the magnetic field has the direction of the
positive axis of 2 (so that the direction of the rays makes a sharp angle with the
lines of force) and when, besides, the right- and left-handed circularly polarized
components of the spectral line in the longiiudinal Zeeman-effect have the ordinary
velative positions. The sign of v is changed both by an inversion of this relative
position and by an inversion of the field,

-13 -
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In the first case, i.e. when the angle between the ray and the
lines of force is not too small, the ratio (35) is real, namely
N, .
%;—:(j¢l/gﬂ—-1. B (1))
The vibrations of the two principal beams will therefore be
rectilinear, the angles ¥y and X7y which they make with the axis
OX’, and which we shall reckon positive in the direction from OX’

towards 07, being given by

1
sm2ly=sm 2=~ . . . . . . . (89
q

Both angles lie between O and 4. and the smaller of the two,
which we shall call %z, corresponds to the under sign in (38), so

that we may write
Qxl a1
— | = —1,
(Qy )] g+ Ve

Dy .
=) =qg—Vi¢g —1.
(Qa/ 11 7 ?

Equation (36) shows that § has now an imaginary value for both
principal beams, and, since the same is true of wey -+ us_, we see
from (22) and (7) that the two beams have the same real index
of refraction w, (and therefore the same velocity of propagation), but
different indices of absorption, namely

n S—
By :c(%—gﬁ%gﬁ 2(g+ V@ —D)veos9}, . . (40)
o nuB
)

It appears from this that the absorption is strongest for the beam
whose vibrations make the smaller angle with the lines of force.
This might have been expected on the ground of the elementary
theory of the Zsmran-effect.

The difference between the expressions ¢ + V/¢*—1and ¢ — V'g*—1
which occur in /A7 and Az increases as ¢ becomes greater. Now,

fg+2@—Vey—1Tvesd. . . (41)

if for a fixed value of —v—, the angle ¥ is made to approach the limit
g

$m, (34) shows that ¢ increases indefinitely. When it has become
very great, we may replace ¢ -+ V¢—1 by 29, and since g cos 9

v
tends towards the value —, as may be seen from (34), we have at
9

the limit
%y o B

hj = ——,
o9
23
Proceedings Royal Acad, Amsterdam, Vol, XIL

-14 -
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agreeing with the value (28) which we have given for a ray perpen-
dicular to the lines of force and having its vibrations along these

- 1
lines. At the same time ¢ — ¥/¢*—1 may be replaced by 37 80 that
g

hyr approaches the limit (29).
On the other hand, when & is made smaller and ultimately becomes
equal to ¥, (7 =1), both %; and /;; bave the limiting value )

]LGoyu[i‘ 21)0081‘}1—{-9, (9

¢ 4»* + ¢°
or, if (37) is taken into account,

_ nyp g 0F sin® &, + ¢°

T oo 4y’ fg*

This lies between the values (28) and (29).

As for the directions of the vibrations in the principal beams,

)

1
these are determined by %7=0 and ¥ = in the extreme cases

1
O = E 7w and & = &,. The former of these results was to be expected,

and the latter shows that for 9 =&, both directions coincide with
the line bisecting the angle X’'OY. We shall denote this line by UL.

§ 8. It appears from what precedes that for 9>, the state of
things is wholly different from the one existing when ¥ =0, which
is characterized by a circular polarization of the principal beams.
The transition between these phenomena is formed by those which
are ohserved when & < 9,.

In this case ¢ < 1, so that we may put

v stn® 9
7= 7 cos &
by which some of our formulae are simplified. The mode of vibration
of the principal beams is determined by the relation
Dy
Dy
following from (35), and we may therefore say that if we have at
some point of the system
.D,/ = aeéilni-+p),
with real a and p, the other component of the dielectric displacement
will be given by

= cos o,

—=etiv, . . . . . . . . (49

bz: = agt(ni +pLo),
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Taking the real parts of these expressions, namely
Dy=acos(ntt+pEtow) , Dy=acs(nt p)

we may conclude that both principal beams are elliptically polarized,
with the same characteristic ellipse, one of whose axes has the
direction of the line OL mentioned above. The difference between
the two beams lies merely in this, that the characteristic ellipses are
described in opposite directions. In order to see this, we have only
to observe that, if = is the angle between ® and OX',

: cos (nt -+ p)

a9t = ——:-
J cos (nt + p + o)’
1 dx nsin

costxdt :I:cos"' (nt+pxow)

In the beam to which the upper signs refer, the direction of the
motion corresponds to that of propagation. For this reason we shall
distinguish all quantities relating to it by the index - and those
which relate to the other beam by the index —.

We need hardly add that the characteristic ellipse coincides with
the straight line OL when 9 =9,, and that it becomes a circle
when & =0.

We can further deduce from (43), (36) and (22)

2Bv cos 9
y,+ = U, (1 + 4’”2——'_9281’)2 (D) ¥
(44)
28y cos 9
p—=mpn,(1 —Wsmw )
h+=h_=az%;%3(g+ 2v cos I cos w),

showing that, for » —=n, and for any direction between 9§ =43, and
9 =0, the two principal beams are equally absorbed, just like the
two circularly polarized beams in the extreme case 9 = (. The
common index of absorption, for which we shall henceforth write
h, diminishes as & increases; for 9 =+, (0 = 0) it takes the value
(42), and for 9 =0 (w == }a) the value (26). How far these extreme
values are different, depends on the relative magnitude of » and g.

§ 9. The difference between the velocities with which a left-handed
and a right-handed circularly polarized beam travel along the lines
of force, leads to the well known rotation of the plane of polarization.
On account of the unequality of the velocities of propagation deter-
mined by (44), there is a similar rotation in the interval from 9 =0
{o $=49,, with some difference in the details, however, owing to

23*

- R
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the fact that the principal beams are not circularly, but elliptically
polarized.
Let one of the beams be represented by_

—/L:'-{-i[no(t——w +p -{—w‘]
Dy=uae ¢ _

yl
i —/Lz'—[—é[nn(t——gt)—}—pil
D, =uae ¢ ,

and the other by similar expressions confaining p— instead of g4
and — o instead of - w. Or, in other terms, let us write for

one beam
~
Dy =a e cos |:n0 (t — M——t) +p -t m] )
¢

W
Dy = a et cos [no (t — M%) + p} )

and for the other

!
Dy—=ae cosl:no (t—-u—~) +p— w] R
¢
2
Dy = a e cos ':no (t — L) -+ p} .
¢

Then, compounding the two, and putting

!

nO
Y=y, (u— — 1),
we get

Dy = 20 ¢= 1 cos (2’ 4 ) cos I:”n t— ;L—:'; (- +p-) 2 + p.{ ,

Dy = 2a ¢ cos Pz cos [nu t— gﬁ(@q_ A - p] .

Hence, at any point 2/, the resultant vibration is rectilinear, and
its amplitude, considered as a vector, may be represented by

2 qeo—hs' A,
A being a vector in the wave frg)nt with the components
Np=cos (P = @) , Ay =cospz

It this vector is drawn from a fixed point, its extremily describes
an ellipse when 2z’ is made to increase continually. The corresponding
rotation of the plane of polarization is similar to the one observed
in more familiar cases inasmuoch as il goes on in a constant
direction, but when 2z’ is made to increase at a constant rate, the
velocily of the rotation is variable. lls changes ave determined by
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the rule that the vector 9 describes equal areas in equal times;
consequently, the velocity of rotation is greatest when the vibration
has the direction of the minor axis of the ellipse.

Let % be the angle between the vector U and the axis of #’. Then
the above formulae give the following value for the rotation of the
plane of polarization per unit of length

dw W sin w
d2' 14 cos w cos Q' +w)

(45)

an expression that is constant only for & = 0(w =4} a). For any
other value of the angle 9 we may also consider the mean value
of the rotation. As the vector % makes a complete revolution while

/

. 2 . .
2’ increases by —, we find for this mean rotation
W

7, ( ) o, 28w cos & sin o
=—=(u-—pp) =— —_ .

v 90 e ¢ 4r* 4 ¢*

It takes the value (27) for 9 =V (0 = i) and vanishes for =9, (v=0).
It must be noticed that, even in the neighbourhood of this latter

direction of propagation, whereas the mean rotation per unit of length

dot
becomes very small, the rotation 7o may very well have an appre-

1

ciable magnitnde, if the direction of vibration be properly chosen.
In fact, the maximum value of (45) is

P stn W n, 4P cos & cos® o
:l’)cot%w:—— .

1 — cos ¢ 4v* 4-g* '

and this can be of the same order of magnitude as (27), even for
a value of 9 very near 9, (w=20).

The ellipse described by the extremity of the vector U is similar
in form and position to the characteristic cilipse of which we have
spoken in § 8.

§ 10. Summing up the above results (and always confining our-
selves to the particular frequency 72,) we may say thatin the interval
between &=, and 9 =1} the phenomena are in the main of
the same kind as the true transverse Zprman-effect that is observed
at right angles to the lines of force; the principal beams present a
rectilinear polarization and differ from each other by their indices
of absorption, whereas the velocity of propagation is the same for
both of them. For values of 9 smaller than 9,, on the contrary,
the effect is similar to the true longitudinal one. In this interval it
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is only by their velocities of propagation, but not by the intensity
of the absorption, that the two beams are different.

We can diminish &, by making » greater. Hence, the region of
the transverse effect expands when the magnetic field is strengthened,

and finally, when ” has become very large, i. e. when the distance
g

between the magnetic components far surpasses their breadth, the
longitudinal effect is confined to a very narrow interval.

We may add that any definite direction of propagation may be
made to fall within the limits of the transverse effect by properly
strengthening the field. At the same time, the phenomena become
more and more like those that are observed at right angles to the
lines of force. Indeed, when » is made greater, ¢ increases continually,
as may be seen from (34). The angle y; whose value is given by
(39), tends towards the limit 0, so that finally the two principal
directions of vibration will be perpendicular to each other, the second
of them being also normal to the field. Formula (41) shows that, a
the limit, the index of absorption of the second beam becomes 0,

and equation (40) may be replaced by

ko8
ki ;::—0———2—(q -+ 4gv cos 9,
(i tg)

or, if we take into account the formula (34) and fact that » becomes
very much greater than g, by

hyj =——sin* Y

Toflofl
g
(cf. formula (28)). These conclusions may be compared with well
known results obtained in-the elementary theory of the Zeeman-effect
in the radiated light, namely that the difection of vibration.lies in
the plane passing through the ray and a line of force, and that the

amplitude is/proportional to sin 9.

§ 11. From a theoretical point of view it is interesting to examine
somewhat more closely the special case in which the rays have the
direction determined by the angle 9,. Our formulae would lead us
to infer that in this case the two principal beams are polarized in
the same way, so that after all there would be only one kind of
vibration that can be propagated. Of course this cannot be true.
The difficulty can be overcome by pushing our approximations a
step farther than has been done in the preceding calculations, in
which we have omitted all quantities that are of an order hlghel

than the first with respect to w1, ua4, Us—.
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If we use for % and § the exact formulae (19) and (20)- — again
confining ourselves to the case n—=mn, — we still find an imaginary

. & .
value for the ratio —. We can thervefore define a real angle in the

n
first quadrant by the equation
sin® &
: ﬂJZ_ﬁW.....”(m
€08 %, 7

and it is for the direction of propagation determined by this angle,
that we shall perform the following calculations.

It follows from (33) that the angle 9, which we introduce now
becomes equal to the angle originally denoted by the same symbol
when we take for y and § their former values. These are a little
different from those which we must now ascribe to these quantities,
and therefore the direction of propagation assumed in our present
calculation does not exactly coincide with the dirvection which we
considered in the preceding arlicle as thz boundary between the
regions of the longitudinal and the transverse effect. The deviation
of one direction from the other is, however, insignificant; it will
even be found to be small in comparison with the new terms that
will now become of importance.

We shall again begin with the determination of §& For this purpose
we have to use equation (12), for which, on account of (46), we
may write

20 S cos &, — L*eos® &, = — §® qcos® &, — §L° sin® &, +

Here, the terms on the lefti-hand side, the only ones with which
we were concerned in our fiest approximation, form a complete
square, and this is the reason' why we found two principal beams
identical with each other.

In the approximation now required we musi retain the terms on
the right-hand side, but it will suffice to substitute in them the
values of & 1,  obtained in our former calculation. Distinguishing
these by the index 0, we get the following equation for §

E bl cos &, = £V — §n, 08 &, — §,5,0 sin® O, + 0% . (47)
As to the three quantities §,, %, &,, the last of them is given by
(25), and we have, in virtue of (46),

9 cos O,
Yy — — &4 —n——
o ° sin? 19-,’
» . 9.1'
and, on account of (36), since the value of — was 1,
3
y
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g = —»-@'M: — i L, cos .
4v? -} ¢*
Substituting these values jn (47), we get-
E=—ifcs9, =1 —9L,d, . . . . . (48
where we have put
1 4-cos® &

) L V5L 089,

sin 9,

The new term to which our present approximation leads us,
namely (1-—i)§,d, is thus seen to be of the order of magnitude Z,%,
so that it will be allowable to neglect quantities of the order [,
Such are: first, the difference between the values of &, given by
(37) and (46), and secondly, the change that would be brought about
in our results if we took into account the difference between #,5
and 7g,5,. Moreover, we may neglect the products &2, %5, and &nin
formula (14), and we may again use for the complex index of
refraction the equation (22), substituting in it, on account of (24),
(25) and (37),

1 .. 8 ig 1, sw*d,
3l TR = = = L

Finally we deduce from (48)
E=—il,c089 = (L—i) L, d,
from (14)

&

¢
y ,
» FA+9— X

9

and from (22)
W=p 1= it e L g,

The result is that in this special case, like in the general one,
there are two distinet principal beams, with different-characteristic
ellipses, both deviating somewhat from the straight line 0L mentioned
at the end of § 7. Between the two there is a slight difference, both
in velocity of propagation and in index of absorption.

The regions of the longitudinal and the transverse Zmmman-effect
are thus found not to be sharply separated from each other, as we
concluded in § 10, but to overlap to a certain extent. This shows
that, strictly speaking, the consideration of additional terms of the
order §,% is necessary, not only in the case 9 =&, Lut also for
other directions of propagation lying within a small angle on both
sides of the direction determined by the angle 9.
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