Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

Dutilh, H., On partial racemism, in:
KNAW, Proceedings, 12, 1909-1910, Amsterdam, 1910, pp. 393-400

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Fig. 3.
11. We conclude with a summary of the cases possible for a floating cube in so far as $\varepsilon>\frac{1}{2}$.
$1>\varepsilon>0.788 \ldots$ first case in vertical position.
$0.738 \ldots>\varepsilon>0.75 \quad$, ", "oblique ",
$0.833 \ldots>\varepsilon>0.77 \ldots$ fourth case, level plane a pentagon.
$0.833 \ldots>\varepsilon>0.5$ fifth " ", ", "hexagon,
where an interior diagonal is normal to the level of the liquid.
Moreover there are still possible positions belonging to the fifth case, where the interior diagonal is not perpendicular to the level of the liquid. The treatment of this is however attended with greal difficulties:

Chemistry. - "On purtial racemism" By Mr. H. Durilh. (Communicated by Prof. P. van Roniburgh).
(Commumicated in the meeting of October 30, 1909).
A recent article from Findiay and Hickmans ${ }^{1}$) induces me to commonicate the results of a research on the above subject, on which I have been engaged sinco Angusi 1908, the publication of which has been delayod, however, through circumstances not under my control.

I have been occupied with the case of partial racemism which oceurs in strychuine racemate and I have studied more in particular the behaviour of this substance in presence of its aqueous solution. Although this salt has ahready beon subjected to an extensive

[^0]research under the same conditions by Ladenbura and Doctor ${ }^{1}$), I am of opinion that this research, although carried out fully and accurately, is attended with errors and that, therefore, the results do not represent the true state of affairs.

Ladendurg and Doctor have determined at different temperatures the solubilities of strychmine racemate and of strychnine l-tartrate and strychnine d-tartrate together, and they are of opinion that at the temperature at which the solubility of the partially racemic salt became equal to that of the mixture of its two component parts, the transition point of the strychnine racemale was situated, that is to say, that below that temperature the said salt would be stable in presence of its saturated solution but that at a higher temperature it would be resolved under those circunstances, with simultaneous separation of the least soluble of its dissociation products. By this process that temperature was found to be 30°, whereas by the tensimetric method $29^{\circ}, 5$ was found. Moreover, the said authors have always endeavoured to determine the content in d - and l - strychnine tartrate of the solutions saturated with both salts by measwing the angle of rotation of those solutions and calculating the respective proportions from the known specific rotatory power of each of the two salts. Their observations led to the result that at the transition temperature the solution saturated with both components (these will in future be designated by D and L and their compound by R) would contain exactly 50% of both.

Immediately after their publication Baкниіs Roozeвоом") pointed out the improbability of their results and in the graphic representation given in his paper the way has been indicated how to set to work when studying the solubility phenomena in cases of partial racemism.

The two components in the system L, D and water, in which R can be formed from $D+L$, hare, as we are clealing here with biartive substances whose configurations are partly each other's mirror images, at all temperatures a different solnbility, which is shown by an asymmetric form of the solubility isotherms in this ternary system. This is elucidated by fig. 1. Suppose at a certain temperature the solubility of $L=O L$, of $D=O D$. If now L is dissolved in water already containing D, or D in solutions containing L, we obtain points situated on $L C^{I}$ or $D C^{I}$, respeciively. C^{\prime} represents the solution saturated with both D and L.

At the temperature of the transition point we obtain a similar

[^1]

Fig. 1.
form of the L or D solubility curves, respectively, with this difference however, that a solution of the inner composition as represented by P can be also in equilibrium with R; in other words such a solution is obtained by shaking water with an excess of $R+D$, or $R+L$ or $L+D$. The zone of the partial racemate (R) in presence of solution is at this emperature limited to the point P. At a lower temperature this pont extends to a line $A^{I} B^{I}$, $A^{I I} B^{I I}, A^{I I I} B^{I I I}$ etc. In the points $A^{I}, A^{I I}$ etc. the liquid is saturaied with $L+R$, in the points $B I, B^{I I}$ etc., however, with $D+R$. The points of the lines $P A$ and $P B$, therefore, indicate the inner composition, as io D and L, of the solutions of $L+R$ and $D+R$ saturated al different temperatures.

The same also relates to the points on the line $P C$ as regards the solutions saturated wilh $D+L$. The knowledge of the form of the lines $P A, P B$, and $P C$ gives a complete insight into the stability phenomena of the double salt in presence of solution. U_{p} to the temperature t_{3} the partial racemate (R) can give solutions whose composition as to D and L is aequimolecular, above t_{2} the substance begins to decompose with separation of the least soluble of its components (the line OR, which indicates the composition of R, then intersects the solubility line of L and so we obtain solutions

(396)

which are not saturated with respect to R, but to $L+R$) ar. this goes on when we increase the temperature, until above t_{3} the sa R can absolutely exist no longer in the presence of any solutic whatever (retardation phenomena excluded). The temperature regic $t_{2}-t_{\mathrm{s}}$ is called the transition interval.

In my research 1 have endeavoured to construct experimentall a similar diagram for the system strychnine l-artrate, strychnir d-tartrate and water. For this purpose complete isotherms wer determined successively by observing the change in the solnbilit of D, or L, if L or D was previously dissolved in water. I this manner I determined in this system the isotherm of 40° whicl being situated above the transition point found by Ladenbur and Docror, had a form which agrees very well with that (the lines $L C^{I}$ and $D C^{I}$. Isotherms at a lower lemperature wes then determined in a similar manner. First of all, I determine the D - and L-solubility curves at $25^{\circ}, 16^{\circ}$ and 7.5°, whicl notwithstanding the fact that these are interrupted by the solubilit curve of R, could be followed up to their intersecting point. Th solubility as to $L+R$ and $D+R$ was then measured at the sai temperatures (also that of $D+L$, and this always agreed very we with the intersecting point of the D - and L-solubility curves founc finally, by extrapolation).

When the solubility of these two salt couples was known, I place them on the L - and the D-axis, connected these points with a straigt line and looked, in the case of $I+R$ solutions, for the intersectin point with the L solubility curve; on the other hand in the case c $D+R$ solutions the intersecting point with the D curve was detes mined. In this manner; points on the lines $P A$ and $P B$ were deter mined successively in an indirect way and it was my intention t endeavour to trace the intersection of PA with OR, as the termine point of the transition interral would then be known and the analog: between partial racemates and the inorganic double salts investigate by van 't Horr and his scholars be completely demonstrated. succeeded in showing that at 7.5° the solubility of the racemal must be put down in the point where the L curve of the isothern of that temperature intersects the line $O R$, and also that R ant $R+L$ became equal as regards solubility. This gave the end of th transition interval and this temperature region, which in Ladensor and Doctor's research was supposed not.to exist at all, was show] to extend over about 20°. Saturated solutions of the partial racemat are therefore stable below 7.5° only: the solnbility of the sall may
however, also be determined at higher temperatures (by retardation in the decomposition) and points like $R^{I}, R^{I I}$ etc. may be thus' established.

Similarly, the possibility of determining points like $C^{I I}, C^{111}$ etc. is due to the retardation in the formation of R from $D+L$ and the non-crystallisation of this salt from the solution.
The end of the transition interval is characterised by the fact that the saturated solutions of R and of $R+L$ are in equilibrium with each other; their vapour tensions are the same and, consequently, this point ought to be controllable by the tensimetric method (with the aid of Brearer-Frowern's tensimeter). The solubilities of R, D, and L at 7.5° have, however, become so small that the vapour tensions of these solutions do not practically differ from that of pure water at that temperature; consequently their mutual difference at a somewhat lower, or somewhat higher temperature and their equality at that temperature itself, is difficult to demonstrate. As a matter of fact I have not succeeded in verifying the result in this manner.
In the method followed by me I have carefally avoided analysing the liquids saturated with $R+D, R+L$ or $D+L$, by means of the polarimeter, as to their contents in L and D. For from the commencement of my research I was of opinion that such a method of malysis gives a wrong idea as to the inner composition of the solutions saturated with two salts.
A saturated $(R+D),(R+L)$ or $(D+L)$ solution contains not only R and D, R and L, or D and L, but in those solutions it must be assumed that R - as well as D - and L-molecules will occur. Such solations conform, being homogeneous phases, to the law of the mass-action and therefore an equilibrium is formed between D-, $L_{\text {- }}$ and R - molecules, which is determined not only by the temperature of the solutions, but also by their concentrations. This equilibrium may be expressed by $R \nleftarrow D+L$.

Ladenburg and Doctor have determined the $(D+L)$ solubilities by pipetting off quantities of the saturated solution; these were then weighed and evaporated. After having ascertained in this manner the total concentration, the residue was dissolved up to a definite volume. After determining the angle of rotation α, the content in D and in L was calculated by means of the equation $a={ }_{d}+\alpha_{b}$

$$
\alpha=\frac{\left[\alpha_{d}\right]_{D} \cdot p_{d} \cdot S . l}{100}+\frac{\left[\alpha_{l}\right]_{D} \cdot p^{\prime} \cdot S . l}{100} ; \frac{100 a}{l . S}=\left[\alpha_{d}\right]_{D} \cdot p_{d}+\left[\alpha_{l}\right]_{D} \cdot\left(p-p_{d}\right)
$$

in which $\left[\alpha_{d}\right]_{D}$ and $\left[c_{l}\right]_{D}$ represent the specific rotatory power of D
and L, p the total concentration, p_{l}, the content in J, p_{l} the content in L, S the sp.gr. of the solution and l the length of the tube.

This manner of calculation, however, is not admissible; for at a total concentration p and a content p_{d} for D, we have a content p_{l} for L and $p-p_{d}-p_{l}$ for R and the equation thus becomes:

$$
\frac{100 a}{l . S}=\left[\alpha_{d}\right]_{D} \cdot p_{d}+\left[a_{l}\right]_{D} \cdot p_{l}+\left[\alpha_{1}\right]_{D} \cdot\left(p-p_{d}-p_{l}\right)
$$

In this are known $a,\left[\alpha_{d}\right]_{D},\left[\alpha_{l}\right]_{D},\left[a_{,}\right]_{D}, p, l$ and S.
The equation contains two unknown quantities and therefore we cannot get an insight into the inner composition of the solutions saturated with $(R+D),(R+L)$ or $(D+L)$ by means of a polarimetric determination, even when assuming that the three compounds which occur in the solvent do not affect each other's rotations (which has not been ascertained).

To this it may be attributed that Ladenburg and Doctor found the point P, that is the transition point, on the line $O R$, whereas I have reasons to conclude that the isotherm of the temperature of the transition point, like all others, retains its asymmetric form.
This untrustworthy method of analysis has been applied by Findlay and Hickmans in their investigation of the partial racemism of the l-menthyl- φ-mandelic ester, which must be considered as the binary compound of the l-menthyl- l-mandelic ester with the l-menthyl- l-mandelic ester, a fact which has been clearly shown by the authors ${ }^{1}$) from the form of the melting point curve of those two esters. The partially racemic ester the binary system formed by possesses in this systen a melting point curve of its own with a flat top and has, therefore, been partly resolved in the fused mass into the two components.
In their second publication ${ }^{2}$) the solubility isotherms are given at $35^{\circ}, 25^{\circ}$ and 10°. Of each isothern only five points have been determined, namely, the solubilities of $D, L, R, R+D$ and $R+J$, whilst the solutions $(R+D)$ and $\left(R^{\dot{R}}+L\right)$ have been analysed according to the above mentioned method.

It now appears to me that their graphic representation, which I reproduce, shows at once the deceiving conclusions drawn from' the polarimetric method. If we look at fig. 2 we observe that the solubility of the d-acid ester decreases on addition of the l-acid ester to the solution at 10°, whilst it increases at 25° and 35°.

[^2]

Fig. 2.

This will be noticed by comparing the lines $A B, C D$ and $E F$.
Such a behaviour is highly improbable, for it may be expected that ai. $35^{\circ}, 25^{\circ}$, and 10° the effect on the solubility of the d-mandelic ester by the presence of the l-mandelic ester in the solution will manifest itself in an equal sense and not cause an increase of solubility at the one temperature and a decrease at the other. In the diagram of Findiay and Hicknans, howerer, the course of the curves $A B, C D$, and $E F$, is, contrwy to my invesligations, determined exclasively by the stuation of the points B, D, and F, whose position is deduced from an observed angle of rotation of the solution of the residues obtained by evaporation. It is not at all improbable that if these points were determined by another method their siluation would be quite a different one. In this system the verification would have been a simple onc, because the melting point curve of the binary system formed by the two biactive esters is known. The melting point for each content in l), or L in mixtures of $D+C$ is therefore known.

If now, Findlay and Ilrokians had only determined the melting point of their residues each time after evaporating their saturated solutions ($R+L$) and ($R+D$), they would have obtained from the situation of this melting point in comection with the melting point
curve of the binary sysiem formed by D and L, so to speak "thermi analyses of their solutions, whech might have been compared with i polarimetric ones. It is to be regretted that these investigators ha not applied this check as now it camot, provisionally, be decid whether their isotherms exhibit the true form or not. From r results with the stryclmine tartrates, I think I may decide upon t latter view. The truth may, however, be revealed by a determinati of the complete isotherms or, perhaps with sufficient accuracy, melting point determinations of the residues left on evaporation.

Utrecht.
Ory. C'kem. Lab. of the Univ.

Botany. - "Contribution to the kinowledge of water-secretion in plant: By Dr. W. Burch.
(Communicated in the meeting of October 30, 1909.)
II. Secretion of water in the flower.

After Trevi ${ }^{1}$) showed in 1890 that the flower-buds of Spathod campanulata Beauv. are filled with a watery fluid, a similar secreti of water in closed flower-buds has also been observed in a fe other tropical plants.
Lagbrberm ${ }^{2}$) observed the same phenomenon in a South-Americ: Solanacea, Jochroma macrocalyar Benth. Gregor Kraus ${ }^{3}$) sor afterwards described the water-calyces of Parmentiera cerife: Seem., and Hamithr ') those of Leea amabilis. Later a detail paper was published by Koorders ${ }^{\circ}$) on the flower-buds of t . Bignoniaceae: Parmentiera cerifera Seem., Crescentica Cujete Lim Kigelia pirnata DC., Heterophragma adenophyllum, Seem., Stere spermumn hypostictum Miq.; of the Solanaceae: Juarulloa parasiti Ruiz et Pav., Nicandra physaloides Gärtn.; of the Verbenac Clerodendron Minahassac T. et B. and of a Scrophularinea Illysanth spec. Afterwards there followed important contributions by Shibata

[^3]
[^0]: $\left.{ }^{1}\right)$ Journ. chem. Soc. Trans. 95. 1886 (1909).

[^1]: $\left.{ }^{1}\right)$ Ber. d. d. chem. Ges. 32, 50. (1899).
 ${ }^{9}$) Zeitschr. f. physikal. Chem 28, 494 (1899),

[^2]: ${ }^{1}$) Fithdlay id Hickmatis Journ. chem. Soc. Trans. 91, 905, (1907).
 ${ }^{2}$) Ibid. 95, 1386 (1909).

[^3]: ${ }^{1}$) Treub, M. Annales du Jardin botanique de Buitenzorg. Vol. VIII. 189!)
 2) Lagerhein. Zur Biologie der Jochroma macrocalyx Benth. Berichte d deutsch. bot. Gesellsch. Bd. 9, Jahrg. 1891.
 ${ }^{3}$) Krads, G. Wasserhaltige Kelche bei Parmentiera cerifera Seem. Flora B 81, p. 435-437.
 ${ }^{4}$) Hallier, H. Ueber Leea amabilis und ihre Wasserkelche. Annales du Jard botanique de Buitenzorg. Vol. XIV. 1897.
 ${ }^{\text {j }}$) Knorders. S. H.. Ueber die Blütenknospen-Hydathoden einiger tropisch Pflanzen. Aunales du Jardin botanique de Buitenzorg. Vol. XIV 1897.
 ${ }^{6}$ Shibata, K. 'Zur Kenntnis der Kelch- und Knospenhydathoden. Bot. Centralbla 1900. Bd. LXXXIII.

